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Fibroblast-like synoviocytes (FLS) play an important role in maintaining joint homeostasis
and orchestrating local inflammatory processes. When activated during injury or
inflammation, FLS undergo transiently increased bioenergetic and biosynthetic demand.
We aimed to identify metabolic changes which occur early in inflammatory disease
pathogenesis which might support sustained cellular activation in persistent
inflammation. We took primary human FLS from synovial biopsies of patients with very
early rheumatoid arthritis (veRA) or resolving synovitis, and compared them with
uninflamed control samples from the synovium of people without arthritis. Metabotypes
were compared using NMR spectroscopy-based metabolomics and correlated with
serum C-reactive protein levels. We measured glycolysis and oxidative phosphorylation
by Seahorse analysis and assessed mitochondrial morphology by immunofluorescence.
We demonstrate differences in FLS metabolism measurable after ex vivo culture,
suggesting that disease-associated metabolic changes are long-lasting. We term this
phenomenon ‘metabolic memory’. We identify changes in cell metabolism after acute
TNFa stimulation across disease groups. When compared to FLS from patients with early
rheumatoid arthritis, FLS from patients with resolving synovitis have significantly elevated
mitochondrial respiratory capacity in the resting state, and less fragmented mitochondrial
morphology after TNFa treatment. Our findings indicate the potential to restore cell
metabotypes by modulating mitochondrial function at sites of inflammation, with
implications for treatment of RA and related inflammatory conditions in which
fibroblasts play a role.
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INTRODUCTION

In health, quiescent fibroblast-like synovial cells (FLS) are
anabolic, producing abundant collagen and hyaluronic acid and
maintaining homeostasis and turnover of synovium and cartilage.
However, in disease, stromal and myeloid populations expand
and leukocytes are recruited to the synovial tissue contributing to
an increasingly inflammatory and hypoxic environment (1, 2). In
the transformation to a chronically activated and pathogenic
phenotype, FLS respond and contribute to these environmental
cues, forming an invasive pannus tissue and producing
degradative enzymes which damage cartilage and bone. These
cellular behaviours and microenvironmental features closely
resemble those seen in malignancy, where they are associated
with therapeutically targetable changes in nutrient and oxygen
availability, metabolic demand and metabolic phenotype of cells
(3, 4).

In rheumatoid arthritis (RA) patients, metabolic deviation is
observed globally as an increase in basal metabolic rate (5) and
symptoms of cachexia. This phenotype is thought to be
orchestrated by inflammatory cytokines such as TNFa, IL-1b,
IL-6, LIF, and IFNg which are elevated in chronic inflammatory
diseases (6, 7). In addition multiple cellular metabolic
dysfunctions have been identified (8–10). We and others have
shown that metabolic fingerprints measurable in body fluids
(serum, urine and synovial fluid) correlate with hallmarks of
diseases including CRP and TNFa levels, and can predict drug
responses (11–15). Metabolomic studies such as these have the
power to identify novel biomarkers and drug targets but have less
frequently been used to investigate pathological changes in
metabolism at a cellular level or the contribution of individual
cell types to the overall metabolic phenotype of RA (16).

Aerobic glycolysis, a characteristic response of many cell
types to pro-inflammatory stimuli, is defined by the metabolic
fate of pyruvate, a product of glucose catabolism. Rather than
being converted to acetyl-CoA and used to fuel mitochondrial
respiration, in aerobic glycolysis pyruvate is instead reduced to
lactate and exported from the cell. In RA, FLS are reported to
undergo several metabolic alterations, including an increase in
aerobic glycolysis (17–19); impaired mitochondrial respiration
and altered mitochondrial dynamics (20, 21); as well as altered
lipid metabolism (22). However, to date these studies have used
mouse models of disease or tissue from very late stage RA and
osteoarthritis and have not explored the mechanisms responsible
for the persistence rather than resolution of inflammatory
disease. It is well-established that early intervention in the
course of disease progression is important for preventing joint
damage and dysfunction in RA (23). Therefore knowledge of the
metabolic state in early disease is critical for understanding both
disease mechanisms and possible treatment options that target
metabolic components.

