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Abstract: Samples of skin, tendons, muscles, and knitwear composed of NiTi wire are studied
by uniaxial cyclic tension and stretching to rupture. The metal knitted mesh behaves similar to a
superelastic material when stretched, similar to soft biological tissues. The superelasticity effect was
found in NiTi wire, but not in the mesh composed of it. A softening effect similar to biological tissues
is observed during the cyclic stretching of the mesh. The mechanical behavior of the NiTi mesh is
similar to the biomechanical behavior of biological tissues. The discovered superelastic effects allow
developing criteria for the selection and evaluation of mesh materials composed of titanium nickelide
for soft tissue reconstructive surgery.

Keywords: titanium nickelide wire; knitted mesh; stress-strain curves; superelasticity; biological
tissues

1. Introduction

Implant biocompatibility is very important since the number of implant surgeries is
rapidly growing in various medical fields. At the same time, the variety of implant designs
and the number of new materials used for tissues reconstruction is rapidly increasing. From
the standpoint of materials science, biological tissues are composite materials containing
biopolymers, liquids, and crystalline ceramics. The biomechanical behavior of biological
tissues is diverse due to their different internal structures. Multiple reports have studied
the deformation of blood vessels, muscle and connective tissues, skin, bones, and other
types of biological tissues [1,2]. The deformation behavior of biological materials cannot be
described using a universal micromechanical model. The mechanical behavior of biological
tissues is described using multiple characteristics, including stiffness, elastic modulus, flow
stress, yield strength, viscosity, and stress relaxation characteristics [3–6].

Modern implants are made from polymers, ceramics, metals, and composite materials,
which have different structures and properties [7,8]. Mesh implants, stents, and blood
vessel filters are widely used in vascular surgery. Thus, methods for calculating stress and
strain distribution in implants and at the interface between metal mesh structures with
the soft tissues have been developed [9]. For example, when installing mesh structures
during hernia reconstructive surgery, it is necessary to take into account the long-term
interaction of the implant with soft tissues. An incorrect assessment of the force interactions
between the implant and biological tissues leads to implant failure or complications in
the form of tissue and organ perforations, stenosis, scarring, damage, and the functional
disruption of the adjacent organs. Currently, there are no objective assessment tools for the
biomechanical compatibility of implants and biological tissues, which could be used by
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implant manufacturers and medical professionals. The development of objective criteria
will help improve indications for implant use and their efficacy.

To study the rheology of biological tissues, different loading methods are used, and the
following types of deformation are distinguished: tension, shear, hydrostatic compression,
torsion, and bending. Unfortunately, no single methodology allows for an objective and
detailed characterization of biomechanical properties of tissues in vivo. Currently, the
description of biomechanical properties depends on the measurement method used. For
example, to characterize the mechanical properties of skin, it is deformed using a fixed load,
and then the strain and recovery are analyzed, which depend on skin density, stiffness, and
elastic modulus [10].

Installed implants interact with various types of biological tissues. Biomaterials and
biological tissue deformation behavior cannot be described using a universal microme-
chanical model. Taking into account biophysical and physical-mechanical differences at
the biointerface, the degree of biomechanical compatibility of the implant and biological
tissues can be assessed by comparing features of tensile and cyclic loading stress-strain
curves. Some experts believe that such a comparative assessment is unacceptable due to
large structural differences and physical mechanisms of biological tissues and biomaterial
deformation. However, for a comparative assessment, differences in the structure of the
implant material and biological tissues do not matter. This assessment should only take
into account the similarities and differences of the stress-strain curves. These features can
be successfully used for the selection of specific biomaterials for reconstructive surgery
of specific soft tissues, based on their deformation characteristics obtained using a single
technique and the same type of equipment in the range of physiological loads. It should
be noted that the generalized data obtained from the literature are suitable for such a
comparative methodology only at the initial planning research stage.

Vibrations and ultrasound methods are often used to study the viscous properties of
polymers [11]. However, uniaxial tension remains one of the main methods for charac-
terizing the mechanical response of biological tissues, superelastic materials, and shape
memory alloys. The stress-strain curve describes the stresses that arise in the material in
response to a deformation caused by uniaxial tension. The uniaxial tension of implant
materials allows studying their mechanical response in comparison with biological tissues
using unified methodological approaches.

The idea of biomechanical compatibility between an implant and biological tissue
has existed for more than half a century, but the criteria for biomechanical similarity
have not yet been developed. Modern implants are complex structures that consist of
metals, ceramics, and polymers. Traditional implant materials composed of stainless steel,
titanium, and ceramics do not have biomechanical compatibility with biological tissues
under dynamic loading conditions [12,13]. Only polymers can deform similar to biological
tissues [14–16]. The mechanics of hyperelastic polymer implants are closer than other
materials to the biomechanics of superelastic soft tissues in the range of physiological loads
and deformations. Therefore, the deformation of their interface occurs according to the
same rheological laws.

