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Machine learning, one of the core disciplines of artificial intelligence, is an approach whose main emphasis is analytical model
building. In other words, machine learning enables an automaton to make its own decisions based on a previous training process.
Machine learning has revolutionized every research sector, including health care, by providing precise and accurate decisions
involving minimal human interventions through pattern recognition. This is emphasized in this research, which addresses the
issue of “support for diabetic neuropathy (DN) recognition.” DN is a disease that affects a large proportion of the global
population. In this research, we have used gait biomarkers of subjects representing a particular sector of population located in
southern Mexico to identify persons suffering from DN. To do this, we used a home-made body sensor network to capture raw
data of the walking pattern of individuals with and without DN. The information was then processed using three sampling criteria
and 23 assembled classifiers, in combination with a deep learning algorithm. The architecture of the best combination was chosen
and reconfigured for better performance. The results revealed a highly acceptable classification with greater than 85% accuracy
when using these combined approaches.

1. Introduction

In Mexico, diabetes affects 60% of the population (http://
fmdiabetes.org/wp-content/uploads/2014/11/diabetes20131

NEGI.pdf). Diabetic neuropathy (DN) is a major consequence
of diabetes mellitus and may have a detrimental effect on the
patient’s manner of walking, also known as “gait.” One variant
of DN, diabetic peripheral neuropathy (DPN), is a peripheral
pathology that causes the patient to show disorder in gait and
progressive deterioration. Diagnosis of this pathology requires
medical evaluation, but the use of computational techniques has
also been proposed for its detection to reduce the margin of

error of classification [1]. The present research involved the use
of a network of sensors to acquire gait biomarkers for sample
patients with DN and healthy individuals. These samples were
used to create a model that contains the characteristics of
healthy persons, as well as patients suffering from DN, and tags
their state of health. Subsequently, a set of test data with the
known health status of each case was used, but without tagging.
The test data confirmed the efficiency of the models following
the implementation of an exhaustive search that combined
various algorithms (assembled classifiers + deep learning) and
selection of the one with the maximum percentage of correctly
classified instances. These instances showed with a high degree
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of certainty the existence of atrophy in muscles leading to an
abnormal gait due to DN.

Machine learning has been widely used in several areas.
In health research, it has been applied for disease diagnosis
and the subsequent timely treatment of progressive diseases,
including DN [2-5], which affects a high percentage of the
world population. The present research focuses on the
recognition of persons affected by DN through the classi-
fication of gait biomarkers. For this purpose, the following
methodology was used: (i) A group of individuals with and
without DN was selected. (ii) The sensors were placed, and
the biomarkers data of gait were obtained. (iii) Each of the
cases was tagged as positive or negative for DN, depending
on whether the person presented the condition. (iv) The
collected data were divided into two groups: the first was
used as training data and the second one as test data. (v) A
model that describes the behavior of the gait in both cases
was built and trained with the training dataset. (vi) The
model was evaluated using the test dataset (without tagging)
and different classification algorithms (classifiers). (vii) The
assembled classifiers were combined with a deep learning
algorithm to find the one that generates the highest accuracy
indexes.

In the state-of-the-art scientific literature, no method has
yet combined these approaches to solve the problem pre-
sented here. In addition, due to the successive refinement
obtained using this combined approach, the combination of
an assembled classifier + deep learning algorithm appears to
be a promising option for increasing the percentage of
correctly classified instances by categorizing gait biomarkers
in patients with DN against those of healthy controls.

