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Introduction
Breast cancer is the most common cancer 
in women worldwide. According to the 
study done in 2003 by the American 
Cancer Society, about 12% of U. S. women 
had breast cancer over the course of their 
lifetime. In European countries, breast 
cancer accounts for 24% of all types of 
cancer and 19% of cancer deaths. In 2010, 
the Iran’s Ministry of Health announced 
that more than 7000 women were 
diagnosed with breast cancer and more than 
4000 people died because of that every 
year.[1] Automatic detection of disease from 
medical images forms the major part of 
researchers in machine learning and medical 
engineering fields.[2] Mammography is one 
of the most commonly used tests for breast 
cancer diagnosis. Today, several methods 
have been proposed for tumor segmentation 
in mammography images.[3,4] A review of 

automatic tumor segmentation methods 
for breast cancer has been provided in 
the literatures.[5-7] These methods can be 
considered as six groups:
1. Contour-based segmentation approaches 

such as active contour algorithm[8-10]

2. Region-based growing segmentation 
techniques[11-16]

3. Segmentation using two-dimensional 
discrete wavelet transform[17,18]

4. Segmentation based on watershed 
algorithm[19-21]

5. Segmentation with co-occurrence 
matrix[22-24]

6. Classification‑based segmentation 
including supervised and unsupervised 
learning methods.[25-29]

Tao et al. proposed a classifier for tumor 
segmentation,[25] in which region of 
interest (ROI) is divided into some sub-
regions and machine learning techniques 
used for labeling each sub-region. 
Graph-cut algorithm and optimization 
method were used for final segmentation.
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Background: Breast cancer is one of the most common cancers in women. Mammogram images 
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learning methods have been widely used for tumor segmentation in mammogram images. Pixel-
based segmentation methods have been presented using both supervised and unsupervised learning 
approaches. Supervised learning methods are usually fast and accurate, but they usually use a 
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Dynamic programming method has also been used 
for segmentation.[26,27] In Song et al.’s study,[26] first, a 
plane‑fitting method was used to extract the ROI, and then 
optimal contour of the mass was extracted using a dynamic 
programming approach. In Song et al.’s study,[27] a similar 
method was used for tumor segmentation, in which a 
template matching method was used along with the dynamic 
programming approach. The results showed that the template 
matching approach outperforms plane‑fitting in this area.

Supervised methods are usually fast and accurate, but they 
need a large number of labeled data. Providing labels for 
the data is very hard and expensive.[1,30,31] Unsupervised 
methods do not use labels for decision‑making and they 
may lead to poor performance because they do not use 
prior knowledge of the samples.[31‑33] Clustering methods 
have also been used for pixel labeling in mammogram 
images in the studies by Shi et al. and Kamil and Salih.[28,29] 
Skin–air boundary estimation using gradient weight map 
and pectoral‑breast boundary detection using clustering 
approach were done in a study by Shi et al.[28] A texture 
filter was used for final detection. In a study by Kamil and 
Salih,[29] K‑means and fuzzy C‑mean were used for tumor 
segmentation. To improve the performance, lazy snapping 
algorithm was used as an additional step.

Semi‑supervised learning is motivated by the fact that 
providing unlabeled data is easy and therefore it can be 
used to improve the accuracy of classifiers. Semi‑supervised 
methods such as self‑training algorithm and co‑training 
algorithm dominate the problem of providing the high 
number of samples in supervised methods because they 
need a small set of labeled samples. These methods have 
a higher accuracy in comparison to the unsupervised 
methods.[1,31] Some methods in breast tumor segmentation 
used intensity feature of each pixel to segment the tumor 
from medical images. It can be seen that texture features 
have only been used for the diagnosis of benign and 
malignant breast tumor.[34‑36]

In this study, a semi‑supervised method is proposed 
for tumor segmentation in mammography images. 
A co‑training algorithm is used for the segmentation 
according to pixel‑based features.[1] The study is organized 
as follows: in section “Basics”, basic concepts including 
feature extraction and reduction methods and co‑training 
algorithm are presented. The proposed co‑training 
algorithm is presented in section “The proposed method”. 
In section “Experimental results”, the experimental results 
and evaluation of the proposed approach in comparison to 
the supervised methods are presented. Finally, the paper is 
concluded in section “Conclusions”.