In this study, we describe the metabolic fingerprint of human
resting and primed FLS from uninflamed and inflamed joints
and elucidate a metabolic phenotype of FLS which distinguishes
acute, self-limiting synovitis (resolving arthritis) from very early,
persistent RA (veRA).
Frontiers in Immunology | www.frontiersin.org 2
METHODS

Patients
The study was conducted in compliance with the Declaration of
Helsinki. Ethical approval was obtained from the local ethics
committee and all subjects provided written, informed consent.
Patients with early arthritis were seen in the BEACON cohort,
details of which have been reported previously (24). Unselected,
consecutive DMARD- and glucocorticoid-naïve patients with at
least one clinically swollen joint within 12 weeks of the onset of
any inflammatory symptoms were recruited and followed for 18
months to determine diagnostic outcome. Age and sex matched
patients were classified as having very early, persistent RA
(veRA) according to the 2010 ACR criteria (25). As previously
described, patients with resolving arthritis were diagnosed if
there was no evidence of joint related soft-tissue swelling on
final examination and where no DMARD or steroid treatment
was administered in the preceding 3 months (26). Consenting
patients with appropriate joints underwent ultrasound-guided
synovial biopsy using needle or portal and forceps techniques
(27, 28). NSAID usage and ultrasound-derived inflammation
were comparable between disease groups. The uninflamed
control group comprised patients with no evidence of
degenerative or inflammatory disease, macroscopic or
microscopic joint pathology, who underwent exploratory
conventional arthroscopy for knee pain. All patients
underwent detailed clinical and laboratory evaluations to rule
out any concomitant inflammatory, metabolic, and neoplastic
disorders. FLS were maintained in culture ex vivo and all lines
were at the same passage number when experiments
were performed.

FLS Culture
FLS were grown out of tissue and maintained at 70-80%
confluence in media containing 10% fetal calf serum, MEM
Non-essential amino acids (0.87x), sodium orthopyruvate (0.87
mM), glutamine (1.75mM), penicillin (87U/ml) and
streptomycin (87ug/ml). After 3 passages, cultures were
>99.5% phenotypically homogeneous. Conditioned culture
medium and cells were harvested for bioenergetic analysis,
immunofluorescence staining or NMR spectroscopy at passage
6 and 5-6 cell lines from each disease group were utilized in each
individual experiment.

Metabolite Preparation
For preparation of metabolites from conditioned culture
medium, supernatants were collected, centrifuged at 13000g for
5 minutes and filtered to exclude species >3KDa (29). Flow
through was mixed in a 1:1 ratio with an aqueous NMR buffer
with final concentrations of 10% D2O, 150mM NaCl, 1mM
trimethylsilyl 2,2,3,3-tetradeuteropropionic acid (TMSP) and
20mM sodium phosphate (pH7). Intracellular metabolites were
extracted using cold methanol/chloroform (30). The aqueous
fraction was dried overnight and resuspended in NMR buffer as
described above.
August 2021 | Volume 12 | Article 725641
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Metabolomic Analysis
One dimensional (1D) 1H spectra were acquired at 300K using a
standard spin-echo pulse sequence with water suppression and
using excitation sculpting, on a Bruker DRX 600MHz NMR
spectrometer equipped with a cryoprobe. Samples were
processed and data calibrated with respect to the TMSP signal.
Spectra were read into ProMetab, custom written software in
Matlab (version 7, The Mathworks, Natick, MA) and truncated
to a chemical shift range of 0.8-10.0 ppm (31). The water peak
was removed, spectra were corrected for baseline offset and
normalised to a total spectral area of unity, and a generalised
log transformation was applied (31, 32). Spectra were then read
into Chenomx NMR suite (Chenomx, professional version 4.0)
and an inbuilt peak database was used alongside published data
to identify and quantify associated metabolites (33). Pathway
analysis was carried out using Metaboanalyst 3.0 software.

Partial least‐squares regression analysis (PLS‐R) identifies
metabolites which predict a continuous variable, and was used
to investigate the relationship between the metabolic fingerprint
and inflammatory burden measured as C‐reactive protein (CRP).
This analysis yielded an R2 value as a measure of the cross‐
validated goodness‐of‐fit of the linear regression. Permutation
testing was used to assess the statistical significance of the
relationship when compared to a slope of zero.

