

Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.



Contents lists available at ScienceDirect

# **Clinical Infection in Practice**



journal homepage: https://www.journals.elsevier.com/clinpr

# Troponin I, a risk factor indicating more severe pneumonia among patients with novel coronavirus infected pneumonia

Dong Liu <sup>a,b,1</sup>, Qingyuan Yang <sup>a,b,1</sup>, Wei Chen <sup>a,b,c,1</sup>, Hong Chen <sup>a,b,1</sup>, Yun Feng <sup>a,b</sup>, Weiping Hu <sup>d</sup>, Yusang Xie <sup>a,b</sup>, Huihuang Lin <sup>a,b</sup>, Jiayang Yan <sup>a,b</sup>, Jieming Qu <sup>a,b,\*</sup>

<sup>a</sup> Department of Respiratory and Critical Care Medicine, Ruijin hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China

<sup>b</sup> Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China

<sup>c</sup> Tongji Hospital, Tongji Medical College of Hust, Tongji Medical College Huazhong University of Science & Technology, Shanghai, China

<sup>d</sup> Department of pulmonary and critical care medicine, Zhongshan Hospital, Fudan University, Shanghai, China

#### ARTICLE INFO

Article history: Received 29 April 2020 Received in revised form 31 May 2020 Accepted 24 June 2020

Keywords: Novel coronavirus infected pneumonia Severe acute respiratory syndrome coronavirus 2 Troponin I Myocardial damage

#### ABSTRACT

*Background:* In December 2019, a novel communicable disease, novel coronavirus infected pneumonia (NCIP) caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) broke out. We aimed to analyze the characteristics and severity of patients with myocardial damage in NCIP.

*Methods:* We enrolled 215 adult patients with NCIP from January 2020 to February 2020. Outcomes were followed up until March 1st, 2020.

*Results:* 28.37% of the total patients showed increased level of TnI (>0.040 ng/ml). Patients were older and had more cardiovascular complications in increased TnI group. Higher CRP, NT-proBNP, lower immune CD3, CD4 and CD8 cell account and more involved lobes detected by CT scan in the lung were observed in increased TnI group. Patients with elevated TnI had higher CURB-65 scores and were more likely given glucocorticoid therapy and mechanical ventilation than patients in normal TnI group.

*Conclusions:* Markers of cardiomyocyte injury were elevated not least in elderly males with pre-existing cardiovascular disease. Patients with elevated TnI presented more severe situation, leading to multiple organ dysfunctions, which appeared as a pivotal feature of patients with NCIP that requires attention by clinicians in order to provide necessary treatment as soon as possible and improve patients' outcomes.

© 2020 Published by Elsevier Ltd on behalf of British Infection Association. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

# Introduction

In December 2019, a novel coronavirus infected pneumonia (NCIP), originating from the Huanan Seafood Market in Wuhan broke out. Being highly transmissible through mainly air droplets and contact, this epidemic has spread throughout the globe and has caused a total of over 1,500,000 infections outside China as of April 10, 2020. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the virus responsible for this infection was soon isolated and sequenced by Chinese Center for Disease Control and Prevention [1]. SARS-CoV-2 within the subgenus *sarbecovirus, Orthocoronavirinae* subfamily, turns out to be another coronavirus that infect human currently.

In The Lancet, there are two research reported the clinical characteristics of patients with SARS-CoV-2 infection [2,3]. Symptoms, CT

E-mail address: jmqu0906@163.com (J. Qu).

#### https://doi.org/10.1016/j.clinpr.2020.100037

2590-1702/© 2020 Published by Elsevier Ltd on behalf of British Infection Association. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

features, treatment, mortality, and comparison between ICU patients and non-ICU patients were reported [4].

Aside from pulmonary edema and hyaline membrane formation observed in lung, the biopsy samples taken from heart tissue from a severe case of NCIP showed a few interstitial mononuclear inflammatory infiltrates and indicated myocardial damage [5]. We also observed elevated myocardial enzymes in severe patients with NCIP. Therefore, we retrospectively analyzed the characteristics and severity of patients with myocardial damage in NCIP.

#### Methods

#### Study design and participants

From January 2020 to February 2020, patients with NCIP admitted to Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine in Shanghai and Tongji Hospital affiliated to Tongji Medical College of Hust, Tongji Medical College, Huazhong University of Science & Technology in Wuhan were enrolled in this study. The respiratory specimens including nasal and pharyngeal swabs, bronchoalveolar lavage fluid, sputum, or bronchial aspirates were collected and detected

<sup>\*</sup> Corresponding author at: Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Institute of Respiratory Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China.

<sup>&</sup>lt;sup>1</sup>Contributed equally.

by real-time RT-PCR methods to confirm the presence of SARS-CoV-2. All participants underwent chest CT scans. The study was approved by Ruijin Hospital Ethics Committee and Tongji Hospital Ethics Committee, respectively. Written informed consent was waived for emerging infectious diseases.

Patients were divided into four types following the standards set up by the Chinese Diagnosis and Treatment of Pneumonia Caused by New Coronavirus Infection (Fifth Version) as follows

- 1. Mild type: patients with mild clinical symptoms and no radiological abnormality.
- 2. Common type: patients presented with fever, cough or other respiratory symptoms, positive radiological findings as pneumonia.
- 3. Severe type: if one of the following conditions was met:
  - (1) Respiratory distress,  $RR \ge 30$  per min;
  - (2) Finger oxygen saturation (SaO2)  $\leq$  93% in resting state;
  - (3) Partial pressure of arterial oxygen (PaO2)/concentration of oxygen inhaled (FiO2) ≤ 300 mmHg.

4. Critical type: if one of the following conditions was met:

- (1) Respiratory failure occurs and mechanical ventilation is needed;
- (2) Shock occurs;
- (3) Patients with other organ dysfunction need intensive care unit (ICU) monitoring treatment.

Patients with incomplete data were excluded from this study.

# Data collection

We collected demographic data, symptoms, laboratory, radiological characteristics, severity, and treatment from patients' electronic medical records. Two physicians reviewed the date collected to double check.

#### Outcomes

In this study, patients (n = 215) involved were divided into two groups: normal TnI group (n = 154) and increased TnI group (n = 61) according to their level of troponin I (TnI) at admission. The above collected characteristics were compared between the two groups.

#### Statistical analysis

Continuous measurements were presented as mean (SD) and independent T test or Oneway ANOVA were used if they are normally distributed. Otherwise median (IQR) and Mann–Whitney *U* test were adopted to express and compare the variable if its distribution is nonnormal.  $\chi^2$  test or Fisher's exact test were used to compare categorical variables. The analysis of covariance (ANCOVA) was also used to adjust age and sex. All tests were two-sided and a p < 0.05 denoted statistical significance. P value and the one adjusted by age and sex were listed in Tables. All analyses were done by SPSS (version 26.0).

#### Role of the funding source

The funders of the study had no role in study design, data collection, data analysis, data interpretation, or writing of the report. The corresponding author had full access to all the data in the study and had final responsibility for the decision to submit for publication.

# Patient and public involvement

This was a retrospective case series study and no patients were involved in the study design, setting the research questions, or the outcome measures directly. No patients were asked to advise on interpretation or writing up of results.

## Results

#### Patient characteristics

Totally, there are 222 patients admitted in the hospital. Seven patients lack the measurement of TnI. Therefore these 7 patients were excluded from this study. The participation rate is 96.85%. The patients were divided into two groups as normal TnI group (0 ~ 0.040 ng/ml, n = 154) and increased TnI group (>0.040 ng/ml, n = 61) according to their TnI level on admission. The majority patients were men (53%). Patients in normal TnI group (p = 0.001) (Table 1). 80% or so of study population alleged exposure history (Table 1). More patients had the complications of hypertension and coronary heart disease in increased TnI group than in normal TnI group (16.2% vs. 41.0% respectively; p < 0.001; 7.1% vs. 16.4%; p = 0.039) (Table 1).

Cases in increased TnI group had higher score of CURB-65 at admission than patients in normal TnI group (p < 0.001). Most patients had fever or cough (80.5% and 48.8%). The distribution of symptoms was similar between these two groups (Table 1).

