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S U M M A R Y

Background: Healthcare-associated infections impose a significant burden on the
healthcare system. Current methods for detecting these infections are constrained by
combinations of high cost, long processing times and imperfect accuracy, reducing their
effectiveness.
Methods: This study examined whether the amount of time a patient spends on a ward
with other patients clinically suspected of infection, termed ‘co-presence’, can be used as
a tool to predict subsequent healthcare-associated infection. Compared with contact
tracing, this leverages passively collected electronic data rather than manually collected
data, allowing for improved monitoring. All 133,304 inpatient records between 2011 and
2015 were abstracted from a healthcare system in the UK. The area under the receiver-
operator curve (AUROC) for each of five pathogens was calculated based on co-presence
time, sensitivity and specificity of the test, and how much earlier co-presence would
have predicted infection for the true-positive cases.
Findings: For the five pathogens, AUROC ranged from 0.92 to 0.99, and was 0.52 for the
negative control. Optimal cut-points of co-presence ranged from 25 to 59 h, and would
have led to detection of true-positive cases up to an average of 1 day earlier.
Interpretation: These findings show that co-presence time would help to predict
healthcare-acquired infection, and would do so earlier than the current standard of care.
Using this measure prospectively in hospitals based on real-time data could limit the
consequences of infection, both by being able to treat individual infected patients earlier,
and by preventing potential secondary infections stemming from the original infected
patient.
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Introduction

Healthcare-associated infections (HCAIs) are a burden on
the healthcare system. Despite advancing medical technology
and standards of care, the attributable costs of each case of
HCAI across the globe continue to range from US$2992 to
US$29,000 (approximately £2367 to £22,945) [1e3]. In the UK,
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each patient with an HCAI costs an additional £3154, with an
estimated total of £930.62 million per year (approximately
US$1.2B) [4]. In addition, HCAIs have a direct adverse impact
on patient health outcomes such as length of hospital stay [5]
and mortality [6].

This study focused on identifying infections earlier and more
accurately. This requires timely diagnostic tests, but current
diagnostics (both those that measure biomarkers and those
that measure the microbiological vector directly) are limited
by various combinations of long processing times, high costs,
lack of pathogen specificity or imperfect accuracy [7e10].
These limitations make it more difficult to control infectious
outbreaks.

Non-biological methods exist for timely and accurate
detection of secondary infections. A wide variety of factors
predict the likelihood of subsequent infection [11]. Being
around an infected person increases one’s risk of infection for
many pathogens. In a hospital setting, Murray et al. [12] found
that following occupancy of an infected individual on a ward,
the risk of infection for subsequent occupants of the ward is
increased significantly for the next 24 h [12].

This knowledge partly informs contact tracing, which has
been used in the past to identify those at greatest risk of
acquiring an infection. Contact tracing identifies those indi-
viduals who have come in close physical proximity (co-present)
with infected persons [13]. Co-presence has been used in
previous outbreaks in healthcare settings to trace the source of
a pathogen, and the subsequent path by which it spreads
through the hospital population, and has been used in the
recent outbreak of coronavirus disease 2019 (COVID-19)
[14,15]. Although contact tracing is based on the knowledge
that co-presence with an infected individual is a risk factor for
infection, full information regarding the amount of co-
presence and its association with the risk of infection has not
been examined thoroughly. However, contact tracing is typi-
cally binary in nature, reflecting only whether or not a
threshold of co-presence has been crossed. This threshold is
often based either on whether any co-presence has occurred vs
none, or, if there is a non-zero threshold, it is based on simu-
lation rather than empirical data [16]. In addition, contact
tracing relies on positive identification of a case followed by
retroactive identification of individuals who had crossed the
threshold with the infected case; as such, contact tracing is of
limited use in identifying the earliest-infected patients [17].
Recent work has shown that traditional contact tracing may be
inadequate to fully contain outbreaks, instead requiring digital
contact tracing and the use of mobile phone proximity [18].
Finally, the patterns of co-presence, rather than the simple
threshold, may be related more strongly to the risk of infec-
tion. The increasing ubiquity of hospital administrative data
(HAD) enables co-presence to be passively monitored and
quantified. When retrospectively asking infected persons to
recollect their interpersonal interactions, many biases present
when recalling quantitative amounts, rather than binary
interactions [19]. Passively collected HAD are not impacted by
these same biases. Co-presence has been used in other hospital
settings to predict the risk of mortality and re-admission
[20,21]. In addition to formally testing how strongly co-
presence predicts subsequent HCAI, HAD is able to provide
near-real-time information that can be used to identify those
at risk of infection, ameliorating many of the limitations of
standard contact tracing. Once the infrastructure is in place,
the costs are minimal in terms of both time and financial
resources.