Cellular Bioenergetics
FLS were seeded in 24 well flux plates (Seahorse) at 2x104/well
and allowed to adhere for 24 hours in the presence or absence of
1ng/ml TNFa. Prior to assay, cells were equilibrated for 1 h in a
non-CO2 incubator at 37°C. Cellular bioenergetics were analyzed
within the University of Birmingham Mitochondrial Profiling
Facility using a Seahorse XFe24 extracellular flux analyzer
according to the manufacturer’s instructions. Both oxygen
consumption rate (OCR, as a measure of oxidative
phosphorylation) and extracellular acidification rate (ECAR, as
a measure of aerobic glycolysis), were assessed. ECAR was
measured in XF media in basal condition and in response to
10 mmol/L glucose (basal glycolysis), 2 mmol/L oligomycin
(glycolytic capacity) and 50 mmol/L 2-DG. OCR was measured
in XF media (non-buffered DMEM medium, containing 10
mmol/L glucose, 2 mmol/L l-glutamine, and 1 mmol/L sodium
pyruvate), under basal conditions (basal respiration) and in
response to 2 mmol/L oligomycin (ATP-linked respiration),
5 mmol/L of carbonylcyanide-4-(trifluoromethoxy)-
phenylhydrazone (FCCP) (maximal respiration) and 3 mmol/L
antimycin and rotenone (Sigma Aldrich). Three technical
replicates were carried out for each condition and a total of 17
measurements of 4 minutes duration were made. Calculations of
glycolysis and respiration were established from area under
the curve.

Immunofluorescence and
Mitochondrial Analysis
Cells were adhered to chamber slides at 2x103/well and cultured
with or without 1ng/ml TNFa for 24 hours. Slides were fixed in
acetone, air-dried and stored at -20°C. Slides were rehydrated in
Frontiers in Immunology | www.frontiersin.org 3
PBS, blocked in 10% normal goat serum and incubated with
mouse anti-TOMM20 (4F3, Abcam, UK) prior to goat anti-
mouse IgG1 (Southern Biotech, Birmingham, USA). The FITC
signal was amplified with anti-FITC Alexa Fluor 488 (Life
Technologies) and nuclei were stained with Hoechst 33258.
Slides were mounted in Prolong Diamond (Life Technologies)
before imaging. Images were captured on the Leica DM6000
using the proprietary software and processed using Fiji (34) in a
method adapted from (35). In brief, the image in the TOMM-20
channel was sharpened, thresholded, converted to a mask and
then skeletonized prior to running the binary connectivity plug-
in as described (36, 37). For visualisation the Glasbey lookup
table was used and numbers of each pixel connection type were
exported. Nuclei were counted as an assessment of cell number
in each field of view and these data were combined.

Statistical Analysis
Data are presented as mean ± SEM. Analysis of variance
(ANOVA) was used for multiple comparisons, paired Student’s
t tests for comparison of resting and stimulated cells. Results
were considered significant where p<0.05.
RESULTS

Steady State Metabolomic Analysis in FLS
From Healthy and Inflamed Joints
Patients presenting with synovial inflammation underwent
synovial biopsy at presentation and were subsequently classified
as resolving arthritis or very early RA (veRA) (24), and were
compared with uninflamed synovial samples obtained from
exploratory arthroscopy as detailed in methods. Clinical
characteristics of subjects are shown in Table 1.

To assess whether alterations in the bioenergetic responses of
FLS drive the pathological transition to chronicity in RA we started
our analyisis by assessing the metabolomic profile in FLS derived
from uninflamed, resolving synovitis and RA patients. 1D NMR
spectroscopy was carried out on 6 FLS cell lines derived from
uninflamed patient synovium, 6 FLS cell lines from resolving
arthritis patients and 5 FLS cell lines from veRA patients. We
identified metabolic signatures from these cells and identified 31
metabolites present in all 17 conditioned media (Figure 1A) and a
further 36 present in all 17 cell extracts (Figure 1B). A summary of
pathways which these data implicate as important in FLS
metabolism is shown in Supplementary Figure 1. Glycolysis is an
important metabolic pathway that utilises glucose for biosynthesis
and ATP generation. Lactate, which is the end product of glycolysis,
and glucose were most highly represented in culture supernatants of
all patient groups (Figures 1A, C). Glucose and lactate levels in
supernatants and cell extracts did not vary between disease groups
(Figures 1C, D).

Glycerol was significantly reduced in cell extracts of resolving
and veRA synovitis when compared to uninflamed controls
(Figure 1E). Glycerol is a major link between sugar and fatty
acid metabolism (38) by reducing dihydroxyacetone phosphate
(DHAP, a key triose in glucose metabolism and energy
August 2021 | Volume 12 | Article 725641
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generation) into glycerol-3-phosphate, which is suggestive of a
potential substrate to feed lipid synthesis.