# Laboratory and radiologic findings

On admission, level of CRP, direct bilirubin, creatinine, myoglobin, NT-proBNP, procalcitonin and fibrinogen were higher in increased TnI group than those in normal TnI group (Table 2). Compared with normal TnI group, the patients with lymphocyte count less than 1\*10<sup>9</sup>/L and D-

## Table 1

Clinical features of patients with NCIP on admission and comparison between normal TnI group and increased TnI group.

|                                                                                                                                                                                 | Total population $(n = 215)$                                                                                                                                                                                                                  | Normal<br>TnI group<br>(n = 154)                                                                                                                                                                                                             | Increased<br>TnI group<br>(n = 61)                                                                                                                                                                                                    | P-value                                                              | Adjusted<br>P-value |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------|
| Baseline characteristics<br>Male sex<br>Age (median, IQR)<br>Epidemiological history<br>Hypertension<br>Diabetes<br>Chronic obstructive                                         | 114 (53.0%)<br>54 (37-65)<br>171 (79.5%)<br>50 (23.3%)<br>24 (11.2%)<br>5 (2.3%)                                                                                                                                                              | 74 (48.1%)<br>49.5 (35–63)<br>121 (78.6%)<br>25 (16.2%)<br>14 (9.1%)<br>2 (1.3%)                                                                                                                                                             | 40 (65.6%)<br>63 (41-68)<br>50 (82.0%)<br>25 (41.0%)<br>10 (16.4%)<br>3 (4.9%)                                                                                                                                                        | 0.023<br>0.001<br>NS<br><0.001<br>NS<br>NS                           | 0.026               |
| Coronary heart disease<br>Cerebrovascular disease<br>Cancer<br>Other diseases <sup>a</sup>                                                                                      | 21 (9.8%)<br>2 (0.9%)<br>2 (0.9%)<br>36 (16.7%)                                                                                                                                                                                               | 11 (7.1%)<br>0 (0%)<br>0 (0%)<br>20 (13.0%)                                                                                                                                                                                                  | 10 (16.4%)<br>2 (3.3%)<br>2 (3.3%)<br>16 (26.2%)                                                                                                                                                                                      | 0.039<br>NS<br>NS<br>0.019                                           | 0.048<br>0.089      |
| CURB-65 on admission<br>0<br>1<br>2<br>3                                                                                                                                        | 151 (70.2%)<br>53 (24.7%)<br>9 (4.2%)<br>2 (0.9%)                                                                                                                                                                                             | 118 (76.6%)<br>33 (21.4%)<br>3 (1.0%)<br>0 (0.0%)                                                                                                                                                                                            | 33 (54.1%)<br>20 (32.8%)<br>6 (9.8%)<br>2 (3.3%)                                                                                                                                                                                      | 0.001                                                                | 0.033               |
| Symptoms<br>Fever<br>Chill<br>Cough<br>Sputum production<br>Sore throat<br>Chest pain<br>Shortness of breath<br>Myalgia<br>Nausea<br>Vomit<br>Diarrhea<br>Headache<br>Dizziness | $\begin{array}{c} 173 \ (80.5\%) \\ 4 \ (1.8\%) \\ 105 \ (48.8\%) \\ 56 \ (26.0\%) \\ 18 \ (8.4\%) \\ 5 \ (2.3\%) \\ 17 \ (7.9\%) \\ 25 \ (11.6\%) \\ 10 \ (4.7\%) \\ 0 \ (0.0\%) \\ 12 \ (5.6\%) \\ 14 \ (6.5\%) \\ 7 \ (3.3\%) \end{array}$ | $\begin{array}{c} 127 \ (82.5\%) \\ 3 \ (1.9\%) \\ 73 \ (47.4\%) \\ 35 \ (22.7\%) \\ 16 \ (10.4\%) \\ 3 \ (1.9\%) \\ 10 \ (6.5\%) \\ 19 \ (12.3\%) \\ 10 \ (6.5\%) \\ 0 \ (0.0\%) \\ 8 \ (5.2\%) \\ 11 \ (7.1\%) \\ 7 \ (4.5\%) \end{array}$ | $\begin{array}{c} 46 \ (75.4\%) \\ 1 \ (1.6\%) \\ 32 \ (52.5\%) \\ 21 \ (34.4\%) \\ 2 \ (3.3\%) \\ 2 \ (3.3\%) \\ 7 \ (11.5\%) \\ 6 \ (9.8\%) \\ 0 \ (0.0\%) \\ 0 \ (0.0\%) \\ 4 \ (6.6\%) \\ 3 \ (4.9\%) \\ 0 \ (0.0\%) \end{array}$ | NS<br>NS<br>NS<br>NS<br>NS<br>NS<br>NS<br>NS<br>NS<br>NS<br>NS<br>NS |                     |

Tnl, troponin I; IQR, Inter Quartile Range; CURB-65, (C: disturbance of consciousness, U: urea nitrogen, R: respiratory rate, B: blood pressure, 65: age).

Data were shown as number (percentage) or median (IQR). P-values between two groups were calculated by Fisher's exact test, Chi-square test, or Mann–Whitney *U* test. Adjusted P-values were calculated by covariance analysis after adjusting age, sex.

<sup>a</sup> Other diseases referred to other organ diseases except for the above diseases.

#### Table 2

.

Laboratory findings of patients with NCIP on admission and comparison between normal TnI group and increased TnI group.