Titanium nickelide (NiTi) superelastic alloys are widely used in cardiac and abdominal
surgery, dentistry, traumatology, and gynecology [17–19]. Superelastic implants are actively
used in the form of stents in endovascular surgery, orthodontic archwires in orthodontics,
and metal-knitted materials in hernia restorations.

The viscoelastic behavior of NiTi alloys has been well studied within the framework
of the theory of elasticity and martensitic transformations [20–24]. An external tensile load
causes a direct martensitic transformation in NiTi implants accompanied by an increase
in entropy and large heat losses in the entire sample volume due to friction between
the austenite and martensite crystals. When describing the martensitic transformations
induced by uniaxial tension, the Clausius–Clapeyron equation is used, which is derived
from the equality of the thermodynamic potentials of the Gibbs free energy of the austenite
and martensite phases [25]:
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dσ

dT
= −∆S

εM
= − ∆H

T0εM
(1)

Here, dσ is the stress change, dT is the change in the transition temperature when the
stress changes by dσ, ∆S is the change in the entropy of transformation, ∆H is the latent
heat of transition, T0 is the phase equilibrium temperature, and εM is the martensitic strain.

However, this knowledge is difficult to apply to analyze the joint deformation behavior
of superelastic implants and biological tissues using a unified methodological approach.
The functioning of the interface between hyperelastic biological tissue and a superelastic
implant is complex; therefore, the principles of its biomechanical analysis have not yet
been developed.

The difficulty in selecting a superelastic alloy for a specific biological tissue is due
to reversible martensitic transformation during deformation, which provides high NiTi
endurance, caused by certain martensitic shear stress. The stress is caused by the load
from the biological tissue in contact with the implant. Thus, it is necessary to calculate
the martensitic shear stresses, which should be within the physiological load range of a
particular biological tissue in contact with the implant. In this case, the calculated marten-
sitic deformation should coincide with the physiological deformation of the contacting
biological tissue. Such calculations have not yet been carried out.

Studies of the rubber-like behavior of pressed NiTi springs are of great interest [26,27].
Products composed of superelastic wire exhibit softening effects. The authors explain
such changes using the elastic strengthening of the wire turns and the appearance of
numerous contacts between the turns. Successful practical applications of superelastic
implants around the world are based on a large number of tests of each design and the high
qualifications of the developers. The wider application of this type of material requires the
development of objective biomechanical criteria for the use of superelastic structures. The
absence of such criteria creates increased application risks that limit the use of superelastic
NiTi implants.

In this work, the mesh implants made from superelastic NiTi 40–100 µm diameter
wire are studied. This type of implant is promising for bone and soft tissue reconstructive
surgery. A unified approach to the rheological assessment of biological tissue and mesh
implant during stretching makes it possible to develop simple and practical criteria for
assessing the deformation superelastic behavior of an implant and biological tissue to
increase the predictability of organ-preserving plastic surgery of soft biological tissues.
Comparisons of the features of the engineering stress-strain curves of mesh implants and
biological tissues under tensile and cyclic loads are a starting point for the selection criteria
development. In further research, these stress-strain curves need to be used to obtain
design models and parameters for the objective selection criteria.

2. Materials and Methods

To study the viscoelastic properties of knitted mesh, samples made from superelastic
titanium nickelide 60 µm diameter wire and knitted NiTi mesh from 40 µm, 60 µm, and
90 µm diameter wires were prepared (Figure 1). Samples of knitted NiTi mesh and wire
100 mm long were pressed into grips with holes.

The wire with 40 µm, 60 µm, and 90 µm diameter was obtained from 20 mm × 240 mm
ingots by thermomechanical treatment with intermediate annealing in 4 stages:

1. Rolling of the 20 mm diameter ingot to a 7 mm thick bar (20 cycles);
2. Rotary forging of the bar from 7 mm to 3.5 mm thickness (7 cycles);
3. Cold drawing of wire from 3.5 mm to 500 µm diameter (25 cycles);
4. Hot drawing of wire from 500 µm to 90–40 µm diameter (50–70 cycles).

A knitted mesh with 50 loops width was obtained from the 40 µm, 60 µm and 90 µm
diameter wires, annealed and deformed by rolling into a double ribbon at 500 ◦C. Samples
70 mm long were cut from the continuous mesh, and their ends were pressed into the grips.
Samples of skin, tendons, and muscles 50 mm long were prepared from a fresh bovine knee
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joint. The ends of the samples were dehydrated in alcohol and formalin and pressed into
metal grips (Figure 2).

Figure 1. (a) NiTi knitted mesh and (b) NiTi superelastic wire.

Figure 2. (a) Universal tensile testing machine and (b) soft biological tissues samples.

Uniaxial stress-strain curves of viscoelastic materials were obtained using a custom-
built software-controlled cyclic electromechanical universal tensile testing machine with a
2 kg maximum load. The tension was controlled using a personal computer, which allowed
assigning and changing the number of cycles, strain rate, and strain limits. The tensile
machine was equipped with universal sample grips fixed with screws. The tensile machine
had a 3 µm displacement resolution and 0.004 N force resolution.