This study shows that co-presence measured by HAD functions
as an effective monitoring tool for the risk of HCAIs. The amount
of time that a patient is in the same hospital bay as a patient who
is clinically suspected of an infection, defined as either a diag-
nosis or ordering a microbiological test (irrespective of whether
the eventual result is positive or negative), whichever comes
first, was used in this study. The use of clinically suspected
infection, rather than confirmed infection, means that this tool
can potentially detect pathogens earlier than methods which
require confirmation of infection, such as contact tracing.
Moreover, clinically suspected infections reflect the information
that would be available prospectively in real-time in a clinical
setting, increasing the potential benefits of this tool. This co-
presence time has been termed the ‘index test’ [22]. Co-
presence with individuals with clinically suspected infections
would ideally be used for surveillance. As many hospitals already
have administrative data and electronic medical records (EMRs)
that could be monitored for patientepatient co-presence,
implementation of this tool would likely be inexpensive and
efficient. The clinical role of the index test would be for
screening, and a result indicating high risk of infection would lead
to additional tests or increased monitoring of those patients
during the incubation period of the vector.
Methods

Study design and population

The study population comprised all 133,304 patients with
National Health Service (NHS) hospital stays of at least 48 h in a
single county in the UK from 1 January 2011 to 1 January 2015.
This NHS trust comprises multiple research hospitals and nine
smaller community hospitals, covering a catchment area with
approximately 688,000 inhabitants. The research hospitals are
largely complementary rather than duplicative with respect to
the specialties present.

This study used hospital stays of at least 48 h because HCAI
was defined as an infection occurring more than 48 h after a
patient entered the hospital [23]. These patients comprise a
consecutive series, where the index test was assessed retro-
spectively. The index test was assessed on the following
pathogens: meticillin-resistant Staphylococcus aureus (MRSA),
Escherichia coli, Pseudomonas aeruginosa, Clostridioides dif-
ficile and norovirus. It is important to note that the HCAI itself is
a syndrome e a cluster of symptoms stemming from a high level
of a pathogen in a patient e rather than merely the presence of
the pathogen. In this study, due to the available data, the
presence of the pathogen and the syndrome were treated as
equivalent [24]. The main exception is that the authors were
able to exclude International Classification of Diseases-10 (ICD-
10) codes indicative of infections not transmitted inter-
personally (see below).

This study followed the Standards for Reporting Diagnostic
Accuracy Studies guidelines for reporting a new diagnostic [22].
Ethics committee approval was gained from the University of
Oxford Institutional Review Board, and the database has been
approved by the South Central Research Ethics Committee (19/
SC/0403) and the Confidentiality Advisory Group of the Health
Research Authority (19CAG0144).



Table I

Values for the infectious period for each pathogen used

Pathogen Infectious Infectious period

period, mode (h) (range)

MRSA [27] 72 48e96
Escherichia coli [28] 120 80e160
Pseudomonas aeruginosa [29] 48 12e72
Clostridioides difficile [30] 60 24e96
Norovirus [31] 44 12e72

MRSA, meticillin-resistant Staphylococcus aureus.
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Reference and index test methods

The reference test was either a diagnosis of the infection in
question based on the EMR, or a positive microbiological test
based on the test used by the NHS at the time for the disease in
question, which was pre-specified. Diagnoses were abstracted
using ICD-10 codes. Codes indicative of spread not due to other
patients were excluded (e.g. ‘A04.4’ e ‘Other intestinal E. coli
infection’), as were codes indicative of sepsis to avoid con-
flation in a subsequent sensitivity analysis (e.g. ‘A45.51’ e
‘Sepsis due to E. coli’). The HAD was not configured such that
physicians or laboratory technicians could examine co-
presence; as such, the index test results were not available
to those individuals performing the reference tests. There
were no missing or indeterminate reference test results, and
the data do not contain any reference to adverse events due to
the reference test.