| Bindler examination </th <th></th> <th>Total population <math>(n = 215)</math></th> <th>Normal TnI group (<math>n = 154</math>)</th> <th>Increased TnI group <math>(n = 61)</math></th> <th>P-value</th> <th>Adjusted P-value</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                             | Total population $(n = 215)$ | Normal TnI group ( $n = 154$ ) | Increased TnI group $(n = 61)$ | P-value       | Adjusted P-value |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|------------------------------|--------------------------------|--------------------------------|---------------|------------------|
| White local call can (10%)<br>-4464 (400-6.46)NS-47(185)37 (0.085)16 (34.67)NS-108(1,77)57 (127)14 (407)NS-108(1,77)124 (0.07-1.48)104 (0.07-1.48)NS-1090 (141.3)124 (0.07-1.48)139 (0.04-1.48)NS-1090 (141.3)125 (32-41.20)135 (32-41.20)NS-10155 (124.148)124 (122.12)135 (123-118)NS-107.335124 (122.20)17 (14-22.10)NS-1007.335124 (123.20)13 (123.118)NS-1017.33524 (125.10)13 (123.118)NS-1027.33524 (125.118)13 (123.118)NS-103124 (123.118)13 (123.118)NSNS-104124 (123.128)14 (123.41)13 (123.118)NS-10524 (123.118)14 (123.41)13 (123.118)NS-104124 (123.128)14 (123.421)13 (123.118)NS-10524 (123.118)13 (123.118)13 (123.118)NS-10624 (123.118)13 (123.118)13 (123.118)NS-104124 (123.128)14 (123.128)NS10524 (123.118)13 (123.118)13 (123.118)NS-10624 (123.118)13 (123.118)NS10712 (123.118)13 (123.118)NS10812 (123.118)13 (123.118)NS10812 (123.118)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Blood routine examination                   |                              |                                |                                |               |                  |
| -4<br>•1087/2137/2008)13/2480                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | White blood cell count (10 <sup>9</sup> /L) | 4.85 (4.09-6.11)             | 4.89 (4.09-6.11)               | 4.64 (4.00-6.46)               | NS            |                  |
| >10         8 (273)         5 (232)         3 (487)           Nettrophil contr (10 <sup>4</sup> )         1.12 (1077-1.84)         1.14 (1077-1.55)         0.01 (0.04-1.11)         NS           (20 <sup>6</sup> prox)         1.35 (124-1.84)         1.34 (1027-1.25)         0.35 (13.8-17)         0.02         0.035           Homoglobin (gh)         1.35 (124-1.84)         1.34 (124-1.84)         1.36 (124-1.84)         1.36 (124-1.84)         1.36 (124-1.84)           Homoglobin (gh)         1.35 (124-1.84)         1.36 (124-1.84)         1.36 (124-1.84)         1.36 (124-1.84)         1.36 (124-1.84)           Homoglobin (gh)         1.35 (124-1.84)         2.4 (265.70)         2.4 (1-3.22)         2.6 (1-3.22)         NS           Structure (gh)         2.2 (15-32)         2.4 (15-32)         2.6 (1-3.22)         NS         0.003         0.005           Total bitmbin (mol.1)         3.2 (263-1.04)         3.0 (24-3.24)         5.1 (3.3-1.32)         NS         0.001         0.002           Constaine (monl.1)         3.2 (25-3.01)         3.1 (3.3-(3.24)         3.4 (3.3-(3.24)         3.4 (3.24)         0.001         0.001         0.002           Constaine (monl.1)         3.2 (12-5.20)         3.1 (3.3-1.2)         NS         0.1 (3.3-1.2)         NS           Constaine (monl.1)         3.2 (1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <4                                          | 47 (21.9%)                   | 32 (20.8%)                     | 15 (24.6%)                     |               |                  |
| Neutrophic over (10 <sup>4</sup> )         14 (2.48-46)         3.22 (2.24-48)         3.02 (2.27-48)         NS           1.0         90 (419)         97 (120)         93 (0.41.3)         NS           1.0         90 (419)         97 (120)         33 (4.13)         NS           1.0         90 (419)         13 (124.148)         136 (124.148)         0.026           1.00         70.33         4 (2.85)         177 (144-123)         NS           1.00         70.33         4 (2.85)         1 (44-13)         NS           1.01         27 (15-12)         21 (15-12)         NS         NS           AT7 (0.4)         24 (19-33)         4 (2.85)         1 (3-13,27)         NS           AST (0.1)         3 (13-41)         3 (13-41)         NS         NS           Jona bilinder (molt)         3 (12-5,7)         4 (3.13,47)         NS         NS           Una inforga (mont)         4 (13-34)         4 (13-31)         3 (16-41)         NS           Una inforga (mont)         4 (13-41)         3 (13-41)         3 (13-41)         NS           Una inforga (mont)         4 (13-41)         3 (13-41)         NS         NS           Una inforga (mont)         4 (13-41)         3 (13-41)         NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | >10                                         | 8 (3.7%)                     | 5 (3.2%)                       | 3 (4.9%)                       |               |                  |
| juppheny ac aut. (19%)         1.4 (0.87–1.53)         0.91 (0.84–1.31)         NS           -1.0         0.043)         57 (2703)         31 (4.813)         0.022         0.025           CBV (mg1)         11.8 (0.8.7-94)         10.7 (0.2.2.4.9)         10.7 (0.3.2.4.1.9)         0.016         0.016           Pailed count (10%)         7.3.30         4 (2.63)         10.7 (1.4.2.20)         177 (1.4.4.21)         NS           Stand biochemistry examination         -         21 (1.5-21)         NS         -         NS           ATT (0.1)         23 (1.5-31)         NS         -         NS         -           Stand biochemistry examination         -         21 (1.5-21)         NS         -           ATT (0.1)         23 (1.25-31)         NS         -         -           Stand biochemistry examination         83 (3.8-1)         31 (1.83)         31 (3.8-1)         0.001         0.007           Stand (mmald)         34 (2.2-5.0)         31 (1.8-1)         10 (1.5-3.7)         0.001         0.006           Stand (mmald)         34 (3.7-31)         31 (3.8-1)         31 (3.8-1)         0.102         0.101           Creating (mmald)         34 (3.5-4.1)         31 (3.8-1)         10 (3.8-1)         NS         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Neutrophil count (10 <sup>9</sup> /L)       | 3.14 (2.48-4.06)             | 3.22 (2.45-4.03)               | 3.02 (2.57-4.45)               | NS            |                  |
| -1.0       90 (41.9)       57 (75.00)       33 (54.12)       0.022       0.025         06" (org.1)       138 (124-16)       138 (124-15)       NS       NS         14 mongolon (g/t)       13 (124-16)       136 (124-16)       136 (121-150)       NS         100 biothemistry examination       14 (142-20)       14 (142-20)       14 (142-20)       14 (142-20)       14 (142-20)       14 (142-20)       NS       NS         100 biothemistry examination       23 (15-23)       24 (15-32)       NS       NS       NS       NS         100 biothemistry examination       33 (12-31)       NS       S       NS       NS       NS         101 biothom (monkl)       33 (12-51)       13 (13-14)       NS       NS       NS       NS         100 examing (monkl)       16 (13-77)       13 (13-14)       NS       NS       NS       NS         100 examing (monkl)       64 (13-77)       13 (13-14)       NS       NS       NS       NS         101 examing (monkl)       64 (13-77)       13 (13-14)       NS       NS       NS       NS         101 examing (monkl)       64 (13-77)       13 (13-14)       NS       NS       NS       NS         102 examing (monkl)       16 (13-77) <td>Lymphocyte count (10<sup>9</sup>/L)</td> <td>1.12 (0.77–1.49)</td> <td>1.14 (0.87–1.55)</td> <td>0.91 (0.64–1.31)</td> <td>NS</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Lymphocyte count (10 <sup>9</sup> /L)       | 1.12 (0.77–1.49)             | 1.14 (0.87–1.55)               | 0.91 (0.64–1.31)               | NS            |                  |
| CRP (mg2)         15 (10, 5-32)         107 (0-22.8)         195 (13-51.9)         NG         0016           Finactic count (10 <sup>2</sup> ,1)         175 (12-4.48)         134 (12-4.48)         135 (12-1.48)         NS           Finactic count (10 <sup>2</sup> ,1)         177 (14-2.20)         177 (14-2.13)         NS         NS           Blood biochemistry examination         21 (15-32)         24 (15-32)         26 (12-33)         NS           ATT (10.1)         24 (12-32)         24 (12-32)         16 (32-10.0)         NS         0001         0.005           AST (10.1)         24 (12-32)         23 (13-31.0)         NS         0001         0.005           AST (10.1)         34 (13-8.41)         41 (38-41)         39 (26-31.0)         NS         -           Caratinia (gmo14)         45 (33-7.5.1)         43 (33-4.5.2)         444 (407-5.55)         NS         -           Caratinia (gmo14)         43 (35-4.1)         39 (137-141)         NS         -         -           Caratinia (gmo14)         33 (137.1)         33 (137.1)         33 (137.1)         33 (137.1)         33 (137.1)         33 (137.1)         33 (137.1)         33 (137.1)         33 (137.1)         33 (137.1)         33 (137.1)         33 (137.1)         33 (137.1)         -         - <t< td=""><td>&lt;1.0</td><td>90 (41.9)</td><td>57 (37.0%)</td><td>33 (54.1%)</td><td>0.022</td><td>0.026</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <1.0                                        | 90 (41.9)                    | 57 (37.0%)                     | 33 (54.1%)                     | 0.022         | 0.026            |
| Hemedgeoin [g4],<br>Parket cour, [10 <sup>2</sup> 1,<br>Tarket cour, [10 <sup>2</sup> 1,<br>Tark | CRP (mg/L)                                  | 11.8(0.6-37.2)               | 10.7 (0-22.8)                  | 19.5 (3.9-81.9)                | <0.001        | 0.016            |
| Platche count (10 <sup>7</sup> /1)         179 (142-220)         177 (142-12)         NS           100         7(33)         4(285)         3(453)           Blood biochemistry examination         X         X         NS           ATT (UU)         22 (15-32)         24 (15-32)         26 (2-13)         NS           ATT (UU)         32 (15-31)         NS         NS         NS           Direct binding (mold)         33 (2.5-30)         37 (2.5-47)         45 (33-67)         0.01         0.005           Direct binding (mold)         43 (25-75)         70 (15-47)         NS         0.005           Abumin (42)         45 (33-67)         0.01         0.012         0.005           Creatinic (mond)         45 (37-55)         70 (15-37)         0.01         0.012           Creatinic (mond)         43 (35-41)         39 (32-41)         NS         -           Creatinic (mond)         33 (35-41)         33 (35-41)         39 (32-41)         NS         -           Creatinic (mond)         23 (157)         70 (15-37)         0.01         0.015         -           Creatinic (mond)         33 (35-41)         13 (15-16)         NS         -         -           Creatinin (mond)         33 (3-7) <td< td=""><td>Hemoglobin (g/L)</td><td>135 (124–148)</td><td>134 (124–148)</td><td>136 (121–150)</td><td>NS</td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Hemoglobin (g/L)                            | 135 (124–148)                | 134 (124–148)                  | 136 (121–150)                  | NS            |                  |