Transmission electron microscopy (TEM) observations of wire samples in a dark field
and nano diffraction modes were carried using thin foils in the JEOL JEM-2100 microscope
operated at an accelerating voltage of 200 kV. Thin foils were prepared from parallel
sections using the FISCHONE INSTRUMENTS model 1051 TEM mill. Dimples in the
samples were polished using the FISCHONE INSTRUMENTS model 200 dimpling grinder.
Surface images of the superelastic NiTi wire were obtained using TESCAN MIRA3 LMU
scanning electron microscope (SEM, 20 kV). Images of a knitted mesh made from 60 µm
NiTi wire integrated into biological tissues were obtained using confocal laser scanning
microscopy (ZEISS LSM 780 NLO).

Male Wistar rats weighing 160-180 g were obtained from the nursery of the Exper-
imental Laboratory of Biomedical Technologies, Tomsk Research Institute of Balneol-
ogy and Physiotherapy, Siberian Federal Research and Clinical Center, Federal Medical-
Biological Agency of Russia. In the study, 12 male 10 weeks old inbred Wistar rats were
randomly selected. All the animals were accommodated in cages with sterilized wood
shavings as bedding material and acclimatized to standard laboratory conditions (21–22 ◦C,
40–50% humidity, 12 h light-dark cycle), and they were preoperatively denied food 24 h
before surgery. Standard dietary patterns and water were provided ad-lib. The study
using animals was conducted in accordance with the rules of laboratory practices in the
Russian Federation (Order of the Ministry of Health and Social Development of the Russian
Federation No. 199n, dated 4 January 2016).
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All procedures using animals were carefully carried out, with strict adherence to the
European Convention for the Protection of Vertebrate Animals used for Experimental and
other Scientific Purposes (Strasburg, 1986), and with the European Communities Coun-
cil Directive 86/609/EEC. All manipulations were undertaken under general ketamine
anesthesia (1 mg/10 g dose). The study protocol was officially approved (approval code
number №20/1116/2017) by the Bioethical Committee of Tomsk State University.

To study titanium nickelide mesh implant integration, experiments were performed
using 12 adult Wistar rats. All manipulations and removal of animals from the experiments
were carried out under general anesthesia. Preparation for surgery, anesthetic management,
and management of the postoperative period were the same in all animals. An extensive
post-resection defect of the anterior abdominal wall was modeled under general anesthe-
sia and surgically replaced with a knitted titanium nickelide implant. The investigated
implants were made from titanium nickelide 60 µm wire knitted mesh.

The animals underwent a 3–4 cm incision along the midline of the body on the anterior
abdominal wall with a transition to the chest wall. The skin and subcutaneous tissue were
mobilized, and the muscular–fascial and aponeurotic flap of the anterior abdominal wall
with the xiphoid process was resected extrapleurally and extraperitoneally. A post-resection
2 cm × 3 cm defect was formed. The endoprosthesis was cut out according to the shape of
the defect with an edge allowance. The endoprosthesis was fixed along the perimeter using
polypropylene monofilaments 4/0 with interrupted or continuous sutures, capturing the
edge of the implant into the sutures. The implant was fixed to the chest wall and diaphragm
at the level of the resected xiphoid process. The surgical incisions were sutured in layers.
The animals were removed from the experiment on days 15, 30, 60, and 90 after surgery.

3. Results and Discussion

Most soft biological tissues are deformed nonlinearly with a stiffening effect under
uniaxial tension [28]. This nonlinearity depends on the strain and the strain rate. Soft
biological tissues are classified as superelastic materials, which are characterized by a
wide range of reversible elastic deformation reaching 10–500% [29–31]. Three regions of
the stress-strain curve can be distinguished as the initial linear region with a low elastic
modulus; the middle transition region of nonlinear deformation; the final linear region
with a high modulus of elasticity.

The physiological loading range usually does not exceed 20% of the ultimate strength.
As a rule, the physiological strain range is within 20–50% of the maximum strain and is
located at the end of the low elastic modulus region or the beginning of the high elastic
modulus region (Figure 3). Such generalizations cannot be extended to all biological tissues
because their structure and biomechanical properties are extremely diverse. An implant for
a certain biological tissue is designed to work in a certain range of physiological loading,
while its ultimate strength should be significantly higher.

Superelastic materials are characterized by stress hysteresis and the softening effect
under cyclic loading, which is called the Mullins effect in polymers [32–34] (Figure 4). The
hysteresis after the 1st cycle was significantly reduced, so it is convenient to highlight
the hysteresis of the 1st and 2nd cycles. These effects were caused by the losses from the
counteraction of viscous forces of internal friction and elastic forces. Such stress-strain
curves are typical for soft biological tissues, as well as for filled rubbers and low modulus
rubber-like materials.

Biological tissues ruptured in a wide strain range during a single tension cycle, exhibit-
ing several stages of fracture (Figure 5), which is characteristic of fibrous materials fracture.