The index test was the number of hours that a patient spent
co-present with a patient with a clinically suspected infection
(defined as either a diagnosis or ordering a microbiological test,
whichever came first). Importantly, this included any tests
ordered regardless of whether they eventually returned a
positive or negative result, as both constituted the suspicion of
infection. Co-presence time was defined as the length of time
that both patients were in the same hospital bay. The clinical
information and microbiological test results were available to
the researchers evaluating co-presence time, as it was all
contained in the EMR. There were no missing or indeterminate
data for co-presence time due to the administrative nature of
the data; every patient’s co-presence was precisely quantifi-
able. As co-presence time was calculated entirely in silico,
there were no adverse events due to conducting the index test.

The index test of co-presence time was based on tested or
diagnosed patients rather than patients with confirmed infec-
tion to more accurately reproduce the knowledge that would
be available if this was a prospective study. As co-presence
time was assessed retrospectively, the data would enable
perfect calculation of the hours of co-presence at the time of
observation, but this scenario would not occur in practice.
Tests for the presence of pathogens take time to return results,
particularly microbiological cultures, where previous studies
have shown the time for optimal results is 5 days [25]. There-
fore, only the subset of real-time information that would be
available in practice was used.

The total co-presence time was tallied for all individuals at a
single point in their hospital stay. The time at which the
quantity of co-presence was measured was determined in the
following manner: for patients with a confirmed infection, co-
presence time was quantified up to the moment when the
microbial test was collected or the diagnosis was recorded in
the EMR, whichever came first. For patients who were neither
tested nor diagnosed, no corresponding time existed. For these
patients, their time of assessment was chosen at random from
their hospital stay such that the distribution of times matched
the distribution of times for those who had a confirmed infec-
tion. This ensured that no systematic differences existed
between those with positive or negative reference tests.

Finally, the exact infectious period of infected patients was
unknown, but the potential to transmit an infection from
patient-to-patient only exists during the infectious period of a
focal infected person. Therefore, deterministic infection
periods were applied to model the infectious period [26]. It was
assumed that the time at which the microbial test was col-
lected or the diagnosis was recorded in the EMR (i.e. when a
focal patient’s co-presence was measured) was the midpoint of
their infectious period, with the length of their infectious
period equal to literature values for the mode of the infectious
period length (Table I) [27e31]. Importantly, these models are
based on interpersonal infection modes, and do not allow for
interpersonal infection (e.g. carriage of a pathogen progressing
to an infection). This aligns with the removal of ICD-10 codes
likely not pertaining to HCAI.
Analysis

The receiver-operator characteristic (ROC) curve and the
area under the receiver-operator curve (AUROC) were used to
compare the measures of diagnostic accuracy. The 95% con-
fidence intervals of AUROC were calculated using boot-
strapping. To determine the optimal cut-point for these curves,
it was assumed that the clinical costs of false-positive, false-
negative, true-positive and true-negative cases are all equal.
Following this, the optimal cut-point is the point closest to a
perfect test (100% sensitivity and specificity) in Euclidian
space. Sensitivity and specificity were assessed at optimal cut-
points.

For this tool to benefit clinical practice, it would need to
predict infections as well as or better than other methods, and
also do so earlier. To assess this, the number of hours between
the time a true-positive patient’s microbiological test was
administered, and when they first crossed the cut-point of co-
presence time during their hospital stay was calculated. This
represents how many hours earlier the pathogen could be
detected if co-presence time was used as a screening test,
relative to the current standard operating procedure.

Finally, a number of sensitivity analyses were conducted,
which are outlined here. For more information, see the online
supplementary material. The results may be due to class
imbalance between infected and uninfected individuals.
Patients were removed in two ways to balance the classes and
rerun the analyses. The strong predictive power of the tool may
be due to latent characteristics of patients in the same hospital
ward; the analysis was conducted using sepsis from S. aureus as
a negative control because it is relatively unlikely to be spread
horizontally from patient-to-patient [32]. To determine if the
results generalize to hospitals with ward-level co-presence
data (rather than bay-level), the analysis was rerun at ward
level.
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Figure 1. Patient flow diagram. Number of eligible patients excluded differs by pathogen because different numbers of patients had their
reference test within the first 48 h of their hospital stay, and therefore were likely not healthcare-associated infections. Importantly, the
different populations for each pathogen are not exclusive; each patient is in all five populations, and only their results on the reference
and index tests change. MRSA, meticillin-resistant Staphylococcus aureus; E. coli, Escherichia coli; P. aeruginosa, Pseudomonas aeru-
ginosa; C. difficile, Clostridioides difficile.