| <1007(3.3)4(2.82)3(4.982)Body biochemic paraminationZ1 (5-22)23 (15-21)NSATT (UL)24 (19-32)26 (21-33)NSDecre bilindin (mold)82 (63-104)80 (64-9.7)91 (63-132)NSDecre bilindin (mold)82 (63-104)80 (64-9.7)91 (63-67)0.0010.005> 8.683 (3.73)3 (198)91 (24-07)15 (33-67)0.0010.005> 8.683 (3.74)41 (198 (19-43)91 (24-07)0.0110.012> 111123 (19-27)63 (51-75)91 (18-30)0.005Sodium (mond)43 (35-41)139 (137-141)139 (137-141)0.0010.012> 114125 (537)73 (135-14)139 (137-141)139 (137-141)0.0010.061Sodium (mond)33 (35-41)33 (135-41)33 (137-141)0.0010.061Sodium (mond)33 (135-13)12 (143)139 (137-141)0.0010.061> 24691 (23.33)12 (7.83)83 (63.33)0.0010.061> 24691 (23.33)12 (7.83)13 (11-16)NSNS> 24691 (23.21)13 (11-16)NSNSNS> 24691 (23.21)91 (24.33)0.0020.0240.104 (10.1)12 (10.13)12 (14.33)13 (11.35)0.0010.016> 24614 (143)11 (24.31)13 (12.33)0.0020.024> 24614 (143)14 (143)13 (12.33)0.0010.012> 24614                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Platelet count (10 <sup>9</sup> /L)         | 179 (143–220)                | 178 (142–220)                  | 177 (144–213)                  | NS            |                  |
| Biodenemistry examinationUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU <td>&lt;100</td> <td>7 (3.3%)</td> <td>4 (2.6%)</td> <td>3 (4.9%)</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <100                                        | 7 (3.3%)                     | 4 (2.6%)                       | 3 (4.9%)                       |               |                  |
| AIT (101)         21 (15-22)         21 (15-22)         23 (15-21)         NS           AIT (101)         34 (19-32)         26 (1-3)         NS           Data biltwin (mol/L)         32 (25-50)         37 (29-47)         45 (33-67)         0001         0.005           >86         81 (37.7)         3 (193)         5 (62.3)         0.043         0.087           Dereb biltwin (mol/L)         45 (35-75.1)         43 (32-45.2)         494 (407-59.5)         NS           Creatinus (monl/L)         45 (35-75.1)         43 (132-45.2)         494 (407-59.5)         NS           Creatinus (monl/L)         19 (157-41)         19 (157-41)         19 (157-41)         NS         -           Solum (monl/L)         33 (132-41)         33 (132-40)         39 (34-41)         NS         -           Other         -         -         -         -         -         -           UM (1/M)         32 (122-289)         20 (189-276)         89 (290-339)         NS         -           Creatine (monl/L)         10 (51-15)         7 (128.3)         39 (64-70)         NS         -           Creatine (monl/L)         20 (102-007)         03 (002-006)         0404 (002.2006)         0061         0.034           Creatine (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Blood biochemistry examination              |                              |                                |                                |               |                  |
| AT (UL)<br>144 (19-32)24 (19-32)85 (21-32)NSDirect bilingtion (moll)39 (22-50)37 (29-47)45 (33-67)00010.005>668 (377)31 (98)5 (823)00910.005Abumin (gh)41 (38-43)39 (26-43)NSNSLinea nitrogin (monl)45 (32-77)63 (33-45,42)494 (40-565)NSLinea nitrogin (monl)64 (32-77)63 (31-73)70 (35-57)0.0010.012Inea nitrogin (monl)138 (35-41)38 (32-43)39 (36-41)NSNotasium (monl)138 (35-41)38 (32-43)39 (36-41)NSNotasium (monl)138 (35-41)38 (32-31)39 (36-41)NSNotasium (monl)127 (192-299)20 (189-276)260 (209-339)NS-24650 (233)12 (733)39 (36-41)NS-247108 (50-12)76 (32-17)116 (51-370)0.0010.016-24850 (233)12 (733)38 (62-33)0.0010.016-248003 (002-007)003 (002-007)004 (002-008)0.0320.048-248003 (002-007)003 (002-007)004 (002-008)0.0320.049-2502 (1183)114 (91-23)9 (7433)-261003 (002-007)003 (002-007)004 (002-008)0.0320.049-2632 (1183)12 (1283)0047-264012 (118)114 (91-23)9 (7433) <tr< td=""><td>ALT (U/L)</td><td>22 (15-32)</td><td>21 (15-32)</td><td>23 (15-21)</td><td>NS</td><td></td></tr<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ALT (U/L)                                   | 22 (15-32)                   | 21 (15-32)                     | 23 (15-21)                     | NS            |                  |
| Toda bindm (mode)         8.2 (3.5-164)         8.0 (54-47)         9.1 (3.3-67)         0.001         0.005           > 8.6         8 (3.73)         3 (193)         5 (8.23)         0.001         0.005           > 8.6         8 (3.73)         3 (3.8-6.3)         3 (26-4.3)         NS         -           Una attragen (mode)         4.5 (3.67-5.51)         4.3 (3.8-4.3)         3 (26-4.3)         NS         -           Carcinine (gmod)         4.5 (3.67-5.51)         4.3 (3.8-4.3)         4.4 (4.07-5.95)         NS         -           Carcinine (gmod)         3 (3.5-4.1)         3 (137-141)         3 (137-141)         3 (137-141)         NS         -           Codum (mod)         3 (3.5-4.1)         3 (137-141)         3 (137-141)         3 (136-4.1)         NS           Sodum (mod)         3 (3.5-4.1)         3 (137-141)         3 (137-141)         NS         -           Codum (mod)         3 (137-141)         3 (137-141)         3 (136-11)         NS         -           Codum (mod)         12 (10-15)         12 (10-15)         13 (11-16)         NS         -           Codum (mod)         0.05 (2.33)         10 (100         NS         -         -           Codum (mod)         0.25 (10.00) <td< td=""><td>AST (U/L)</td><td>24 (19–33)</td><td>24 (19–32)</td><td>26 (21–33)</td><td>NS</td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AST (U/L)                                   | 24 (19–33)                   | 24 (19–32)                     | 26 (21–33)                     | NS            |                  |
| Direct billiowan (umod.i.)         3/2 (29-47)         4/3 (3-4.57)         0.001         0.005           >66         (3.7x)         1193()         54 (32.3)         0.43         0.43           Aburnin (gl.)         41 (38-44)         41 (38-43)         39 (26-43)         NS           Lore antizeger (mmol.)         456 (37-55)         43 (23.5-57)         0.55 (37.57)         0.01         0.12           Lore antizeger (mmol.)         456 (37-55)         39 (25-47)         0.05         0.000         0.01           Solium (mmol.)         139 (137-141)         139 (137-141)         139 (137-141)         NS         -           Potassium (mmol.)         39 (35-47)         38 (5-40)         36 (6-47)         NS         -           Creatine kinass (U/A)         139 (157-14)         34 (30-42)         136 (1-16)         NS         -           246         50 (23.33)         12 (7.83)         36 (6-470)         NS         -           Creatine kinas (U/A)         12 (10-15)         12 (9-14)         13 (11-16)         NS         -           Nogolobin (gl.)         73 (32-174)         54 (30-122)         16 (16,130)         0.001         0.016           Creatine kinas<(U/A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Total bilirubin (umol/L)                    | 8.2 (6.3–10.4)               | 8.0 (6.4–9.7)                  | 9.1 (6.3–13.2)                 | NS            |                  |
| >.66         8 (3.7)         8 (3.7)         3 (1.8)         5 (8.23)         0.043         0.087           Mumin (gc),         41 (38-43)         39 (26-43)         NS         -           Creatinice (mumol.)         45 (3.7-5.1)         43 (3.8-43)         9 (4.43)         NS           Creatinice (mumol.)         12 (5.8)         3 (193)         9 (14.8)         0.001         0.012           >111         12 (5.8)         3 (13.7)         13 (13.7-141)         13 (13.7-141)         NS           Sodium (mumol.)         38 (3.5-4.1)         38 (3.5-4.0)         32 (3.6-4.1)         NS           Other         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - <td>Direct bilirubin (µmol/L)</td> <td>3.9 (2.9–5.0)</td> <td>3.7 (2.9–4.7)</td> <td>4.5 (3.3–6.7)</td> <td>0.001</td> <td>0.005</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Direct bilirubin (µmol/L)                   | 3.9 (2.9–5.0)                | 3.7 (2.9–4.7)                  | 4.5 (3.3–6.7)                  | 0.001         | 0.005            |
| Albumin (g1)41 (38-4)41 (38-4)39 (26-43)NSUrea nitrogen (molb)45 (53 - 75)63 (51 - 75)70 (55 - 87)0.010.120 (11)12 (5 63)13 (13x)91 (14 83)-0000.02Soliun (molb)139 (137 - 14)139 (137 - 14)139 (137 - 14)NSPlassiun (momb)33 (35 - 4.1)33 (35 - 4.1)139 (137 - 14)NSOtherUH (U1)39 (137 - 14)33 (13 - 21)36 (64 - 10)NS> 24650 (23 - 33)12 (7 88)36 (62 - 33)0.010.81> 24650 (23 - 33)12 (7 88)36 (62 - 30)NS-> 24650 (23 - 33)12 (7 88)36 (62 - 30)0.0010.016Ceature knase (U1)12 (10 - 15)12 (9 - 14)13 (11 - 16)NS-Proceilcionin (g2)103 (002 - 0030.0020.0220.0240 - 03 (002 - 003 (002 - 003 (002 - 0030.0010.016-Proceilcionin (g2)103 (002 - 0030.0220.0240.0240 - 02514 (10 23)2 (12 - 63)13 (6 13)1-0 - 02514 (10 23)2 (12 - 63)16 (13)10.010 - 02514 (12 - 23)14 (12 - 23)16 (13)10.010 - 02512 (13 - 23)12 (12 - 63)16 (13)16 (13)10 - 02612 (13 - 23)12 (13 - 23)0.010.020.010 - 03612 (13 - 23)13 (1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | >8.6                                        | 8 (3.7%)                     | 3 (1.9%)                       | 5 (8.2%)                       | 0.043         | 0.087            |
| Unca nitrogen (mmol/L)4.56 (3.57-55.)0.570.000.012>-11112 (5.63)3 (15.75)0.010.012>-11112 (5.63)3 (19.75)9 (13.75-14)NS>-111139 (137-14)139 (137-14)39 (13.7-14)NS>-111139 (137-14)33 (3.5-0)39 (13.7-14)NS>-1113.83 (5.4-1)3.83 (5.4-0)39 (13.7-14)NS>-1110.102-209)220 (198-26)289 (20.9-39)NS>-2450.122 (3.5)12 (7.83)8 (62.33)0.000.010.1110.12 (2.5-15)12 (5.4-13)93 (6.4-170)NS>-2460.122 (3.5)12 (5.4-13)13 (1-16)NS-24622 (10.22)0.6 (3.8)13 (1-16)NS-248.822 (10.23)0.03 (0.02-0.00)0.04 (0.02-0.08)0.0320.044Procalicioni (g.L)0.00 (0.02-0.07)0.03 (0.02-0.08)0.04 (0.02-0.08)0.0320.044-210-252 (11.33)2 (1.53)3 (7.93)NS21114 (0.123)2 (1.53)0.010.0162502 (1.33)2 (1.53)0.010.010.02-2512 (1.34)13 (2.12-060.130.010.02-25018 (11.83)(7.13)11 (1.23.23)0.010.01-25118 (11.83)(1.24.23)0.010.010.02-25018 (11.83)(1.24.23)0.010.020.01-25118 (11.83)(1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Albumin (g/L)                               | 41 (38-44)                   | 41 (38-43)                     | 39 (26-43)                     | NS            |                  |