Basics
In this section, pixel‑based features used in the proposed 
method are described. The dimensionality of the features is 
reduced according to the Fisher discriminant analysis (FDA) 

method, which is described in the following sections in 
details. Then, the co‑training method is described in the 
last part.

Feature extraction
In this study, we have used two methods for feature 
extraction: static features and gray level run length 
matrix (GLRLM) features. For each pixel in the ROI, we 
have used a 5 × 5 window for feature extraction as in the 
study by Azmi et al.[1]

Statistical features have been obtained using static 
methods. These features are mean, variance, absolute 
deviation, and standard deviation. Run‑length matrix 
is defined in such a way that each element (i,j) of the 
matrix shows the number of runs with pixels of gray level 
intensity equal to i and length of run equal to j beside 
a particular direction. In this study, four directions have 
been used: 0°, 45°, 90°, and 135° as shown in Figure 1.

The GLRLM features are obtained using Eqs. (1) to (4).
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In the above equations, I(i,j) is defined as the number of 
runs with pixels of the gray level i and the run length j. 
nr is also the total number of runs. There are 11 features 
[Appendix A] obtained from run‑length matrix in each 
direction including  = 0°, 45°, 90°, and 135°,[1] and 
therefore, the number of these features is 44 which are 
extracted from GLRLM. Moreover, we use four features 

Figure 1: Direction of run‑length matrix



labels are more reliably predicted, and adds these samples to 
the training set.

Classifiers are retrained and the process is repeated. [40]

The mechanism of the algorithm is shown in Figure 3. At the 
beginning, the two classifiers are trained using limited labeled 
data and then make a decision for limited unlabeled data. In 
view 1, Learner 1 and in view 2, Learner 2 make a decision 
for constant unlabeled limited data independently. Then, the 
new labeled data are considered as secondary samples which 
are added to the primary training data for the other classifier 
as shown in Figure 3. In other words, when Learner 1 makes 
a decision for a constant unlabeled data set, these new 
labeled data are used as a secondary training data set for 
Learner 2 and vice versa. After this stage, the classifiers make 
a decision for the new test data set which are unlabeled.

The Proposed Method
The proposed method is shown in Figure 4, in which the 
co‑training algorithm is used for tumor segmentation in 

Figure 4: Tumor segmentation procedure, according to the co‑training 
algorithm

Figure 3: The co‑training algorithm

Figure 2: An example for Fisher discriminant analysis: (a) The data before 
transformation and (b) the same data after transformation

ba
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obtained from the static method for each pixel. Hence, the 
number of features is 48 for each pixel.

Feature reduction

FDA is a popular method for linear supervised dimension 
reduction. In this step, the dimension of the extracted features 
is reduced using the FDA by reducing the within‑class 
scatter and increasing between‑class scatter. FDA is closely 
related to the principal component analysis (PCA), which 
is based on linear transformations. This method has some 
properties: it minimizes the mean square error in data 
compression, finds mutually orthogonal directions in the data 
with maximum variances, and reduces the correlation of the 
data using orthogonal transformations. In data compression, 
PCA finds a smaller dimensional linear representation of 
the data vectors, so that the reconstruction of the original 
data can be done with minimum square error.[37] PCA does 
not consider differences within the class. However, in the 
FDA, the transformation is based on maximizing a ratio of 
between‑class variance to within‑class variance. The goal is 
to decrease the variation of data in the same class and to 
increase this measure between the classes. Figure 2 depicts 
an example of the transformation in the FDA.

Figure 2a depicts samples of two classes (shown in 
different colors) and the histograms, which results from a 
projection to a line connecting the class means. There is an 
overlapping area in the projected space. Figure 2b shows 
the equivalent projection based on the FDA, which shows 
an improvement on the class separation.[38]

Semi‑supervised learning

Semi‑supervised learning is a kind of supervised learning 
techniques, which uses both labeled and unlabeled data 
for training. Training set is usually composed of a small 
number of labeled data and a large number of unlabeled data. 
Semi‑supervised methods use a few number of labeled data 
and therefore they can dominate the problem of providing the 
high number of samples in supervised methods, but have a 
higher accuracy compared to unsupervised methods. Unlabeled 
data, combined with a small amount of labeled data, can result 
in a significant improvement on learning accuracy.