Table II

Baseline demographics and clinical characteristics of eligible
patients

Variable Mean (SD) or N (%)

Age (years) 56.4 (27.8)
Sex (male) 59,988 (44.80%)
Length of stay (h) 319.5 (568.8)
Died in hospital 7180 (5.40%)
Infected with MRSA 474 (0.36%)
Infected with Escherichia coli 2594 (1.95%)
Infected with Pseudomonas aeruginosa 1109 (0.83%)
Infected with Clostridioides difficile 133 (0.10%)
Infected with norovirus 16 (0.01%)

MRSA, meticillin-resistant Staphylococcus aureus; SD, standard
deviation.
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Patient and public involvement

As this was a retrospective study analysing EMRs, the study
population was not involved in the study.

Results

The patients included in the study, their reasons for exclu-
sion and their reference tests can be seen in Figure 1. Most
patients were excluded due to being outpatients or being tes-
ted for microbiological vectors within the first 48 h of entering
hospital.

This left the study population of patients who could
potentially contract an HCAI. The demographics of these
patients are shown in Table II. Patients were, on average, 56
years of age, and 45% were male. On average, these patients
spent 13 days in hospital, and 5% of them died while in hospital.
In total, 4326 (3%) patients were infected with one of the five
pathogens studied.
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After applying the index test to this set of patients, distinct
distributions of co-presence time for patients with clinical
suspicion of infection were observed for those whose reference
test was negative compared with those whose reference test
was positive (Figure 2). Irrespective of a specific cut-point, the
distributions of co-presence time were strongly differentiated
based on whether or not a patient had a positive reference test
(positive test or diagnosis). For all five pathogens, patients with
a negative reference test had a distribution of co-presence
time (index test results) much lower than that for patients
with a positive reference test.

To quantify the performance of the index test, ROC curves
were created based on multiple cut-offs of hours of co-
presence with infected individuals. The ROC curves have
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by the presence of a diagnosis or positive microbiological test (refere
meticillin-resistant Staphylococcus aureus; (B) Escherichia coli; (C) Pseu
AUROCs ranging from 0.92 to 0.99 (Table II). The optimal cut-
point ranges from 29 to 59 h depending on the pathogen in
question. This means that patients must spend over 24 h co-
present with infected patients before the number of false-
negative results is minimized. Although this dichotomizes co-
presence, similarly to contact tracing, the optimal cut-off is
not none vs any. Instead, it takes at least 29 h before co-
presence time is maximally discriminatory. Of note is that
exposure to multiple infected persons can increase co-
presence time by more than 1 h per hour of elapsed time
(i.e. patients may have reached this point in less than 29 h if
they are in the same bay as multiple infected patients).

For patients with a positive reference test and a positive
index test (true-positive case), the authors examined how
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many hours earlier they would have been tested if the refer-
ence test was administered immediately upon crossing the
threshold of co-presence (Table III). On average, the amount of
time saved was found to range from 6 h for C. difficile to 22 h for
P. aeruginosa. This means that if a microbiological test for
P. aeruginosa was administered as soon as a patient crossed this
threshold, the patient’s infection could be detected 22 h earlier.
Asmentionedpreviously, the infectedanduninfected populations
are highly unbalanced, which may have artificially increased the
performance of co-presence time as a diagnostic. Matching and
removal of patients not at risk of infection were used to examine
this possibility. Both analyses showed minimal effects of unbal-
anced samples (Figures S1 and S2, see online supplementary
material). Additionally, co-presence time may have high pre-
dictive power based on latent characteristics between patients
independently increasing the risk to both patients. The use of a
negative control (Figure S3, see online supplementary material)
shows that this is unlikely, as the tool had low predictive power in
the case of sepsis, a non-communicable HCAI. Finally, an analysis
based on one ward at a time showed that co-presence time
remained strong when looking at a single ward (median AUC 0.86;
Table S2, see online supplementary material). However, this
analysis showed that there was additional power in incorporating
information about patient ward-to-ward movement, as the full
analysis had an AUC of 0.96, a 10% difference.