| Creating (µmol,l)61 (5 -77)63 (5 -75)70 (55 -78)0.0010.012Soliun (µmol,l)132 (157-141)139 (137-141)139 (137-141)NSDetassiun (µmol,l)38 (35 -40)39 (35 -41)NSOther220 (192-299)20 (189-276)269 (29 -339)NS-24550 (23 33)12 (123)31 (62 33)-0000.061Creatine kinase (U,l)80 (56-15)76 (52 -113)93 (64 -170)NS-24612 (10 -15)12 (123)93 (64 -170)NSMogoliun (µc,l)12 (10 -15)14 (123)116 (53 73)0.0020.024Mogoliun (µc,l)12 (10 -15)14 (123)93 (06 -006)0.01 (00 -005)0.024Mogoliun (µc,l)16 (170)03 (002 -006)0.04 (002 -008)0.0220.024Procedicionin (µc,l)(µ -170)03 (002 -006)0.04 (002 -008)0.0220.0240.1 - 02514 (083)7 (653)7 (433)0.0020.0240.2 - 02512 (123)13 (21 2-663)7 (43 43)0.1 - 02514 (10 23)13 (22 -663)7 (43 43 -302)0.0010.520.5 - 03612 (13 -011)13 2 (12 -663)7 (43 43 -302)0.0010.0520.5 - 03613 (31 -63)13 (23 -63)13 (32 -63)0.014-0.5 - 03613 (31 -63)13 (32 -63)13 (32 -63)0.014-0.5 - 03613 (31 -63)13 (23 -63)13 (32 -63)0.014-0.6 - 038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Urea nitrogen (mmol/L)                      | 4.56 (3.67-5.51)             | 4.39 (3.54-5.42)               | 4.94 (4.07-5.95)               | NS            |                  |
| >11112,56%)19,137-14199,137-1410060006Dotasium (mmol/L)38,135-41)38,135-4039,137-141)NSDetasium (mmol/L)38,135-41)38,135-4039,137-141NSDiff222,192-299)20,189-276)269,(209-339)NS>24550,233,3%12,178,1038,(62,37)0.0010.016Carctine kinase (U/L)80,656-125)76,152-113)93,(64-170)NSCK-MB (U/L)12,(10-15)12,19-14)13,(11-16)NSCK-MB (U/L)12,(10-15)12,19-14)13,(11-37,00)0.0020.024Proceicitorin (igt.)0.03,(002-007)0.03,(002-008)0.0320.048rocalitorin (igt.)(n=174)(n=122)(n=44)star(n=174)(n=123)(n=43)1001205-0.512,(153)71,(14,33)10,(03,-03)0.071205-1.512,(153)0,(12-01)0,(13-01)NS20552,(254)21,(153)71,(13,43)0.0010.01120518,(11,83)7,(61,32)74,(14,83,02)0.0010.01220518,(11,83)7,(61,32)11,(28,23)0.0040.00120518,(11,83)7,(61,32,-10)11,(28,23)0.0070.09920518,(11,83)74,(14,25,10)13,(03,43)0.05120518,(11,83)7,(61,32,-10)13,(03,43)0.0710.01920519,(11,93,10)11,(28,23,10)13,(03,43)0.06113,(11,11,11,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Creatinine (µmol/L)                         | 64 (52-77)                   | 63 (51–75)                     | 70 (55–87)                     | 0.001         | 0.012            |
| Sodium (mmol/l)         139 (137-141)         139 (137-141)         NS           Potassium (mmol/l)         33 (3.5-4.1)         38 (3.5-40)         39 (3.6-4.1)         NS           Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | >111                                        | 12 (5.6%)                    | 3 (1.9%)                       | 9 (14.8%)                      | <0.001        | 0.006            |
| Potasim (mmol/1)38 (35-41)38 (35-40)9 (36-41)NSOthe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sodium (mmol/L)                             | 139 (137–141)                | 139 (137-141)                  | 139 (137–141)                  | NS            |                  |
| Ohen         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U <thu< th="">         U         U         U</thu<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Potassium (mmol/L)                          | 3.8 (3.5-4.1)                | 3.8 (3.5-4.0)                  | 3.9 (3.6-4.1)                  | NS            |                  |
| During         June 1000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Other                                       |                              |                                |                                |               |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                             | 222 (102 200)                | 220(180,276)                   | 260 (200, 220)                 | NC            |                  |
| 249         30 (35.3e)         12 (78e)         36 (64-70)         NS           Creatine kinase (U/L)         80 (36-125)         76 (52-113)         93 (64-70)         NS           CK-M8 (U/L)         12 (10-15)         12 (9-14)         13 (11-16)         NS           Myoglobin (g/L)         7.6 (32-17.4)         5.4 (30-12.7)         116 (5.1-37.0)         0.001         0.016           >48.8         22 (10.28)         9 (5.8%)         13 (21.38)         0.002         0.024           Procalcitorin (g/L)         (m = 174)         (m = 125)         (m = 49)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | LDH (U/L)                                   | 232(192-299)                 | 220(189-270)                   | 209 (209-339)                  | INS<br><0.001 | 0.091            |
| Cleane Name (U)(.)         00 (30-12.3)         70 (32-113)         91 (94-10)         NS           Myoglobin (ggl.)         76 (32-17.4)         54 (30-12.7)         11.6 (5.1-37.0)         0.001         0.016           Myoglobin (ggl.)         03 (002-007)         03 (002-008)         04 (002-008)         0.032         0.048           Procalcitonin (ggl.)         (n = 174)         (n = 125)         (n = 40)         NS           \$0.1         12 (17.23)         14 (91.23)         39 (002-007)         033 (002-007)         033 (002-007)         033 (002-008)         0.032         0.048           \$0.1         0.24 (71.23)         14 (91.23)         39 (018)         NS         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <pre>&gt;245 Creating kipage (U/L)</pre>    | 50(25.5%)                    | 12(7.6%)                       | 30(02.3%)                      | < 0.00 I      | 0.081            |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CK MP (U/L)                                 | 12(10, 15)                   | 12(0, 14)                      | 12(11, 16)                     | INS<br>NS     |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Myoglobin (ug/L)                            | 76(32-174)                   | 54(30-127)                     | 116(51-370)                    | 0.001         | 0.016            |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | >48.8                                       | 22 (10.2%)                   | 9 (5.8%)                       | 13 (21 3%)                     | 0.001         | 0.024            |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Procalcitonin (ug/L)                        | 0.03(0.02-0.07)              | 0.03(0.02-0.06)                | 0.04(0.02-0.08)                | 0.032         | 0.048            |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (PS, 2)                                     | (n = 174)                    | (n = 125)                      | (n = 49)                       | 0.001         | 010 10           |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ≤0.1                                        | 124 (71.2%)                  | 114 (91.2%)                    | 39 (79.6%)                     | NS            |                  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.1-0.25                                    | 14 (0.8%)                    | 7 (5.6%)                       | 7 (14.3%)                      |               |                  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.25-0.5                                    | 2 (1.1%)                     | 2 (1.6%)                       | 0 (0%)                         |               |                  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ≥0.5                                        | 5 (2.9%)                     | 2 (1.6%)                       | 3 (6.1%)                       |               |                  |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ESR (mm/h)                                  | 72 (35–94)                   | 70 (32–91)                     | 76 (38–101)                    | NS            |                  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NT-proBNP (pg/ml)                           | 40.1 (25.1-91.1)             | 33.2 (21.2-66.3)               | 79.4 (34.8-350.2)              | <0.001        | 0.001            |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             | (n = 153)                    | (n = 114)                      | (n = 39)                       |               |                  |
| Lactate (mmol/L)         2.28 ± 0.71         2.21 ± 0.68         2.48 ± 0.75         0.039         0.47           Fibrinogen (g/L)         4.34 (3.72-5.41)         4.21 (3.62-5.10)         4.97 (4.09-5.80)         0.001         0.052           D-dimer (ug/L)         0.43 (0.31-0.80)         0.41 (0.30-0.80)         0.50 (0.34-0.83)         NS         -           ≥0.5         79 (36.7%)         48 (31.2%)         31 (50.8%)         0.007         0.009           Arterial blood gas analysis         7.40 (7.37-7.43)         7.40 (7.38-7.43)         7.39 (7.37-7.42)         NS         -           PhO2 (kPa)         12.3 (10.1-14.8)         12.6 (10.4-15.4)         11.8 (9.8-14.2)         NS         -           PA02 (kPa)         5.24 (4.80-5.64)         5.21 (4.73-5.66)         NS         -         -           PA02 (kPa)         5.24 (4.80-5.64)         5.21 (4.73-5.66)         NS         -         -           Sympositication (%)         97.6 (96.1-98.7)         97.6 (96.2-98.8)         97.4 (95.7-98.5)         NS         -           Sympositication (%)         97.6 (96.1-98.7)         97.6 (95.2-98.5)         NS         -         -           Sympositication (%)         97.6 (96.2-98.8)         97.4 (95.7-98.5)         NS         -         - </td <td>&gt;250</td> <td>18 (11.8%)</td> <td>7 (6.1%)</td> <td>11 (28.2%)</td> <td>0.004</td> <td>0.019</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | >250                                        | 18 (11.8%)                   | 7 (6.1%)                       | 11 (28.2%)                     | 0.004         | 0.019            |