Acetate, which is also involved in lipid metabolism, showed
higher trend in veRA synovitis relative to controls (p=0.06) while
the amino acid glycine was at lower concentrations in FLS
extracts from veRA than resolving arthritis, however this did
not reach statistical significance (p=0.056, Figure 1E).

Although we did not identify striking differences in individual
metabolites between groups, we went on to investigate whether
the metabolites measured by NMR spectroscopy were linked to
the inflammatory status of individuals at the time of biopsy using
PLS-R analysis (Figure 1F). Indeed, a metabolomic profile was
identified which can predict levels of the inflammatory marker
C-reactive protein (CRP) in patient sera (R2 = 0.6801, p=0.001).

Differential Metabolic Adaptation in FLS
From Resolving Versus Persistent
Inflamed Synovium
To directly investigate the balance of glycolytic and mitochondrial
energy generation in resolving arthritis and veRA, we used the
Seahorse XF Analyzer and metabolic inhibitors or potentiators to
determine the maximal capacity of FLS to utilize these bioenergetic
pathways under stress. The parameters calculated from the Seahorse
glyco- and mito-stress tests are detailed in Figures 2A and 3A.
Seahorse analysis was carried out on 5 FLS cell lines derived from
uninflamed synovium, 6 FLS cell lines from resolving arthritis
patients and 6 FLS cell lines from veRA patients. We assessed
both resting and TNFa stimulated FLS. Example traces measuring
extracellular acidification rate (ECAR) as a measure of aerobic
glycolysis and oxygen consumption rate (OCR) as a measure of
mitochondrial respiration in each patient group are shown in
Figures 2B–D and 3B–D respectively.

Basal glycolysis was comparable in all disease groups
(Figure 2E), consistent with the metabolomic data showing no
change in glucose uptake and lactate production in the resting
state (Figures 1C, D). Interestingly only resolving arthritis FLS
showed a significant upregulation of glycolysis in response to
TNFa (Figure 2E). Glycolytic capacity is determined using the
Frontiers in Immunology | www.frontiersin.org 4
mitochondrial ATP synthase inhibitor oligomycin (Figure 2A),
and demonstrates the cell’s maximal possible rate of glycolysis
under the given conditions. Glycolytic capacity was significantly
enhanced by TNFa treatment in all groups (Figure 2F)

Respiratory parameters were determined using oligomycin to
inhibit ATP synthase; FCCP to uncouple oxygen consumption from
ATP synthase; and rotenone plus antimycin A to poison
mitochondrial respiration (Figure 3A). Basal respiration in resting
FLS did not differ between patient groups, and was significantly
increasedbyTNFaonly inhealthy controlFLS (Figure3E).Maximal
respiration was significantly higher in resolving arthritis than veRA
FLS, and was significantly reduced by TNFa treatment only in
resolving arthritis FLS (Figure 3F). Spare respiratory capacity (the
difference between maximal and basal respiration rates) was
significantly higher in resolving arthritis than veRA FLS, and was
significantly reduced by TNFa treatment in healthy control and
resolving synovitis FLS, butnot in veRAFLS (Figure3G).Differences
in respiration linked to ATP synthesis were not significant
(Figure 3H). Thus, FLS from patients with resolving synovitis or
early arthritis differed incertainbasalmetabolicparameters evenafter
several passages, providing further evidence of sustained metabolic
memory. The capacity of metabolic activities to respond to an
inflammatory challenge was characteristic of FLS derived from
patients with resolving synovitis, but lost in patients who would
later be diagnosed with RA. These results suggest that mitochondrial
dysfunction in FLS is an early event in RA disease, which may be
linked to the development of persistent synovitis. Whether this
reduced capacity is driven by specific inflammatory signals within
the RA synovial environment remains to be determined.

Resolving FLS Display a Distinct
Mitochondrial Morphology in
Response to TNFa
We next investigated whether the metabolic differences observed
above were associated with changes in mitochondrial morphology
and dynamics. Immunofluorescence imaging was carried out on 5
FLS cell lines derived from uninflamed synovium, 6 FLS cell lines
from resolving arthritis patients and 6 FLS cell lines from veRA
TABLE 1 | Demographics and clinical characteristics of participants at the time of synovial biopsy.