Stress-strain curves with a softening effect, typical for viscous-superelastic materials,
were obtained during the cyclic tension of biological tissues and a knitted mesh made
from superelastic NiTi wire. Therefore, the obtained dependencies were analyzed from the
superelastic material’s standpoint.
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Figure 3. Generalized stress-strain curves of biological tissues showing physiological loading range.

Figure 4. Schematic stress-strain curves of cyclic reversible tension of superelastic materials and biological tissues:
(a) Mullins effect under cyclic tension; (b) single cycle with different deformation regions: 1—the initial linear region
with low elastic modulus; 2 and 5—middle transition region of nonlinear deformation, 3—the final linear region with
high elastic modulus, 4—elastic unloading region, 6—viscous unloading region. ∆W is the energy dissipated in one
loading-unloading cycle, which is the difference between the areas under the loading and unloading curves.
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Figure 5. Engineering stress-strain curve of a single tension cycle before rupture of soft biological tissue. I—the initial linear
region with low elastic modulus; II—the middle transition region of nonlinear deformation; III—the linear region with high
elastic modulus; IV—yield region; V—rupture of the fibrous structure.

3.1. Rubber-Like Behavior of Skin, Muscles, and Tendons

Tensile stress-strain curves of the skin, tendons, and muscles were obtained in two stages.
During the first stage of tension rupture, the transition areas of the elastic modulus in-
creased, and the terminal areas were determined. During the second stage of cyclic tension
at the transition region in the range of normal physiological loads, the Mullins-like effect
was observed. The stress-strain curves of all biological samples looked similar qualitatively,
exhibiting nonlinear stiffening effects, characteristic of superelastic materials (Figures 6–8,
Table 1).

Figure 6. Engineering tensile stress-strain curves of the skin 5 loading-unloading cycles and uniaxial
tension to rupture (inset).

A noticeable increase in the modulus of elasticity occurred in all tissues in the 6–20%
strain range. The rupture of all tissues occurred at 30–40% engineering strain. Deviations of
the characteristic elongation sections of the samples were associated with methodological
errors in measuring the sample elongation during the preliminary tension of the samples
before the beginning of the test. The tensile strength of the muscle (0.2 MPa) was lower than
the tendon (0.4 MPa) and the skin (1.3 MPa). There was a high probability of a significant
overestimation of the engineering tensile stress in the skin due to a large error in measuring
the sample effective cross-section. The tensile strength of the tendon had intermediate
values in the 0.35–0.45 MPa range. The appearance of two modes in the stress-strain curve
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was caused by the inhomogeneity of the tendon sample and the successive rupture of
two large fibers. The different structure and density of skin, tendon, and muscle tissues
caused differences in the tensile strength and the extent of fracture after reaching the
tensile strength.

Figure 7. Engineering tensile stress-strain curves of the tendon 5 loading-unloading cycles and
uniaxial tension to rupture (inset).

Figure 8. Engineering tensile stress-strain curves of the muscle in the 5 loading-unloading cycles and
the uniaxial tension to rupture (inset).

Table 1. Mechanical properties of different tissues.

Type of Tissue Skin Tendon Muscle

Tensile strength, MPa 1.4 0.4 0.2

Fracture region, % 27–33 17–92 27–45

Middle transitional region of
nonlinear deformation, % 9–12/7–8/12–13 6–9/6–9/15–17 13–17

Maximum stress during cyclic loading,
MPa 0.95 0.27 0.08

Minimum stress during cyclic
unloading, MPa 0.01 0.01 0.04

The similarity of the stress-strain curves of all tissues was manifested during cyclic
tension. The Mullins softening effect was observed in all tissues, attributed to the uniaxial
cyclic tension of superelastic materials and biological tissues.

During the second cycle, all samples showed a softening effect, expressed as a decrease
in stress under load, typical of soft tissues [35,36]. At the unloading stage, the stress
decreased significantly less. Both branches of the stress-strain curves tended to a minimum
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of stresses and a reduction in work against resistance forces when loaded and unloaded.
The softening effect was more explicitly observed in the tendon, which has more collagen,
and the least in the skin. The reason for the softening of biological tissues during cyclic
tension is considered to be the selective deformation of the structural elements of biological
tissues, which have a different modulus of elasticity. The counteraction of the forces of
internal friction in the tissues leads to the delayed restoration of the shape after the removal
of the external load. At the same time, structural elements that develop large elastic stresses
recover their shape faster than elements with a lower elastic stress lag. Thus, there is an
effect of the apparent softening in biological tissues. The effect of lowering the developed
stresses is especially noticeable after the first loading cycle, but after the third cycle, the
process of lowering the stresses slows down. The softening effect during cyclic stretching
of tissues is the reason that some researchers deliberately do not take into account the
results of the first 5–10 deformation cycles and call the first several cycles sample training.