| $\begin{array}{ c c c c c } (n = 100 & (n = 120) & (n = 40) \\ (n = 100 & 434 (3.72-5.41) & 4.21 (3.62-5.10) & 4.97 (4.09-5.80) & 0.001 & 0.052 \\ 0.340.633 & NS & 0.007 & 0.009 \\ \hline 0.007 & 0.009 & 0.007 & 0.009 \\ \hline 0.007 & 0.009 & 0.007 & 0.009 \\ \hline 0.007 & 0.009 & 0.007 & 0.009 \\ \hline 0.007 & 0.009 & 0.007 & 0.009 \\ \hline 0.007 & 0.009 & 0.007 & 0.009 \\ \hline 0.007 & 0.009 & 0.007 & 0.009 \\ \hline 0.007 & 0.009 & 0.007 & 0.009 \\ \hline 0.007 & 0.009 & 0.007 & 0.009 \\ \hline 0.007 & 0.009 & 0.007 & 0.009 \\ \hline 0.007 & 0.009 & 0.007 & 0.009 \\ \hline 0.007 & 0.009 & 0.007 & 0.009 \\ \hline 0.007 & 0.009 & 0.007 & 0.009 \\ \hline 0.007 & 0.009 & 0.007 & 0.009 \\ \hline 0.007 & 0.009 & 0.007 & 0.009 \\ \hline 0.007 & 0.009 & 0.007 & 0.009 \\ \hline 0.007 & 0.009 & 0.007 & 0.009 \\ \hline 0.008 & 0.008 & 0.008 & 0.008 \\ \hline 0.009 & 0.008 & 0.008 & 0.008 \\ \hline 0.009 & 0.008 & 0.008 & 0.008 \\ \hline 0.009 & 0.008 & 0.008 & 0.008 \\ \hline 0.009 & 0.008 & 0.008 & 0.008 \\ \hline 0.009 & 0.008 & 0.008 & 0.008 \\ \hline 0.009 & 0.009 & 0.008 & 0.008 \\ \hline 0.009 & 0.008 & 0.008 & 0.008 \\ \hline 0.008 & 0.008 & 0.008 & 0.008 \\ \hline 0.008 & 0.008 & 0.008 & 0.008 \\ \hline 0.008 & 0.008 & 0.008 & 0.008 \\ \hline 0.008 & 0.008 & 0.008 & 0.008 \\ \hline 0.008 & 0.008 & 0.008 & 0.008 \\ \hline 0.008 & 0.008 & 0.008 & 0.008 \\ \hline 0.008 & 0.008 & 0.008 & 0.008 \\ \hline 0.008 & 0.008 & 0.008 & 0.008 \\ \hline 0.008 & 0.008 & 0.008 & 0.008 & 0.008 \\ \hline 0.008 & 0.008 & 0.008 & 0.008 & 0.008 \\ \hline 0.008 & 0.008 & 0.008 & 0.008 & 0.008 \\ \hline 0.008 & 0.008 & 0.008 & 0.008 & 0.008 \\ \hline 0.008 & 0.008 & 0.008 & 0.008 & 0.008 \\ \hline 0.008 & 0.008 & 0.008 & 0.008 & 0.008 \\ \hline 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 \\ \hline 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 \\ \hline 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 \\ \hline 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.008 & 0.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Lactate (mmol/L)                            | $2.28\pm0.71$                | $2.21\pm0.68$                  | $2.48 \pm 0.75$                | 0.039         | 0.047            |
| Fibringen (g/L)         4.34 (3.72-5.41)         4.21 (3.62-5.10)         4.97 (4.09-5.80)         0.001         0.052           D-dimer (ug/L)         0.43 (0.31-0.80)         0.41 (0.30-0.80)         0.50 (0.34-0.83)         NS           20.5         79 (36.7%)         48 (31.2%)         1 (50.8%)         0.007         0.009           Arterial blood gas analysis          7.40 (7.37-7.43)         7.40 (7.38-7.43)         7.39 (7.37-7.42)         NS         5           PaO2 (kPa)         12.3 (10.1-14.8)         12.6 (10.4-15.4)         11.8 (9.8-14.2)         NS         5           7.98         7(3.3%)         5 (3.2%)         2 (3.2%)         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                             | (n = 160)                    | (n = 120)                      | (n = 40)                       |               |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Fibrinogen (g/L)                            | 4.34 (3.72–5.41)             | 4.21 (3.62–5.10)               | 4.97 (4.09–5.80)               | 0.001         | 0.052            |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D-dimer (µg/L)                              | 0.43 (0.31–0.80)             | 0.41 (0.30–0.80)               | 0.50 (0.34–0.83)               | NS            |                  |
| Atterial blood gas analysis       PH       7.40 (7.37-7.43)       7.40 (7.38-7.43)       7.39 (7.37-7.42)       NS         PaO2 (kPa)       12.3 (10.1-14.8)       12.6 (10.4-15.4)       11.8 (9.8-14.2)       NS         \$7.98       7(3.37)       5 (3.2%)       2 (3.2%)       Image: Constraint of the constraint of th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ≥0.5                                        | 79 (36.7%)                   | 48 (31.2%)                     | 31 (50.8%)                     | 0.007         | 0.009            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Arterial blood gas analysis                 |                              |                                |                                |               |                  |
| Pa02 (kPa)         12.3 (10.1-14.8)         12.6 (10.4-15.4)         11.8 (9.8-14.2)         NS           \$7.98         7 (3.3%)         5 (3.2%)         2 (3.2%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PH                                          | 7.40 (7.37-7.43)             | 7.40 (7.38-7.43)               | 7.39 (7.37–7.42)               | NS            |                  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PaO2 (kPa)                                  | 12.3 (10.1–14.8)             | 12.6 (10.4–15.4)               | 11.8 (9.8-14.2)                | NS            |                  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ≤7.98                                       | 7 (3.3%)                     | 5 (3.2%)                       | 2 (3.2%)                       |               |                  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PaCO2 (kPa)                                 | 5.24 (4.80-5.64)             | 5.25 (4.85-5.64)               | 5.21 (4.73-5.66)               | NS            |                  |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ≥6.65                                       | 4 (1.9%)                     | 4 (2.6%)                       | 0 (0%)                         |               |                  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Oxygen saturation (%)                       | 97.6 (96.1-98.7)             | 97.6 (96.2–98.8)               | 97.4 (95.7–98.5)               | NS            |                  |
| Standard bicarbonate (mmol/L)       23.8 (22.7-25.1)       24.0 (22.8-25.1)       23.5 (22.5-24.7)       NS         Base excess       -0.9 (-2.4-0.8)       -0.6 (-2.3-0.8)       -1.4 (-2.8-0.3)       NS         Lactate (mmol/L)       1.4 (1.0-2.1)       1.4 (0.9-2.03)       1.30 (1.05-2.15)       NS         Immune status       CD3 count       721 (491-1041)       779 (505-1085)       629 (328-913)       0.006       0.008         <700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ≤90                                         | 6 (2.8%)                     | 5 (3.2%)                       | 1 (1.6%)                       |               |                  |
| Base excess       -0.9 (-2.4-0.8)       -0.6 (-2.3-0.8)       -1.4 (-2.8-0.3)       NS         Lactate (mmol/L)       1.4 (1.0-2.1)       1.4 (0.9-2.03)       1.30 (1.05-2.15)       NS         Immune status       CD3 count       721 (491-1041)       779 (505-1085)       629 (328-913)       0.006       0.008         <700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Standard bicarbonate (mmol/L)               | 23.8 (22.7–25.1)             | 24.0 (22.8–25.1)               | 23.5 (22.5–24.7)               | NS            |                  |
| Lactate (mmol/L)       1.4 (1.0-2.1)       1.4 (0.9-2.03)       1.30 (1.05-2.15)       NS         Immune status       CD3 count       721 (491-1041)       779 (505-1085)       629 (328-913)       0.006       0.008         <700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Base excess                                 | -0.9(-2.4-0.8)               | -0.6 (-2.3-0.8)                | -1.4(-2.8-0.3)                 | NS            |                  |
| Immune status           CD3 count         721 (491-1041)         779 (505-1085)         629 (328-913)         0.006         0.008           <700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Lactate (mmol/L)                            | 1.4 (1.0–2.1)                | 1.4 (0.9–2.03)                 | 1.30 (1.05–2.15)               | NS            |                  |
| CD3 count         721 (491-1041)         779 (505-1085)         629 (328-913)         0.006         0.008           <700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Immune status                               |                              |                                |                                |               |                  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CD3 count                                   | 721 (491-1041)               | 779 (505-1085)                 | 629 (328-913)                  | 0.006         | 0.008            |
| CD4 count         425 (297-650)         450 (307-680)         395 (173-607)         0.017         0.019           <400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <700                                        | 85 (39.5%)                   | 50 (32.5%)                     | 35 (57.4%)                     | <0.001        | <0.001           |
| <400         74 (34.4%)         42 (27.3%)         32 (52.5%)         <0.01         0.015           CD8 count         246 (154-389)         270 (161-409)         215 (133-321)         0.031         0.046           IgG         11.7 (10.1-13.6)         11.7 (9.9-13.4)         11.8 (10.6-13.8)         NS         Image: Comparison of the compar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CD4 count                                   | 425 (297-650)                | 450 (307-680)                  | 395 (173–607)                  | 0.017         | 0.019            |
| CD8 count         246 (154–389)         270 (161–409)         215 (133–321) <b>0.031</b> 0.046           IgG         11.7 (10.1–13.6)         11.7 (9.9–13.4)         11.8 (10.6–13.8)         NS           IgA         2.28 (1.76–3.05)         2.26 (1.71–2.97)         2.36 (1.90–3.27)         NS           IgM         0.94 (0.70–1.22)         0.95 (0.70–1.21)         0.86 (0.69–1.28)         NS           (n = 203)         (n = 143)         (n = 60)         14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <400                                        | 74 (34.4%)                   | 42 (27.3%)                     | 32 (52.5%)                     | <0.001        | 0.015            |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CD8 count                                   | 246 (154–389)                | 270 (161-409)                  | 215 (133-321)                  | 0.031         | 0.046            |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IgG                                         | 11.7 (10.1–13.6)             | 11.7 (9.9–13.4)                | 11.8 (10.6-13.8)               | NS            |                  |
| $ \begin{array}{cccc} IgM & & 0.94(0.70\text{-}1.22) & & 0.95(0.70\text{-}1.21) & & 0.86(0.69\text{-}1.28) & & \text{NS} \\ & & (n=203) & & (n=143) & & (n=60) \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | IgA                                         | 2.28 (1.76-3.05)             | 2.26 (1.71-2.97)               | 2.36 (1.90-3.27)               | NS            |                  |
| (n = 203) $(n = 143)$ $(n = 60)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | IgM                                         | 0.94 (0.70-1.22)             | 0.95 (0.70-1.21)               | 0.86 (0.69–1.28)               | NS            |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                             | (n = 203)                    | (n = 143)                      | (n = 60)                       |               |                  |