Uninflamed controls
(n = 11)

Resolving arthritis
(n = 12)

Very early RA
(n = 11)

Age (years); median (IQR) 41 (38-44) 40.5 (32.25-52.5) 61 (48-70)
Female; number (%) 5 (45.5) 5 (41.7) 6 (54.5)
Symptom duration (weeks);median (IQR) – 5 (3.25-6.75) 4 (3.5-7.5)
NSAID; number (%) 0 (0) 9 (75.0) 8 (72.7)
CRP (mg/ml); median (IQR) – 8.5 (1.5-13) 25 (10-32)
RF positive; number (%) – 0 (0) 5 (45.5)
Anti CCP antibody positive; number (%) – 0 (0) 7 (63.6)
Joint biopsied
Ankle; n (%) 0 (0) 3 (25) 3(27.3)
Knee; n (%) 11 (100) 9 (75) 5 (45.4)
MCP; n (%) 0 (0) 0 (0) 3 (27.3)
Ultrasound greyscale hypertrophy score
(1-3); median (IQR)

– 2 (1-2) 3 (1.75-3)

Ultrasound Power Doppler hypertrophy
score (1-3); median (IQR)

– 1(1-2) 1.5 (0.75-2)
August 2021 | Volume 12 |
RA, rheumatoid arthritis; IQR, interquartile range; NSAID, non-steroidal anti-inflammatory drugs; CRP, C-reactive protein; RF, rheumatoid factor; CCP, cyclic citrullinated peptide; MCP,
metacarpopharangeal. Of these patients, cells from 5-6 individuals from each disease group were used in each experiment.
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patients. FLS mitochondria were visualized by staining for
TOMM20 (Figure 4A), and mitochondrial area, linearity and
branching were quantified (Figure 4B). Total mitochondrial area
per cell varied between individuals and was comparable between
disease outcomes and unchanged after stimulation of cells with
TNFa for 24 hours (Figure 4C). Linearity and branching also
Frontiers in Immunology | www.frontiersin.org 5
showed great variability between individuals (Figures 4D–F).
However, FLS from patients with resolving arthritis showed
increased mitochondrial linearity following TNFa treatment in
comparison to the other groups (Figure 4E). Consistent with the
results of the bioenergetic analysis, measurement of mitochondrial
linearity also revealed that the FLS from resolving arthritis patients
A C

B D

E

F

FIGURE 1 | Metabolomic fingerprinting in FLS from uninflamed and inflamed synovium. FLS were cultured from synovial biopsies of patients with no inflammation
(n=6), resolving arthritis (n=6) and very early rheumatoid arthritis (RA) (n=5) and metabolites were quantified by 1D nuclear magnetic resonance spectroscopy.
(A) All quantified metabolites measured in conditioned culture medium, (B) All quantified metabolites measured in cell extracts, (C) glucose and lactate measured in
conditioned culture medium, (D) glucose and lactate measured in cell extracts and (E) other metabolites for which differences were observed between disease
groups, (F) strong correlation between measured C-reactive protein (CRP) levels and CRP levels predicted by the FLS metabolic profile in uninflamed controls and
arthritis patients. The predicted values were calculated from the concentrations of metabolites identified using partial least squares regression analysis (R2 = 0.6801).
Statistical significance was determined by one-way ANOVA test.
August 2021 | Volume 12 | Article 725641
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demonstrated the greatest degree of plasticity in response to TNFa
stimulation (Figure 4E). We therefore conclude that the capacity to
spontaneously resolve synovial inflammation is associated with
elevated metabolic agility of fibroblast-like synoviocytes.
DISCUSSION

Altered metabolism and dysregulated metabolic pathways are
important determinants of inflammatory and destructive
Frontiers in Immunology | www.frontiersin.org 6
processes in chronic inflammatory and autoimmune diseases,
including rheumatoid arthritis (RA) (1, 8–10, 40). In this study
we explored the hypothesis that alterations in the bioenergetic
responses of fibroblast-like synoviocytes (FLS) may be important
in orchestrating the pathological transition to chronicity in RA.
As the FLS were taken from patients who had a symptom
duration of less than 3 months, our analysis gives unique
insights into the phenotypic changes that fibroblasts undergo
during the initiation of, or adaptation to inflammation. We
found that FLS from patients with synovitis that went on to
A