During this sample training, the hysteresis area decreases and approaches a minimum.
The area of the hysteresis loop graphically expresses the work against the viscous forces
of internal friction in biological tissues. A decrease in its area due to the softening effect
is a characteristic sign of the cyclic deformation of viscous-superelastic materials [15,36].
The transition region of the stress-strain curve is reduced to a minimum and becomes
more pronounced after the first 1–3 cycles, accompanied by a decrease and stabilization of
internal friction losses. The important features are the residual strain and the strain rate in
the region of the low elastic modulus.

It is known that soft biological tissues are hyperelastic. The structural elements of soft
tissues are formed of long molecular chains, which take on different configurations with
similar internal energy, but different elastic moduli when stretched [37]. With the uniaxial
tension of soft tissues, their configuration entropy decreases, and the elastic modulus
increases. When the load is removed, the driving force to increase entropy returns the fibers
to their original disordered state. This is entropic elasticity due to the ability of molecular
chains to rotate around their single bonds, which makes it possible to obtain a large number
of loop-like shapes, called conformations. The maximum entropy corresponds to the length
of the molecular chain with the largest number of disordered conformations. The tensile
force helps to straighten and lengthen molecular chains, reducing entropy in equilibrium.
The force associated with entropy is determined from the thermodynamic relations [38]:

A = U − TS (2)

dA = dW − SdT (3)

dA = f dL− SdT (4)

f =

(
dW
dL

)
T,V

=

(
dA
dL

)
T,V

(5)

f =

(
dA
dL

)
T,V

=

(
dU
dL

)
T,V
− T

(
dS
dL

)
T,V

= fU + fS (6)

Here, U is the internal energy, T is the temperature in K, S is the entropy, dW is the
work performed by external forces, dA is the increment of the Helmholtz free energy. Hence,
the entropic elasticity is:

fS = −T
(

dS
dL

)
(7)

Here, dS/dL is the rate of entropy change depending on the chain length. It is seen
that the change in entropy is a configurational process. When soft biological tissues are
loaded, a small instantaneous elastic deformation is accompanied by a much larger elastic
deformation developing in time; thus, a state of delayed high elasticity is achieved.
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3.2. Deformation of Titanium Nickelide Knitted Mesh and Superelastic Wire

A nickel-titanium wire less than 100 µm in diameter can be considered a composite
material because at these dimensions the relative proportion of surface non-metallic phases
and their effects on the physical, mechanical and electrochemical properties of the wire
become significant [39,40]. The surface phases and the coatings are formed by the inter-
action of interstitial impurities with the surface layers of the NiTi matrix during cyclic
plastic deformation in the presence of lubricants and annealing in the air (Figure 9). The
interstitial impurities stimulate the matrix decomposition in the surface layers and titanium
segregation to the surface. The decomposition products of the matrix react with interstitial
impurities and form complex titanium oxycarbonitrides and titanium nickelide, resulting
in a rough wire surface [39,40].

Figure 9. Superelastic 60 µm diameter NiTi wire: (a) side view; (b) cross-section.

For comparison with the stress-strain curves of mesh knitted from NiTi wire, 60 µm
diameter NiTi wire was tested. The obtained engineering stress-strain curves of the NiTi
wire corresponded to typical stress-strain curves of nitinol wire (Figure 10).

Figure 10. Engineering tensile stress-strain curves of the 60 µm NiTi wire 5 loading-unloading cycles
and uniaxial tension to fracture (inset).

The uniaxial tension stress-strain curve to fracture had three linear regions: B2 austen-
ite elastic deformation up to 2% strain, viscous flow region at 2–7.5% strain associated with
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the direct martensitic transformation of austenite into martensite B2→ B2 + R→ B19/ and
linear hardening associated with B19/ martensite deformation. In the elastic deformation
region of austenite at a critical stress level, austenite becomes unstable, and the nuclei of
the stress-induced martensite phase begin to form. Upon reaching the critical martensitic
shear stress, martensite propagates in the sample under constant stress and forms a region
of viscous flow in the form of a plateau associated with the growth of martensite bands [41].
The result of this phase transformation was a 5.5% change in strain. The yield point coin-
cided with the elastic limit of 700 MPa. The wire 1500 MPa tensile strength was achieved at
13% strain.

A shape memory alloy wire undergoing a stress-induced martensite transformation
during a loading-unloading cycle exhibited superelastic behavior (Figure 11). The value of
the critical stress of the forward martensitic transformation σt was 780 MPa during the first
tensile cycle. In the stretching process, 4% of inelastic martensitic deformation εM was fully
recovered with a delay during unloading, forming a mechanical hysteresis ∆σ of 360 MPa.
The area of the superelastic hysteresis curve corresponded to the dissipated mechanical
energy due to internal friction during the movement of the austenite-martensite interface.

Figure 11. Schematics of twinning in characteristic regions of the NiTi wire uniaxial tension stress-strain curve.