Thl, troponin I; CRP, C reactive protein; ALT, alanine aminotransferase; AST, aspartate aminotransferase; LDH, lactate dehydrogenase; CK-MB, creatine kinase MB; ESR, erythrocyte sedimentation rate; NT-proBNP, N-terminal - pro hormone BNP.

Data were shown as number (percentage) or median (IQR). P-values between two groups were calculated by Fisher's exact test, Chi-square test, or Mann–Whitney *U* test. Adjusted P-values were calculated by covariance analysis after adjusting age, sex. These numbers in bold indicate they are less than 0.05.

dimer more than 0.5  $\mu$ g/L was more in increased TnI group (37.0% vs. 54.1%, 31.2% vs. 50.8% in normal TnI group and increased TnI group respectively; p = 0.022, p = 0.007) (Table 2). Arterial blood gas between the two groups showed no significant differences. Compared with cases in increased TnI group, patients in normal TnI group presented higher level in CD3 count, CD4 count and CD8 count than those in increased TnI group, while their level of antibodies (IgG, IgA, IgM) were similar (Table 2).

In the terms of CT examination, ground-glass opacities (94.9%) and pleural thickening (59.1%) were the most common manifestations (Table 3). Images suggested more patients with 4–5 lobes involved in increased TnI group (52.00% vs. 75.4% in normal TnI group and increased TnI group respectively; p = 0.006) (Table 3).

## Severity and treatment

The proportion of severe and critical illness in increased TnI group was significantly higher than those in normal TnI group (11.9% vs. 14.8%, 2.8% vs. 11.5% in normal TnI group and increased TnI group respectively; p = 0.021) (Table 4). Regarding therapy situation, subjects in increased TnI group were more likely given glucocorticoid therapy and mechanical ventilation than patients in normal TnI group (Table 4).

#### Discussion

Coronavirus could result in severe respiratory syndrome [6]. However, myocardial lesions and the elevation of myocardial enzymes in coronavirus infections are limited. Our study found that SARS-CoV-2 induced elevated myocardial enzymes and myocardial injury. From the present study, 28.37% of the total patients showed increased level of TnI. Elevated TnI usually indicates myocardial damage. Previous study reported increased serum troponin concentration might be a biomarker to stratify risk in subjects with pneumonia [7]. Troponin elevation in sufferers with COVID-19 is likely to be due to multifactorial nonischemic causes, and less likely to be on account of atherothrombotic coronary occlusion [8]. Biopsy heart specimens of a patient with SARS-CoV-2 showed a few interstitial mononuclear inflammatory infiltrates [5]. SARS-CoV-2 was reported to use the same cell entry receptor as SARS-CoV (human angiotensin-converting enzyme 2 [hACE2]) [9]. As a homolog of the key enzyme of renin-angiotensin system, ACE2 is highly expressed in arterial and venous endothelial cells and arterial smooth muscle cells aside from lungs, which account for myocardium's susceptibility of SARS-CoV-2 [10-12]. Previous study suggested SARS-CoV mediated myocardial inflammation and damage through down-regulating myocardial

#### Table 3

CT manifestations of patients with COCID-19 and comparison between normal Tnl group and increased Tnl group.

|                                | Total population $(n = 215)$ | Normal<br>TnI group<br>(n = 154) | Increased<br>TnI group<br>(n = 61) | P-value | Adjusted<br>P-value |  |
|--------------------------------|------------------------------|----------------------------------|------------------------------------|---------|---------------------|--|
| Abnormalities on che           | est CT                       |                                  |                                    |         |                     |  |
| Pleural effusion               | 15 (7.0%)                    | 9 (5.8%)                         | 6 (9.8%)                           | NS      |                     |  |
| Pleural thickening             | 127 (59.1%)                  | 90 (58.4%)                       | 37 (60.7%)                         | NS      |                     |  |
| Ground-glass<br>opacity        | 204 (94.9%)                  | 145 (94.2%)                      | 59 (96.7%)                         | NS      |                     |  |
| Fibrous stripes                | 42 (19.5%)                   | 33 (21.4%)                       | 9 (14.8%)                          | NS      |                     |  |
| Consolidation                  | 62 (28.8%)                   | 50 (32.5%)                       | 12 (19.7%)                         | NS      |                     |  |
| Numbers of involved lung lobes |                              |                                  |                                    |         |                     |  |
| 0-1                            | 30 (14.0%)                   | 26 (16.9%)                       | 4 (6.6%)                           | 0.006   | 0.014               |  |
| 2-3                            | 59 (27.4%)                   | 48 (31.1%)                       | 11 (18%)                           |         |                     |  |
| 4–5                            | 126 (58.6%)                  | 80 (52.0%)                       | 46 (75.4%)                         |         |                     |  |

TnI, troponin I; CT, computed tomography.

Data were shown as number (percentage).

*P*-values between two groups were calculated by Fisher's exact test, or Chi-square test. Adjusted P-values were calculated by covariance analysis after adjusting age, sex. These numbers in bold indicate they are less than 0.05.

#### Table 4

Treatment and severity in hospital of patients with NCIP and comparison between normal Tnl group and increased Tnl group.

|                      | Total<br>population | Normal TnI<br>group | Increased TnI<br>group | P-value | Adjusted<br>P-value |  |
|----------------------|---------------------|---------------------|------------------------|---------|---------------------|--|
| Treatment            |                     |                     |                        |         |                     |  |
| Antibiotics          | 101/200             | 70/143              | 31/57                  | NS      |                     |  |
|                      | (50.5%)             | (49.0%)             | (54.4%)                |         |                     |  |
| Glucocorticoids      | 41/215              | 24/154              | 17/61                  | 0.039   | NS                  |  |
|                      | (19.1%)             | (15.6%)             | (27.9%)                |         |                     |  |
| Assisted             | 34/205              | 18/154              | 16/61                  | 0.008   | 0.047               |  |
| ventilation          | (16.6%)             | (11.7%)             | (26.2%)                |         |                     |  |
| Severity in hospital |                     |                     |                        |         |                     |  |
| Mild +               | 164/201             | 122/143             | 42/58                  | 0.021   | 0.036               |  |
| common               | (81.6%)             | (85.3%)             | (68.9%)                |         |                     |  |
| Severe               | 26/201              | 17/143              | 9/58 (14.8%)           |         |                     |  |
|                      | (12.9%)             | (11.9%)             |                        |         |                     |  |
| Critically           | 11/201              | 4/143               | 7/58 (11.5%)           |         |                     |  |
| severe               | (5.5%)              | (2.8%)              |                        |         |                     |  |

Tnl, troponin I.