2. State of the Art

DN is a consequence of degradation of the peripheral and
autonomous nervous system. It is probably the most fre-
quent complication of diabetes, affecting more than 50% of
patients after 20 years of the disease course, depending on
the severity and duration of hyperglycemia. The prevalence
increases with years of progression, hyperglycemia, and
established cardiovascular disease [6]. About 60 to 70 per-
cent of people with diabetes suffer from some type of
neuropathy, and these nerve disorders can develop at any
time; however, the risk increases with age and with the
duration of the disease. The highest DN incidence rates are
found in people who have been suffering from diabetes for at
least 25 years. DN also seems to be more common in people
who have problems controlling their blood glucose (blood
sugar), as well as in people with high levels of body fat or
elevated blood pressure or who are overweight [7]. The DN is
present in 40 to 50% of diabetic patients at 10 years after the
onset of both type 1 and type 2 diabetes although less than
50% of these patients show DN symptoms. DN prevalence
increases with the time of evolution of the disease and with
the age of the patient, with its extent and severity related to
the degree and duration of hyperglycemia [8].

There are several studies that propose the use of hard-
ware devices to gather information from patients suffering
from diseases that affect gait. In addition, a wide variety of
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machine learning algorithms have been used to categorize
these diseases, some of which are described below.

Several studies have proposed the use of hardware de-
vices to gather information about patients suffering from
diseases that affect gait. In addition, a wide variety of ma-
chine learning algorithms have been used to categorize these
diseases. For example, Mueller et al. compared gait char-
acteristics, including torsional flexor pairs for feet and the
range of ankle motion of subjects with diabetes mellitus and
peripheral neuropathy. They found that patients with di-
abetes showed less mobility and lower ankle power, speed,
and length of stride during walking, as well as a significant
decrease in ankle strength and mobility, which seemed to be
the key factors contributing to patterns of altered walk in
these patients [9].

Similarly, Sacco and Amadio used sensitive time tracking
in neuropathic and non-neuropathic diabetic patients as a
measure of sensory deficit, focusing on dynamic and tem-
poral parameters. The aim of their study was to investigate
whether neuropathic patients develop changes in dynamics
during walking to compensate for sensory deficits. They
compared the results of neuropathic patients to those of a
nondiabetic group to determine the relationships between
the maximum plantar pressure cronaxie and sensitiveness in
selected plantar areas, as they speculated that neuropathic
patients develop compensatory musculoskeletal mecha-
nisms to make up for their sensory deficit [10]. They based
their research on an innovative thematic approach involving
DPN and described and interpreted a treadmill self-healing
system by neuropathic diabetic subjects using biomechanics
and somatosensory considerations. Their innovation was the
use of electromyography (EMG) and a treadmill, instru-
mented in a clinical application, to study and interpret
motor control during gait in neuropathic diabetic patients.
They found significantly higher somatosensory responses
and pain tolerance thresholds in the diabetic neuropathic
group; these responses were considered far from normal
patterns. The EMG responses of the thigh and leg muscles,
and especially the tibialis anterior and vastus lateralis, were
delayed in the diabetic neuropathic group when compared to
the normal pattern. The study showed that long-term sen-
sory and motor defects altered muscle activation patterns
during neuropathic walking on the treadmill [11].

Kwon et al. compared muscle activity and joint moments
in the lower extremities when walking among nine subjects
with DN and nine control subjects. They found that con-
traction of agonist and antagonist muscles occurred in the
ankle and knee joints in subjects with DN during the support
phase, and they concluded that these contractions may be
related to an adaptive gait strategy that compensates for the
decrease in sensory information from the ankle and foot. The
contractions may contribute to a more stable gait, but the
increased muscle activity probably has a higher energy cost.
The differences in joint moments and electromyographic
activity moment when walking in subjects with DN could be
explained by several factors, including the loss of sensory
perception, decreased muscle strength, decreased ankle
mobility, and slow speed. The results also showed that
subjects with DN had less ankle mobility, slower walking
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speeds, longer posture phases, and greater dorsiflexion of the
lower peak ankle, ankle plantar flexion, and extension
moments of knee when compared with the control subjects
[12].

Yavuser et al. defined gait deviation in patients with
diabetes mellitus by studying the associations between
electrophysiological findings and gait characteristics. Their
gait analysis showed a slow gait, shorter steps, limited knee
and ankle mobility, lower plantar flexor moment of the
ankle, and lower power in the diabetic group, and the dif-
ferences were statistically significant. In addition, wave levels
and latency were significantly correlated with ankle mobility
and the plantar flexion moment of the ankle. They concluded
that neuropathy might not be the only reason for gait de-
viations in patients with diabetes mellitus [13].