Acquisition of the labels for the data usually needs an 
expert (e.g., to transcribe an audio segment) or a physical 
experiment (for example, by determining the three‑dimensional 
structure of a protein or by determining the presence of oil 
in a particular location). Providing a fully labeled training set 
may be infeasible due to the cost of this process. Therefore, 
semi‑supervised learning methods can be useful with great 
practical significance. In this study, we use a co‑training 
algorithm for tumor segmentation, which is described in the 
following section in details. Co‑training algorithm has been 
introduced by Blum and Mitchell in 1998.[39] In the algorithm, 
there are two classifiers which are trained using a small set of 
labeled data using two views. Then, each classifier classifies 
unlabeled data, selects a limited unlabeled samples whose 



mammogram images. Two different expert radiologists 
have extracted the ROI. A sample of ROI is shown in 
Figure 5.[41‑43] At the first stage, two feature sets have been 
extracted for each pixel of training images, and then, the 
features have been reduced by the FDA method as shown 
in Figure 4. Then, an image is randomly selected as labeled 
training data and is given to a radiologist for manual 
segmentation.

In our proposed method, the two classifiers used in 
co‑training method are support vector machine (SVM) 
classifier and Bayes classifier. A few labeled data are 
extracted to train the classifiers, while the dimensionality 
of the features is reduced by the FDA. Then, a set of 
unlabeled data is given to each classifier. The output of 
a classifier provides the secondary data set which is used 
for the other classifier. In the test step, each classifier 
makes a decision for all pixels in the test image and the 
accuracy of the classifier is calculated. The labels of the 
pixels are determined according to the classifier which has 
a higher accuracy. We have used two classifiers for the 
decision‑making. A label corresponding to the output of 
the classifier with a higher accuracy is considered as a true 
label for each pixel.

Experimental Results
In this study, we have used the MIAS data set which 
is available at http://peipa.essex.ac.uk/info/mias.html. 
The data set contains breast mammography images and 
their ground truth (GT) segmentation which have been 
manually extracted by a radiologist. In experiments, 
GT has been used as a reference for performance 
evaluations.

Here, we used two images for the training process: 
one labeled image and one unlabeled image. Then, 500 
pixels (250 samples from the suspicious abnormal regions 
and 250 samples from the normal regions) are chosen from 
the labeled image. The same number of samples of the two 
classes has been used to train the classifiers. Furthermore, 
6000 pixels have been selected from the nondeterministic 
labeled image. The output of the classifiers for these pixels 
is considered as the new sample. According to Figure 3, 
new samples are added to train data. Hereby, we have a 
total of 500 labeled and 6000 nondeterministic labeled 
pixels for training of the classifier. In our experiments, 
30 images have been used as a test set. To improve the 
performance, a pixel‑based semi‑supervised classification 
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method has been used based on texture analysis.[1] In 
fact, according to this method, the results are reported 
according to all the pixels of the 30 images. Figure 5a 
shows a sample of ROI which is extracted from a test 
image. The output of Bayes classifier and SVM classifier 
is shown in Figure 5b and c, respectively. The output of 
co‑training algorithm to segment the tumor from the ROI 
is shown in Figure 5d.

Figure 6 shows receiver operating characteristic (ROC) 
curves for the Bayes classifier, SVM classifier, and 
co‑training method. The performance of the classifiers 
has been reported using ROC analysis, which is based 
on statistical decision theory. It has been widely used for 
the assessment of clinical performance. We compare the 
performance of supervised learning for two classifiers and 
semi‑supervised learning method proposed in this study. It 
is clear that the co‑training method outperforms the other 
methods.

The following measures have been used for the evaluation:
1. Accuracy: this criterion has been applied to measure 

the similarity among assigned labels by the proposed 
method and the true labels:

 Accuracy TN TP
TN TP FN FP

=
+

+ + +
 (5)

2. Positive predictive value (PPV): PPV is the 
percentage of correct prediction of tumor labels and 
correctly classified on the basis of the test result as 
positive (tumor):

 PPV TP
TP FP

=
+

× 100  (6)

3. Negative predictive value (NPV): NPV is the 
percentage of correct prediction of nontumor labels 
and correctly classified on the basis of the test result 
as negative:

 NPV TN
TN FN

=
+

× 100  (7)

4. Sensitivity: the percentage of tumor prediction 
recognized by the test is:

 Sens TP
TP FN

=
+

× 100  (8)

5. Specificity: the percentage of nontumor prediction 
recognized by the test is:

 Spec TN
TN FP

=
+

×100  (9)

The ROC has been used to evaluate the accuracy of the 
system. The area under the curve that is called Az is a 
measure of the success of the system. The output of the 
proposed co‑training method is compared with watershed 

Figure 5: (a) An example of region of interest for a test image, (b) the output 
of Bayes method, (c) the output of support vector machine method, and 
(d) the output of co‑training algorithm

dcba



Figure 6: Receiver operating characteristic curve of compare performance supervised learning and semi‑supervised learning method
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segmentation[40] and region‑growing[4] approach for five 
images as an example in Table 1.