Data were shown as number/total numbers (percentage).

*P*-values between two groups were calculated by Fisher's exact test, or Chi-square test. Adjusted P-values were calculated by covariance analysis after adjusting age, sex. These numbers in bold indicate they are less than 0.05.

ACE2 system, which might serve as the mechanism of SARS-CoV-2 impairing heart as well [13].

On the one hand novel coronavirus directly invades the myocardium and results in myocardial damage. On the other hand, previous cardiovascular complications aggravate this process. Pneumonia and cardiac disease frequently coexist in the same patients [14]. New-onset or worsening cardiac complications, not least atrial fibrillation are well-characterized complications of acute pneumonia [15]. Researchers have showed during the course of community-acquired pneumonia, a high incidence of cardiac complications, was independently associated with increased short-term mortality [7]. Consistent with previous study [2,16], the comparison of baseline characteristics indicated elderly male with comorbidities including hypertension and coronary heart disease were more likely to present a high level of TnI. A prospective study of elderly persons reported pre-existing heart failure figures as a risk factor for the development of pneumonia and as well increased the risk of pneumonia-related death [17]. This phenomenon suggests that patients with underlying cardiovascular disease have less robust cardiac reserve function, therefore their cardiac systolic and diastolic dysfunction are more vulnerable when virus attacks the myocardium. Hypoxia caused by pneumonia leads to an increase in heart rate, which induces the shortening diastolic time and insufficient coronary perfusion, thereby aggravating myocardial ischemia and hypoxia, ultimately causing instability and even collapse of the circulatory system. In our research, that patients with elevated myocardial enzymes had higher CURB-65 scores and higher NT-proBNP- a biomarker of cardiac function confirm the above theory from another aspect.

With regard to laboratory tests and CT scan results, higher CRP, lower immune CD3, CD4 and CD8 cell account and more involved lobes in the lung were observed in increased TnI group indicating higher virus load and more severe inflammatory response, also known as cytokine storm, a phenomenon associated with a wide variety of infectious and noninfectious diseases [18]. The storm of inflammatory factors can further cause disorders in multiple organs and systems as patients in increased TnI group showed elevating bilirubin, creatinine and Ddimer. Creatinine is the product of muscle metabolism in the human body and is mainly excreted by the glomerular filtration. Increased creatinine concentration indicates kidney damage. As a specific degradation product of fibrin, D-dimer increase when hypercoagulability and secondary fibrinolysis take place in the body. Figuring as a biomarker of liver function, bilirubin elevates if liver damage happens. Aforementioned multiple organ disorders along with myocardial damage exacerbated patients' condition.

Our study suffers from three limitations: 1. As a cross-sectional study, we have not included data of dynamic changes in myocardial enzymes, echocardiography and not evaluated diastolic function and ejection fraction of heart. The relationship between heart damage and NCIP pneumonia could be better assessed if aforementioned data could be included. 2. The data in this study was from 2 centers and incomplete data has been excluded, possibly resulting in a certain degree of selection bias. 3. For part of patients were still hospitalized as of press, we failed to know their eventual prognosis. Nevertheless, this retrospective study suggested myocardial damage is not ought to be ignored in the diagnosis and treatment of patients with NCIP.

# Conclusion

Myocardial enzymes were elevated in a significant proportion of patients with NCIP, not least in elderly males with pre-existing cardiovascular disease. Patients with elevated myocardial enzymes presented a stronger immune and inflammatory response, leading to multiple organ dysfunctions including heart, liver and kidney which appeared as a pivotal feature of patients with NCIP that requires attention by clinicians in order to provide necessary treatment as soon as possible and improve patients' outcomes.

## Acknowledgements

Thanks for all medical staff and patients involve in this study.

## Funding

This work was supported by the National Key Research and Development Project (sq2018yfgh000345); National Natural Science Foundation of China (81870041); and Shanghai Key Discipline for Respiratory Diseases (2017ZZ02014). This work was also funded in part by a grant from Innovative Research Team of High-Level Local Universities in Shanghai.

#### Authors' contributions

W Chen is a member of the first batch of medical teams from Shanghai to support Hubei. Conception or design of the work: JMQ and DL. Data collection: WC, YF, YSX, HHL and JYY. Data analysis and interpretation: WPH, HC and DL. Draft of the article: DL, QYY. Critical revision of the article: JMQ and DL.

#### **Declaration of competing interest**

The authors declare that they have no conflict of interest.

#### References

- Qun Li, Xuhua Guan, Wu Peng, Wang Xiaoye, Lei Zhou, Yeqing Tong, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med. 2020:1–9. https://doi.org/10.1056/nejmoa2001316.
- Nanshan Chen, Min Zhou, Dong Xuan, Jieming Qu, Fengyun Gong, Yang Han, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;6736(20):1–7. https://doi. org/10.1016/S0140-6736(20)30211-7.
- Chaolin Huang, Wang Yeming, Xingwang Li, Lili Ren, Jianping Zhao, Hu Yi, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;6736(20):1–10. https://doi.org/10.1016/s0140-6736(20)30183-5.
- Wang Dawei, Hu Bo, Hu Chang, Zhu Fangfang, Xing Liu, Jing Zhang, et al. Clinical characteristics of 138 hospitalized patients with 2019 Novel coronavirus-infected pneumonia in Wuhan, China. Jama. 2020:1–9. https://doi.org/10.1001/jama.2020.1585.
- Xu Zhe, Lei Shi, Wang Yijin, Jiyuan Zhang, Lei Huang, Chao Zhang, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. 2020;2600(20):19–21. https://doi.org/10.1016/S2213-2600(20)30076-X.
- Alimuddin Zumla, Hui David S. Perlman Stanley. Middle East respiratory syndrome. Lancet. 2015;386(9997):995–1007. https://doi.org/10.1016/S0140-6736(15)60454-8.
- Corrales-Medina Vicente F, Musher Daniel M, Wells George A, Chirinos Julio A, Li Chen, Fine Michael J. Cardiac complications in patients with community-acquired pneumonia: incidence, timing, risk factors, and association with short-term mortality. Circulation. 2012;125(6):773–81. https://doi.org/10.1161/CIRCULATIONAHA.111.040766.
- Chapman Andrew R, Anda Bularga, Mills Nicholas L. High-sensitivity cardiac troponin can be an ally in the fight against COVID-19. Circulation. 2020. https://doi.org/10. 1161/CIRCULATIONAHA.120.047008.
- Peng Zhou, Yang Xing-Lou, Wang Xian-Guang, Hu Ben, Lei Zhang, Wei Zhang, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020. https://doi.org/10.1038/s41586-020-2012-7 10.1038/s41586-020-2012-7.
- Danilczyk U, Eriksson U, Oudit GY, Penninger JM. Physiological roles of angiotensinconverting enzyme 2. Cell Mol Life Sci. 2004;61(21):2714–9. https://doi.org/10. 1007/s00018-004-4241-6.
- Anguiano L, Riera M, Pascual J, Soler MJ. Circulating ACE2 in cardiovascular and kidney diseases. Curr Med Chem. 2017;24(30):3231–41. https://doi.org/10.2174/ 0929867324666170414162841.
- Hamming I, Timens W, Bulthuis MLC, Lely AT, Navis GJ, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 2004;203(2):631–7. https://doi.org/10. 1002/path.1570.
- Oudit GY, Kassiri Z, Jiang C, Liu PP, Poutanen SM, Penninger JM, et al. SARS-coronavirus modulation of myocardial ACE2 expression and inflammation in patients with SARS. Eur J Clin Invest. 2009;39(7):618–25. https://doi.org/10.1111/j.1365-2362. 2009.02153.x.
- Fry Alicia M, Shay David K, Holman Robert C, Curns Aaron T, Anderson Larry J. Trends in hospitalizations for pneumonia among persons aged 65 years or older in the United States, 1988-2002. JAMA. 2005;294(21):2712–9. https://doi.org/10.1001/ jama.294.21.2712.
- Corrales-Medina Vicente F, Suh Kathryn N, Gregory Rose, Chirinos Julio A, Steve Doucette, William Cameron D, et al. Cardiac complications in patients with community-acquired pneumonia: a systematic review and meta-analysis of observational studies. PLoS Med. 2011;8(6):e1001048. https://doi.org/10.1371/journal.pmed. 1001048.
- Shaobo Shi, Qin Mu, Shen Bo, Yuli Cai, Tao Liu, Yang Fan, et al. Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA Cardiol. 2020;1–8. https://doi.org/10.1001/jamacardio.2020.0950.
- Koivula I, Sten M, Mäkelä PH. Risk factors for pneumonia in the elderly. Am J Med. 1994;96(4):313–20. https://doi.org/10.1016/0002-9343(94)90060-4.
- Tisoncik Jennifer R, Korth Marcus J, Simmons Cameron P, Jeremy Farrar, Martin Thomas R, Katze Michael G. Into the eye of the cytokine storm. Microbiol Mol Biol Rev. 2012;76(1):16–32. https://doi.org/10.1128/MMBR.05015-11.