Akashi et al. compared the electromyographic activity of
the thigh and calf muscles during gait in nondiabetic subjects
and patients with DN at two stages of disease: those with and
without previous experience of ulcers in their clinical his-
tory. They also investigated whether the changes in elec-
tromyography were due to some alteration in the reaction
force on the floor during gaiting. They found that long-term
neuropathic deficits, represented by a clinical history of at
least one foot ulcer in the last two years, caused a late ac-
tivation of the lateral vastus and lateral gastrocnemius and a
lower propulsion of the vertical reaction force of the floor
during barefoot walking [14].

Sawacha et al. investigated the muscle activity of de-
viations during gait, even in the early stages of diabetes,
when neuropathy is absent. This study involved 50 subjects:
10 controls (body mass index 24.4 + 2.8, age 61.2 +5.07), 20
diabetics (body mass index 26.4 + 2.5, age 56.53 + 13.29), and
20 neuropathic (body mass index 26.8 + 3.4, age 61.2+7.7).
The electrical activity of six muscles was collected bilaterally
in the lower extremity during the motion: gluteus medius,
rectus femoris, tibialis anterior, long peroneus, gastrocne-
mius lateralis, and extensor digitorum communis, and the
electromyographic activity was represented through a linear
model. The time and space parameters were also evaluated
by means of two Bertec force plates and a six-camera motion
capture system (BTS, 60-120 Hz). In the initial contact and
load response, an early response peak of rectus femoris
activity occurred in diabetic subjects with and without
neuropathy. The results suggest that important deviations of
muscle activity are present in diabetic subjects although
these are not directly related to neuropathy. The authors key
finding can be considered as the presence of statistically
significant alterations in non-neuropathic subjects. The
results also suggest that important deviations of muscle
activity are present in diabetic subjects although these are
not directly related to the neuropathy. The authors believe
that these results indicate that changes in the muscles of the
foot occur before changes in nerve function can be detected.
[15].

Deschamps et al. indicated that the reduction in the
mobility of the foot was a key factor in the biomechanical
alteration of the foot in individuals with diabetes mellitus.
The aim of their study was to compare the kinematics and
coupling in adult patients with diabetes, but with and

without neuropathy, based on age, sex, and walking speed.
Differences in the range of movement were quantified with
the Rizzoli multisegment standing model, and different
phases of the gait cycle were analyzed by repeated one-way
measures using analysis of variance ANOVA. The groups
with diabetes showed significantly lower values of move-
ment compared to the control group. These findings sug-
gested an alteration in the kinematics and segmental
coupling during gait in diabetic patients with and without
neuropathy [16].

Fernando et al. carried out a detailed review of electronic
databases by searching for articles studying the effects of DN
on gait. Their analysis of the spatial-temporal parameters,
kinematics of lower limbs, kinetics, muscle activation, and
plantar pressure showed that patients with DN had elevated
plantar pressures and occupied a greater length of time in the
stance phase with maximum contact in the flat feet position
during gaiting, when compared to healthy controls [17].

Patterson and Caulfield used accelerometers to detect
different gait conditions in people with normal and rigid
ankles. They used an algorithm that quantifies the relevant
characteristics of the swing phase in the foot and found a
clear distinction between gait patterns in the ankle move-
ments [18].

Gomes et al. studied patients with DN who suffered gait
disturbances related to plantar ulcerations. They corrobo-
rated this relationship by designing computational simu-
lations based on the gait muscle excitation patterns and
found that their simulation was able to represent the hip
posture adopted by patients with DN during movement as
an adaptation to the loss of function in the distal muscles
[19].