Table 2 reports that when limited labeled data are used in 
the classifiers, the accuracy is 43.17% for SVM 87.52% 
for Bayes. The accuracy is 94.04% for the co‑training 
algorithm when we use the same limited labeled data.

We can compare the output of supervised and 
semi‑supervised learning methods. The average performance 
of the method for 30 images is shown in Table 3 for SVM 
and Bayes as supervised classifiers and the proposed 
co‑training method as a semi‑supervised classifier. It can 
also be seen that the average performance for the co‑training 
algorithm is higher than supervised methods.

Conclusions
In this study, a semi‑supervised learning method is proposed 
for tumor segmentation from mammogram images. It 
was shown that using the co‑training algorithm for tumor 
segmentation has a higher accuracy than the supervised 
methods. The advantage of the proposed method is that it 
does not require a large number of data for classification 
and hence it is computationally tractable.

As a disadvantage of the method, it can be mentioned that 
the accuracy of the proposed method is low on low quality 
images like the other methods. The main reason is that 
there is no knowledge about the true labels of the secondary 
training data; therefore, the output of the classifier may be 
biased to one of the classes.

Future studies include using more than two classifiers in 
co‑training. Probability rules can also be used for label 
prediction and therefore it may improve the performance 
of the co‑training method. Additional knowledge about the 
secondary training data can also be used to prevent the 
classifiers to be biased. It can improve the accuracy of the 
co‑training method which can be studied as our future study.
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Table 3: The performance of supervised and semi‑supervised methods according to mean and standard deviation
SVM Bayes Co‑training

Mean (%) SD Mean (%) SD Mean (%) SD
Accuracy 79.56 7.75 78.67 7.80 80.54 7.77
PPV 83.73 20.53 89.11 16.69 87.19 17.67
NPV 65.34 29.67 55.89 30.47 63.37 29.71
Sensitivity 83.00 9.87 78.85 10.05 82.14 9.98
Specificity 80.10 11.99 84.35 9.80 83.67 9.89
A‑z 0.76 0.07 0.77 0.06 0.78 0.07
SVM – Support vector machine; SD – Standard deviation; PPV – Positive predictive value; NPV – Negative predictive value

Table 2: Comparison of performance of the supervised learning and the semi‑supervised learning methods
Learning approaches Supervised learning method Semi‑supervised learning method (co‑training algorithm)
Test evaluation using 
different training samples

Labeled data Unlabeled data Test data Labeled data Unlabeled data Test data
200 0 27,054 200 450 27,054

Learning algorithm SVM Bayes Co‑training
Accuracy (%) 43.17 87.52 94.04
SVM – Support vector machine

Table 1: The comparison between the proposed 
co‑training algorithm and watershed and also region 

growing segmentation test images
Accuracy (%) Co‑training 

method
Watershed 

segmentations
Region 
growing

Test image 1 91.68 90.05 89.80
Test image 2 92.67 91.35 91.78
Test image 3 89.52 82.12 79.22
Test image 4 91.00 92.28 90.58
Test image 5 76.19 79.01 79.81
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Appendix A: The list of features used for each pixel
Statistic features

1. Mean
2. Variance
3. Absolute deviation
4. Standard deviation

Run‑length matrix
1. SRE
2. LRE
3. GLN
4. RLN
5. RP
6. LGRE
7. HGRE
8. SRLGE
9. SRHGE
10. LRLGE
11. LRHGE

SRE – Short‑run emphasis; LRE – Long‑run emphasis; 
GLN – Gray‑level nonuniformity; RLN – Run‑length nonuniformity; 
RP – Run percentage; LGRE – Low gray‑level‑run emphasis; 
HGRE – High gray‑level‑run emphasis; SRLGE – Short‑run low 
gray‑level emphasis; SRHGE – Short‑run high gray‑level emphasis; 
LRLGE – Long‑run low gray‑level emphasis; LRHGE – Long‑run 
high gray‑level emphasis
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