CB

FE

D

FIGURE 2 | FLS from healthy and inflamed synovium show increased glycolytic capacity in response to TNFa. FLS were cultured from synovial biopsies of patients
with no inflammation (n=5), resolving arthritis (n=6) and very early rheumatoid arthritis (RA) (n=6). Extracellular acidification rate (ECAR) was measured in real time in
the presence of glucose, oligomycin and 2-deoxyglucose (2DG) (A). Example traces are shown for unstimulated FLS and FLS stimulated for 24 hours with tumour
necrosis factor a (TNFa); (B) uninflamed, (C) resolving arthritis and (D) very early RA. (E) Glycolysis (after the addition of glucose) and (F) glycolytic capacity
(difference of oligomycin rate and 2DG rate) were calculated as shown in (A). Statistical significance between treatments was determined by paired student’s t test.
No statistical significance was found between patient groups.
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A

CB

FE

HG

D

FIGURE 3 | FLS from patients with very early RA have reduced respiratory capacity compared with those from patients with resolving arthritis. FLS were cultured
from synovial biopsies of patients with no inflammation (n=5), resolving arthritis (n=6) and very early rheumatoid arthritis (RA) (n=6). Oxygen consumption rate (OCR)
was measured in real time in the presence of oligomycin, carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP) and antimycin A (AmA) and rotenone in
combination (A). Example traces are shown for unstimulated FLS and FLS stimulated for 24 hours with tumour necrosis factor a (TNFa); (B) uninflamed,
(C) resolving arthritis and (D) very early RA. Basal respiration rate [(E), before addition of oligomycin], maximal respiration rate [(F), difference of FCCP rate and AmA
+ rotenone rate], spare respiratory capacity [(G), difference between the rate of basal respiration and the maximum, FCCP-stimulated rate of respiration], and ATP-
linked respiration [(H), ATP production, difference of basal rate and oligomycin rate] were calculated as shown in (A). Statistical significance between treatments was
determined by paired student’s t test. Statistical significance between groups was determined by two-way ANOVA.
Frontiers in Immunology | www.frontiersin.org August 2021 | Volume 12 | Article 7256417
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A

C

B D

E F

FIGURE 4 | FLS from resolving arthritis synovium display a distinct mitochondrial morphology in comparison to healthy and RA FLS in response to
stimulation. FLS from patients with no inflammation (n=5), resolving arthritis (n=6) and very early rheumatoid arthritis (RA) (n=6) were labelled with TOMM-20
and visualised by fluorescence microscopy (A). (B) Representative image showing how TOMM-20 channel was sharpened, thresholded, converted to a
mask and then skeletonized prior to running the binary connectivity plug-in. (C) Mitochondrial area per cell was quantified in unstimulated cells and cells
stimulated with TNFa for 24 hours. (D) Representative images of mitochondrial connectivity in TNFa-stimulated FLS from different disease groups.
Filamentous/linear (green) or fragmented/punctate (purple) mitochondria are represented (39). Quantification of linear pixels (E) and branch point pixels (F)
per cell normalised to mitochondrial area from skeletonized images of unstimulated cells and cells stimulated with TNFa for 24 hours. Statistical significance
between groups was determined by one-way ANOVA test.
Frontiers in Immunology | www.frontiersin.org August 2021 | Volume 12 | Article 7256418
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resolve (resolving arthritis) showed greater mitochondrial
respiratory capacity than those from patients with very early,
persistent RA (veRA), and presented with greater mitochondrial
linearity upon morphological analysis. Resolving arthritis FLS
also consistently demonstrated greater metabolic agility in
response to inflammatory stimulation with TNFa ex vivo.
These results suggest that the ability of FLS to metabolically adapt
to their environment and to carry out mitochondrial respiration may
contribute to their capacity to resolve inflammation, and that
potentiating mitochondrial function could be a novel strategy to
promote resolution of arthritis.

We identified a signature of 36 metabolites common to FLS
regardless of disease status, highlighting pathways fundamental
to the physiological function of the FLS. We observed that in
particular glucose and lactate levels were not differerent between
groups. These findings suggest that FLS undertake glycolytic
metabolism even in the absence of inflammation. This is an
important consideration given the recent interest in targeting
glycolytic pathways for the treatment of autoimmune diseases
including RA, however we acknowledge the potential differences
between in vitro and in vivo metabolic commitments.