The absence of residual strain was due to the uniform nanocrystalline structure of
the wire with an average grain size of 20 nm. The bright-field TEM image showed a grain
structure represented by nanograins of the B2 phase (Figure 12a,b). A deformation contrast
was found inside the grains, which was enhanced near the grain boundaries. In particular,
there was a Moiré pattern (interference contrast) due to the superposition of diffraction
effects from grains with close interplanar spacing. The sources of stresses in grains were
the incoherent boundary and misfit dislocations that created low-angle boundaries. The
grain structure was not recrystallized, as evidenced by the inhomogeneous background
of the extinction contours. Fragments of the subgrain structure, depicted in a dark field,
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are no larger than 10 nm. The microdiffraction showed texture defects associated with
the azimuthal smearing of diffraction reflections along each of the planes of the B2 phase,
especially along the (100) plane (Figure 12c). In some areas, there were accumulations
of particles elongated in one direction due to the drawing process. The dark-field TEM
images showed grains from the (100) reflection corresponding to the B2-NiTi austenite
phase (Figure 12d).

Figure 12. (a–c) TEM images of the nanocrystalline structure of 60 µm NiTi wire and (d) the corre-
sponding diffraction pattern from the B2 phase.

Thus, dislocations and grain boundaries acted as centers of heterogeneous nucleation
of martensite crystals [42,43]. This was in agreement with experimental results, showing
that grain boundaries in NiTi could promote the superelastic martensitic transformation.

It should be noted that, in this case, the small grain size did not suppress the supere-
lastic behavior, in contrast to [44–46], where the superelasticity strongly depended on the
grain size, and at a grain size less than 50 nm in NiTi, the martensitic transformation was
completely suppressed.

Single and cyclic uniaxial tensile tests of NiTi mesh knitted from 40 µm, 60 µm, and
90 µm diameter wires were carried out. It was extremely important that, under a single
uniaxial tension to fracture, the stress-strain curves did not show any yield areas caused by
the martensitic transformation, which were found in the uniaxial tension stress-strain curve
of a single wire. This indicated that the stresses in most of the knitted NiTi mesh stretched
by 10% did not reach the martensitic shear stress and remained below the elastic limit.

During the single uniaxial tension of the knitted 60 µm NiTi mesh, it was deformed
elastically with a constant elastic modulus up to an initial 20% strain. At a 20–40% strain,
the elastic modulus increased nonlinearly, and at a 40–50% strain, it became constant again,
but much larger than in the initial loading. In the final 50–55% strain range, the modulus
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again decreased nonlinearly. The elastic moduli of the knitted 40 µm and 90 µm NiTi mesh
changed similarly.

The tensile strength of the 40 µm knitted mesh was commensurate with the tendon
but exceeded the tensile strength of the skin and muscles. The tensile strength of knitted
60 µm and 90 µm mesh exceeded biological tissues. Increasing or decreasing the wire
diameter could significantly change the tensile strength of the knitted mesh. The fracture
of the knitted mesh was viscous-brittle since at the final 5% stage of the stress-strain curve,
the hardening plateau was reached and a brittle fracture occurred. In the contact areas of
the mesh loops, the tensile strength of the wire was quickly and simultaneously reached
due to the rapid hardening of the alloy in the martensitic state, which was characterized by
the brittle fracture.

Tensile stress-strain curves were obtained for single and cyclic uniaxial tensions of the
knitted NiTi mesh by 10% and 20%, similar to soft biological tissues and characteristic of
superplastic materials (Figure 13). They were similar to the stress-strain curves of the skin.
In all cases of cyclic uniaxial tension after the first loading cycle, the hysteresis loop area
decreased and stabilized in Figure 13.

Cyclic uniaxial tensile tests were carried out within the normal physiological strain of
10% and did not reach the critical elongation at which elastic deformation transformed into
plastic. The elongation depended on the thickness of the wire and the design of the knitted
mesh. The areas of the knitted mesh that were outside the contact areas were elastically
deformed by no more than 2%. Linear areas with a low and high modulus of elasticity were
found in all stress-strain curves. This was seen in the 40 µm wire cyclic tension stress-strain
curves with a 20% strain. In this case, the residual strain of 3% was visible.

Cyclic 10% stress-strain curves were linear during loading and lost linearity during
unloading. The modulus of elasticity and maximum stresses decreased with each subse-
quent tension cycle. This softening effect in superelastic materials is called the Mullins
effect. The softening effect during the cyclic tension of the knitted mesh was due to the
ratio of the elastic forces developed in the loops during unloading and the viscous frictional
resistance between the loops.

At the first unloading cycle of the knitted mesh, elastic regions of the stress-strain
curves were present, associated with loaded regions of the knitted mesh loops. In this case,
the elastic restoring forces with a high modulus overcame the forces of internal friction
more effectively than low modulus ones, and, thus, the effects of softening and delayed
unloading were manifested. Frictional forces prevented low-modulus elastic forces, which
tended to return the loops to their original state, and the knitted mesh acquired an optimal
stable configuration.