Discussion

Key findings

This study showed that the number of hours of co-presence
with patients clinically suspected of being infected is a meas-
ure that serves as a screening test of infection. Additionally, it
showed that the use of co-presence time as a screening test can
enable the detection of infection which stemmed from inter-
personal transmission in the healthcare setting as much as 22 h
earlier.

Relationship with previous studies

This study used HAD to measure co-presence between
patients. Previous studies have used similar data to implicitly
Table III

Index test statistics for all five pathogens

Pathogen AUC (95% CI) Threshold

(h)

Sensitivity Spe

MRSA 0.962 (0.96e0.964) 35 1.00
Escherichia coli 0.966 (0.965e0.967) 59 0.95
Pseudomonas
aeruginosa

0.925 (0.923e0.927) 35 1.00

Clostridioides
difficile

0.993 (0.992e0.994) 29 1.00

Norovirus 1 (1e1) 34 1.00

MRSA, meticillin-resistant Staphylococcus aureus; AUC, area under curve; C
optimal cut-point, for each test was the number of hours of co-presence t
space to the optimal test. Sensitivities, specificities and the number of true
the difference in time between when a patient first crossed the threshold of
the infection. This number represents how much earlier a patient may be
reference test. Ranges indicate the minimum and maximum numbers w
deterministic.
construct the path of infection from patient-to-patient [14].
Similarly, contact tracing scrutinizes any person with any co-
presence with a patient with a confirmed infection to contain
an infection effectively [17]. Rather than dichotomize co-
presence as none vs any, or at 15 min as has been suggested
for transmission of COVID-19 [16], this study evaluated all
potential thresholds with empirical data, selecting the thresh-
old that best balanced false-positive and false-negative results.

These analyses indicate that the optimal cut-point of co-
presence for all five pathogens tested is >24 h. This is impor-
tant as previous methods, such as contact tracing, typically use
any contact vs none (or no co-presence vs any) as a cut-off for
potential infection [13,17]. The present findings show that any
contact vs none may unnecessarily increase the number of
false-positive results, when more stringent criteria will limit
false-positive results while not increasing the number of false-
negative results.

Murray et al. [12] used data of a similar nature to assess the
increased risk of infection following occupation by an infected
patient for 24 h. The present study, however, found that the
maximal risk of interpersonal transmission is not only depend-
ent on the amount of time that has passed, but also on the
amount of co-presence time which has occurred; co-presence
time can vary from patient to patient and from ward to ward.
Study implications

Patientepatient co-presence time will ideally be used as a
screening tool; once a patient has been co-present with a
tested or diagnosed patient for at least the cut-off time of
29e59 h, they would be tested for the microbiological agent
and subsequently monitored for signs of infection. If this was
done, infections could be identified earlier than when using the
current standard operating procedure. Earlier detection may
lead to reduced infectious periods for patients, as treatment
could be administered sooner. A recent study found that the
most cost-effective method for diagnosis of C. difficile cost
$54,500 per quality-adjusted life year (QALY) [33]. The low
costs of using co-presence as a diagnostic tool would likely lead
its cost per QALY to be even lower.

Further, if there were downstream effects, the values
estimated in Table III reflect the minimum amount of time that
cificity True-positive

results

PPV Average hours saved per patient

(range)

0.95 474 0.067 10.93 (7.05e16.18)
0.90 2472 0.159 8.35 (4.91e13.61)
0.95 1107 0.142 21.97 (13.98e32.96)

0.99 133 0.091 6.36 (4.08e10.14)

1.00 16 1.00 8.19 (5.12e10.31)

I, confidence interval; PPV, positive predictive value. The threshold, or
hat gave sensitivities and specificities which were closest in Euclidian
-positive results were taken at these optimal cut-points. Hours saved is
the index test and when they were actually tested for or diagnosed with
screened for infection when using the index test than when using the
hen the lengths of infectious periods were stochastic rather than
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would be saved. Earlier detection of a patient’s infection via
co-presence time combined with subsequent tests could result
in earlier quarantine for that patient, thereby preventing other
patients from being infected through contact with the original
patient. These downstream effects are not captured in the
calculations of the person-hours of infection potentially saved,
and therefore this study shows a lower bound on the potential
benefits of a tool based on co-presence time.