It is also likely that a similar metabolic profile supports the
shared functions of fibroblasts at sites other than the joint, as
demonstrated by findings in foreskin-derived cells (41). These
cells were heavily reliant upon glucose metabolism and utilised
the pentose phosphate pathway to maintain a biosynthetic
phenotype even in quiescence (41). Although studies report
upregulation of glucose transporters in inflammation (17, 42),
we did not find differences in terms of glucose uptake and lactate
production from culture medium in FLS from both resolving
arthritis and veRA patients in vitro. Our NMR analysis in early
pathogenesis is in line with a mass spectrometry based study of
FLS which identified disturbance in metabolites associated with
amino acid, sugar and lipid metabolism compared to
osteoarthritis, but which did not identify a switch to glycolysis
even in end stage RA FLS (43).

Glycerol depletion in cells from both resolving arthritis and
veRA patients suggests there is also a role for lipid metabolism in
the steady state and emphasises the importance of upregulation
of this pathway during the inflammatory response as well as in
the resolution of inflammation as previously described (44). It
would be valuable to perform a lipidomic study in the future to
further clarify this mechanism.

Building on these metabolomic findings using Seahorse
bioenergetic analysis, we again showed no disease-associated
augmentation of glycolysis. This suggests that the early stages of the
disease are not characterised by commitment to glycolysis, for
example as a result of epigenetic reprogramming, mitochondrial
dysfunction or loss. Enhanced glycolysis may be a lasting
adaptation to mitochondrial damage or to low oxygen supply (45)
as is found in the inflamed joint (2). A permanent switch toward
aerobic glycolysis is important to the pathogenic phenotype of
tumour cells and cancer-associated fibroblasts (46), and has been
described in some but not all studies of late stage RA FLSmetabolism
(19, 40) however our results show that this does not occur in early
stages of arthritis (Figure 2E).
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Alternatively, an upregulation of glycolysis can be a transient,
physiological response to activation stimuli, as is well
characterised in innate and adaptive immune cells (47).
A glycolytic response in fibroblasts exposed to hypoxia (19)
platelet derived growth factor (PDGF), lipopolysaccharide (LPS)
(17) as well as complement (48) has been documented. An early
study demonstrated upregulation of glycolysis in TNFa
stimulated, late stage RA FLS (49).

Due to their metabolic agility, we showed that resolving FLS
after re-exposure to TNFa were better equipped to increase
glycolysis after glucose injection (Figure 2E); whilst TNFa-
treated veRA FLS showed only a modest effect, which reached
statistical significance only after the addition of oligomycin, a
glycolysis stimulator (Figure 2F).This suggests that veRA FLS
may display a delay in upregulating glycolysis in response to
inflammatory stimuli as previously found in other RA cell types
(50). Similarly, uninflamed controls did not show a significant
increase in glycolysis but displayed enhanced glycolytic capacity;
suggesting that TNFa only was not sufficient to promote a
glycolytic shift in these individuals. This could be explained by
the fact that they were isolated from uninflamed joints with low
levels of TNFa in the surrounding environment, opposite to
veRA and resolving FLS that were obtained from TNF-rich
inflamed joints. These findings support the hypothesis that FLS
have a “metabolic memory” and display a trained immune
response (51, 52) which is maintained in ex vivo cultures after
re-exposure to inflammatory triggers, and that the FLS of
resolving arthritis patients display a greater degree of metabolic
plasticity in response to repeat cues. However the fact that all FLS
groups upregulated glycolytic capacity following TNFa
demonstrated a shared ability to enhance glycolytic flux in
response to extreme stressors such as oligomycin. The extent
to which repeated stimulation re-programmes metabolic
pathways in FLS is of great interest and warrants further study.

Metabolic adaptation is pivotal for FLS to maintain viability
and functional competence (40) and switching from glycolysis to
oxidative phosphorylation is a prerequisite to promote resolution
of inflammation (53, 54). In line with this, our analysis of
oxidative respiration showed low steady state mitochondrial
maximal and spare respiratory capacity in FLS from veRA
compared with resolving arthritis. This suggests that FLS from
resolving disease are better equipped to respond metabolically to
inflammatory cues than those from joints which develop RA.
Other groups have reported decreased oxygen consumption and
maximal respiratory capacity in fibroblasts from late stage RA
(21, 22). We show that this loss of mitochondrial function
represents an early change in the timeline of RA disease
development, suggesting that mitochondrial capacity may be
linked to the ability of the joint to resolve the inflammatory state.