At a 20% tension of the knitted mesh, a decrease in the thickness of the wire and a
decrease in the elastic restoring forces led to a greater loss to the friction forces. As a result,
the residual strain of the 40 µm knitted NiTi mesh was 3%. In this case, the elastic tensile
deformation also became nonlinear for all diameters ranging from 40 µm to 90 µm and
corresponded to the model of superelastic tension. At a 40 µm diameter, nonlinearity was
noticeable even in the first tension cycle.

At the initial moment of the first tension cycle of the 40 µm and 60 µm knitted NiTi
mesh, a stress increase with an extremely high modulus of elasticity was detected. This
was due to the dissipative process of overcoming the static friction between the loops. This
effect was more pronounced with 40 µm than with 60 µm and 90 µm wires. After the
first deformation cycle, the viscoelastic flexible system stabilized and assumed the optimal
configuration.

Observed dynamic hysteresis was characteristic of cyclically loaded viscoelastic sys-
tems. The hysteresis area of the 1st cycle significantly exceeded the area of the 2nd and
subsequent cycles (Figure 4a). The first cycle was associated with an irreversible shift of
the loops, and the second and subsequent cycles were associated with a reversible slip
of the loops relative to each other. During the first cycle, the knitted loops overcame the
friction at rest and took an optimal position, which was maintained during subsequent
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cycles. Therefore, the second region was more stable than the first. The energy to overcome
friction forces was almost half after the first cycle. The difference in areas between the
1st and the following cycles’ hysteresis increased markedly with a decrease in the wire
diameter and an increase in elongation up to 20%. This meant an increase in the viscous
drag force in the ratio of elastic and viscous forces.

Figure 13. Cont.
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Figure 13. Engineering stress-strain curves of (a,b) 40 µm, (c,d) 60 µm, and (e,f) 90 µm knitted NiTi
mesh under 5 loading-unloading cycles; uniaxial tension to fracture (insets).

The shape of the hysteresis loop in the first loading cycle of all knitted NiTi meshes
differed from the following ones, but the shape of the loops from the 2nd to the 5th
cycles was very similar, which showed a tendency to stabilize after the first loading-
unloading cycle. The area of the hysteresis loop in the first cycle was much larger than in
the following cycles.
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In the knitted mesh, stresses were distributed extremely unevenly. Therefore, with a
uniaxial tension of the knitted mesh to fracture at the contact areas of the loops, the stresses
reached not only the ultimate martensitic strain but also the ultimate strength. Under
cyclic tension in the elastic range, no signs of plastic deformation were found in the contact
areas. In the unconstrained areas of the loops, the stresses did not cause a martensitic
transformation, since the tensile deformation remained linear without residual strain at
10% tension and had a slight nonlinearity and 3% residual strain at 20% tension.

Consequently, part of the heat from internal friction during the martensitic transfor-
mation was released locally at the points of contact of the loops, while the main heat was
released as a result of surface friction between the loops of the knitted mesh. Thus, as a
result of the uneven distribution of the load in the knitted loops, the effect of superelas-
ticity could manifest itself only locally at the contact areas of the loops. The rest of the
loops experienced only elastic deformation, and the knitwear as a whole behaved as a
viscous-superelastic material [15,47].

Several common features were found in the cyclic tensile stress-strain curves of skin,
tendons, muscles, and the knitted NiTi mesh (Figures 6–8 and 13). The uniaxial tension
stress-strain curves for all samples were superelastic or rubberlike. All samples under
cyclic tension showed the softening and delay effects with low and high-modulus regions
distinguished in each stress-strain curve. Stresses, the elastic modulus, and dynamic
hysteresis of all samples were stabilized by the 3rd tension cycle. In this case, the low-
modulus region of elastic deformation during unloading became stable from the first cycles.

Several differences between the cyclic tension of the knitted NiTi mesh and soft tissues
were also found. The most noticeable feature of knitted mesh deformation was the linear
nature of the elastic deformation at 10% elongation and the complete absence of residual
strain during unloading. The softening effect during cyclic tension of the knitted mesh was
not as pronounced as in biological tissues. The skin and knitted mesh stress-strain curves
were the closest.

A knitted mesh, similar to soft biological tissues, is not a solid object, but a tensegrity
structure, the loops of which are constrained, but retain individual mobility. The tensegrity
structure deformed extremely non-uniformly. The contact sections of the loops experi-
enced extreme bending, at which the stresses approached the ultimate strength, while the
remaining sections experienced tension and bending at stresses well below the yield stress.
Therefore, elastic deformation in different sections of the loops relaxed at different rates.

Considering that during the cyclic tension of the knitted NiTi mesh there was a
variable residual strain and stress hysteresis, depending on the wire diameter, it can be
assumed that the losses were associated with friction at the contact areas during slipping
of the loops. It is known that the Mullins effect is characteristic of tensegrity structures [48],
rubber-like materials [49], cell membranes [50], and pressed shape-memory wires [51].
Comparing the stress-strain curves of a 60 µm wire and a knitted mesh created from it, it
is clear that the tensegrity structure of the knitted mesh limited the manifestation of the
superelastic effect inherent in the wire.