Strengths

As stated previously, the use of co-presence time as a
screening tool has many advantages. First, using HAD, the
authors were able to study a population of more than 100,000
patients from a catchment area including almost 700,000
patients. Many hospitals already use some form of EMR, so
adapting these records to monitor co-presence with infected
and tested individuals should involve minimal effort, allowing
this method to be integrated easily into many health systems.
HAD can also be monitored passively for relevant amounts of
co-presence, meaning the cost to calculate co-presence time is
inexpensive once passive monitoring is enabled. Determining
co-presence time is also rapid; a result is returned immediately
when a patient crosses the threshold of co-presence.

These results ‘dovetail’ well with recent advances in micro-
biological detection; a test for MRSA that can provide results
within a fewhourswas approved recently [34]. In tandemwith the
tool proposed here, a patient who crosses the threshold of co-
presence can be given a rapid diagnostic test immediately, and
decisions regarding their infection status can be made rapidly.
This increasedpaceofmedical decision-making, takingadvantage
of the large amounts of data available in the EMR and HAD,
answers a recent call for a ‘deep learning health care’ [35]. As co-
presence would potentially identify an individual at risk prior to
manifestation of biomarkers and other physical symptoms of
infection, increased testing of these individuals may also help to
identify individuals who would have been asymptomatic and
otherwise gone unnoticed. This problem has been highlighted
with the recent COVID-19 outbreak, where asymptomatic indi-
viduals missed by standard procedures have caused additional
infections [36]. Monitoring co-presence and referring to increased
surveillance would likely lead to catching a large proportion of
these cases, reducing the scope of the outbreak of HCAIs.

It is worth noting that co-presence time is pathogen-
specific. Identified co-presence thresholds, co-presence
accrued, and a positive result all reflect a single pathogen,
exclusive of others. In other words, a positive result of co-
presence with patients tested for E. coli only predicts infec-
tion with E. coli e not other pathogens. This specificity is in
contrast to some biomarker diagnostic tests which measure
general indicators of infection, and must be used in concert
with physician expertise to identify the specific pathogen [9].
All of these strengths indicate that co-presence time would
supplement the microbial tests currently available.

Limitations

As the index test is based on administrative data, there are
inherent limitations that make this approach imperfect. First,
this method cannot disentangle disease-specific modes of
transmission, and does not perfectly capture all the methods
by which pathogens can be transmitted. For example, some
infections can be caused by patients’ endogenous flora [37].
Although some ICD-10 codes which clearly indicated intra-
personal aetiology were excluded, this was not possible in all
cases. Conditional on person-to-person transmission, co-
presence makes no assumption about how the pathogen got
from one person to another, whether it be directly, carried by a
third party, or deposited on an object and picked up by another
person. This precludes the prediction of HCAIs which do not
stem from interpersonal transmission. These results therefore
show the strength of association between co-presence with
other patients and subsequent infection, and it is this associ-
ation which can be leveraged for screening. Future work should
investigate how modes of transmission might be incorporated
into such a tool for increased disease-specific precision.

These results are based on the relatively crude measure of
co-presence, and therefore likely represent the minimum
strength of the association. This highlights how this tool would
likely fare in hospitals with a relatively crude HAD system.
Increased sophistication (e.g. bed-level information) would
only increase the association between co-presence and infec-
tion, and therefore the predictive power of the approach.
Finally, this test was quantified using data from NHS hospitals in
a single catchment area. Standard operating procedures for
infection control exist that may make the results here non-
generalizable. However, the series of robustness tests, such
as removing a quarantine ward and altering the time at which a
microbiological test is administered, showed that these dif-
ferences would have a minimal impact on the effectiveness of
this approach. As the diagnosis of infection was based on EMRs
rather than administrative data, generalizability of these
results is likely increased (diagnostic criteria for infections are
more conserved across healthcare systems than administrative
coding) [38]. However, future work should explore whether
similar results can be obtained in other settings.

In conclusion, this study has shown that the use of HAD-
based co-presence time with patients with clinical suspicion
of infection is a strong candidate as an indicator of HCAI.
Beyond the implications for spread within healthcare systems,
these results suggest that co-presence in hospitals matters:
patients are not truly isolated and independent from one
another. Embeddedness of patients in hospital settings needs
to be recognized and leveraged for better health care. On the
balance of the strengths and potential caveats discussed
herein, this study has shown that co-presence is a powerful
indicator of HCAI, which merits implementation in hospitals for
the reduction of outbreaks in healthcare settings.
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