We also found that the resolving phenotype correlated with
more dynamic mitochondrial morphology in response to TNFa,
manifesting as increased connectivity (linear pixels in green) in
resolving arthritis FLS compared to veRA, which displayed a
more punctate/fragmented (in purple) morphology.
Mitochondrial fission has an important role in inducing
mitophagy in conditions of oxidative stress (55) while
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mitochondrial fusion is known to protect cells against deleterious
mitochondrial DNA mutations (56) and enhance oxidative
phosphorylation (57). Historical and recent studies have
described altered mitochondrial macrostructure and high levels
of mitochondrial DNA mutagenesis that correlates with
inflammation in RA (19, 58). Wang et al. recently reported
that synovial tissue and ex vivo FLS from late stage RA patients
demonstrate shortened mitochondria and increased expression
of the fission protein DNM1L (DRP1) (22). We did not find
differences in Dnm1l mRNA levels between the groups (data not
shown) suggesting that other mechanisms may drive the
mitochondrial dysfunction in early disease that differ from
those observed at late stage. In addition mitochondrial
dynamics are regulated by activation/inflammatory stimuli (59)
thus explaining the absence of mitochondrial modulation in
unstimulated controls.

Correlations between mitochondrial function and age have
also been demonstrated extensively, and several mechanisms
have been proposed (60). Human studies have reported that
mitochondrial decline advances with age and becomes
particularly significant after 70 years old, with mild differences
between 40 and 60 years old (61). Our veRA patients samples
used for Seahorse and mitochondrial morphology analysis came
from a marginally older age group (44-70, average 61) than the
resolving arthritis group (32-64, average 43). Whilst we cannot
definitively rule out an impact of this age difference on our
measurements, we believe that the overall impact would be
minor between these groups. We did not find a significant
correlation between age and mitochondrial linearity (p=0.10;
R=0.4) and branching (p=0.92; R=0.03) in our cohort; however a
larger cohort is needed to better establish a correlation between
age and mitochondrial dysfunction in RA.

The metabolic phenotypes we show to be associated with
different disease outcomes were evident even after multiple
passages in vitro, highlighting a metabolic transformation or
‘metabolic memory’ acquired by cells during the acute phase of
inflammation in vivo. This provides a metabolic dimension to the
previously described ‘imprinted aggressor’ role of the FLS (62)
and offers future scope to investigate epigenetic changes and
mutations in mitochondrial genetics which might confer the
altered metabolism we and others have observed. Our findings
suggest that the functionality of mitochondria in FLS may be of
importance for the resolution of acute inflammation in the
synovium. This is suggested by changes in mitochodrial
morphology with increased connectivity which would indicate
a tendency to rely on mitochondrial fusion or biogenesis, and
oxidative phosphorylation in resolving FLS that would need
further investigation. This is also in line with previous studies
showing that fragmented mitochondria are the consequence of
oxidative damage or are due to defects in fusion or fission
(63–65). The specific mechanisms by which FLS of very early
RA patients lose mitochondrial respiratory capacity and
mitochondrial agility in response to TNF are yet to be
determined, and this represents an intriguing challenge for
future work with these difficult to obtain but important cell
populations. The current study did not include patients treated
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with TNF blocking agents, as it focused on early phases of
diseases pre-therapy. However, correlations between TNFa
cytotoxicity and mitochondrial dysfunction have been reported
(66–68). In RA TNFa signalling promotes increased ROS
production (66) and treatment with TNF blocking agents has
shown amelioration of synovial oxygen tension and reduction in
mtDNA mutation as well as improvement of disease activity
calculated as DAS28 CRP (69).

Taken together our findings show that FLS from resolving
arthritis patients are distinct from healthy controls in terms of the
consistency and magnitude of mitochondrial and glycolytic
responses to an inflammatory challenge in vitro. In contrast,
FLS from early RA patients display weaker and less consistent
responses to challenge, particularly at the level of mitochondrial
maximal respiration and spare respiratory capacity. These
findings suggest that a lasting state of metabolic agility can be
induced in FLS by exposure to inflammation in vivo, and that this
agile state is associated with capacity to resolve. We postulate that
potentiating mitochondrial function may represent a novel
strategy for promoting resolution in RA and related conditions.
We have recently defined multiple fibroblast subtypes in the RA
joint with different functions (70). A better understanding of how
the different synovial cell types co-ordinate their metabolism will
be required to fully appreciate how metabolic changes in disease
differs from that in health.
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