The authors’ experience of using a knitted NiTi mesh in animal experiments, where it
withstood more than 17 million cycles of a physiological respiratory load without fracture,
allowed asserting that titanium nickelide wire under high-cycle loading was capable of
withstanding up to 6% relative elongation without fracture, accumulating no more than a
0.3% residual strain.

The loading region remained linear for all cycles at 10% tension but became non-linear
after the first cycle at 20% tension. This behavior suggests that, for a given knitted mesh
design, an elongation of less than 20% was insufficient to overcome Hooke’s region of
elastic deformation.

The results of cyclic loading of knitted mesh were used in an in vivo study to test
the quality of knitted mesh integration into soft biological tissues. For this purpose, a
60 µm knitted NiTi mesh was chosen since with a minimum pre-tension, it showed a
minimum softening effect and a minimum decrease in stress hysteresis after the first cycle
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of physiological deformation of 6%. This deformation behavior is important for the frame
function of the implant in reconstructive surgery of abdominal wall defects.

3.3. Knitted Mesh Implants Biocompatibility in Laboratory Animals

The study was carried out by replacing the thoracoabdominal defect in the anterior
abdominal wall of rats. The elastic properties of the titanium nickelide knitted implant and
the concerned structures of the chest and abdominal walls are similar. Therefore, under
a physiological load, the formed tissue-implant complex was deformed coherently. The
peculiarities of the implant fixation made it possible to reliably fix the mesh implant along
the edges of the defect and evenly distribute the load over the contacting surfaces of the
implant and tissues.

No migration of the implants or postoperative complications were observed. Mor-
phological studies of the surgical intervention area in animals indicated the formation of
similar structure tissue, which regenerated in the replaced thoracoabdominal area.

No significant changes that could lead to the disruption of the organ’s function were
found in the adjacent organs of the abdominal cavity. The implant was fixed to the chest
wall and the diaphragm through a dense, but non-coarse, connective tissue regenerate with
a small number of cellular elements and a characteristic orientation of connective tissue
bundles along the implant surface. The regenerate was positioned along the free edge
of the implant in the form of a sleeve. The newly formed tissue grew through the mesh
implant with the formation of a single tissue regenerate in the defect zone, which provided
an anatomical and physiological restoration of this area (Figure 14).

Figure 14. Knitted mesh from 60 µm NiTi wire integrated into the rat tissues of the anterior abdominal wall: (a) SEM;
(b) confocal microscopy.

4. Conclusions

1. A 60 µm diameter NiTi alloy wire reached martensitic transformation stress of
750 MPa during five loading-unloading cycles and exhibited the superelasticity effect
at a 6% engineering strain. Wire rupture in the 1450–1500 MPa range had brittle
fracture features.

2. During the single loading of the mesh made from the NiTi wire, up to the tensile
strength, and during cyclic loading up to 10% and 20% relative strain, the yield
strength caused by martensitic transformation and the NiTi superelasticity effects
were not found. The rupture of metal mesh in the 350–800 MPa range also exhibited a
brittle fracture.

3. The cyclic tension stress-strain curves of the metal mesh made from NiTi wire ex-
hibited superelastic behavior, reversibly changing the structure under the action of
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external loads. A characteristic feature of superelastic behavior is the observed soft-
ening effect. The residual macro deformation of the mesh after the first two tensile
cycles was due to the interaction between the contact sections of the loops: slip under
load and friction, which counteracted the elastic unloading.

4. The comparative analysis of cyclic loading showed that the deformation behavior
of the mesh made from 40 µm, 60 µm, and 90 µm NiTi wire was similar to the
superelastic behavior of skin, tendons, and muscles.

5. In addition, in the knitted NiTi mesh, as well as in soft biological tissues, the effects
of softening and delayed elastic unloading were observed. This effect was due to
the variable modulus of elasticity of the loops, due to the inhomogeneity of the
distribution of elastic stresses in the knitwear loops, the viscous slip of the loops, and
viscous friction, which prevented the elastic deformation of the loops.

6. An in vivo clinical experiment showed good integration of a superelastic knitted NiTi
wire mesh into living biological tissues under normal physiological stress. Due to the
similarity of the deformation behavior of the structures of the chest and abdominal
walls and the mesh implant, the formed tissue-implant complex was deformed in con-
cert, and the load was evenly distributed over the implant-biological tissue interface.

7. The observed similarity of the knitted mesh stress-strain curves for all wire diameters
and in the entire range of stresses and strains suggested that there was a possibility
of choosing a knitted NiTi mesh with the required strength and deformation char-
acteristics for different types of soft tissues. The main criteria for the rheological
similarity of the knitted NiTi mesh and soft tissue were tensile strength, deformation
range of low and high elastic moduli during loading and unloading, the value of the
elastic moduli in the loading and unloading zones, and the amount of permanent
deformation during the cyclic stretching of metal knitwear. Further development of
the proposed methods for comparing biomechanical properties will make it possible
to develop objective criteria for choosing a knitted NiTi mesh for reconstructive and
organ-preserving soft tissue surgery.
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