Sanchez-DelaCruz et al. proposed a classification model
using gait information derived from data from a public
repository for their tests and implementing various machine
learning algorithms. The best result was obtained by com-
bining the algorithms LogitBoost + RandomSubSpace, and
they showed that assembled classifiers are a good alternative
for binary classification [20]. Based on these results, they
designed a sensor network for collecting gait biomarkers and
built a database of patients with neurodegenerative diseases
[21].

Camargo et al. designed a study to assess aspects of
balance, ankle strength, and parameters of spatiotemporal
gait in persons with DPN and to verify whether deficits in the
parameters of the spatiotemporal gait were associated with
muscular strength and ankle balance. Spatiotemporal mo-
bility, functional mobility, balance performance, and ankle
muscle strength were affected in individuals with DPN. The
performance of the time up and go test and the isometric
muscle strength of the ankle were associated with changes in
spatiotemporal gait, especially during the condition of
maximum gait velocity [22].

Berki and Davis collected pressure and tension data from
26 diabetic subjects and healthy controls using a new in-
strumentation that measures the vertical and horizontal
force vectors of the plantar contact surface in the gait cycle.
They applied two-dimensional discrete Fourier transform in
each dataset, for each of the ten sensor sizes. The results



showed that the sensor measuring 9.6 mm x 9.6 mm caused
significant reductions in the three tension components
(p<0.001), while the sensors measuring 1.6 mm x 1.6 mm
up to 4.8 mm x 4.8 mm can capture the entire spatial range
of frequencies in the pressure and voltage data [23].

Anjaneya and Holi proposed a method that considers
time and signal characteristics frequencies for DN classifi-
cation using a neural network. Their approach was based on
the fact that diabetes risks have increased among children
and adults in the last decade, and that existing methods for
early detection showed potential classification opportunities
with an accuracy of 97.05% [24].

Al-Angari et al. used measures of shape and entropy to
introduce new characteristics for capturing the variations in
plantar pressure in a study of patients with DPN, retinop-
athy, and nephropathy compared with a diabetic control
group without complications. The change in the position of
the peak pressure of the plant with each step for both feet was
represented as a convex polygon, asymmetry index, area of
the convex polygon, second wavelet moment, and entropy of
the sample [25].

Kavakiotis et al. carried out a systematic review of
electronic information records of scientific articles of the last
five years through the following queries: “Machine Learning
AND Diabetes,” “Data Mining AND Diabetes” and “Di-
abetes,” whose revision was made in the PubMed and the
DBLP Computer Science Bibliography databases. As a result,
they found that different algorithms have been implemented
with different datasets of diabetes. In their work, they
presented a comparison of the percentages obtained in these
studies [1].

The current state-of-the-art information indicates the
following:

(i) The gait biomarkers, acquired by cameras or sen-
sors, are a reliable source for the collection of gait
information in people suffering from gait atrophy

(ii) A large variety of machine learning algorithms have
been used separately to classify disorders of the
human gait

(iii) Reliable and competitive classification percentages
have been obtained

Given these observations, the classification of gait bio-
markers of subjects with DN is an area that is expected to
expand in such a way that reliable and accurate percentages
of classification will be obtained. In the present study, we
assumed that a sensor network would be a promising option
for collecting gait information to build a dataset on which to
implement an appropriate combination of machine learning
algorithms.

3. Materials and Methods

3.1. Instrument to Collect Data. A sensor network consisting
of five 3-axis ADXL-335 accelerometer was built, validated,
and connected to an Arduino MEGA-2560 card. The to-
pological connections consisted of Cartesian coordinates x,
y, and z, of the ground (GND) and a voltage of 3.3V
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(Figure 1(a)). The sensors were distributed as follows: a
sensor was placed on each ankle, on each knee, and on the
hip (close to the gravity center). Data were acquired directly
from the accelerometers, and no filter was used.

The ADXL-3351 accelerometer (http://www.analog.com/
media/en/technical-documentation/data-sheets/ ADXL335.pdf)
is an analog sensor that detects movement; i.e., it is able to
respond with an electrical signal to a disturbance induced
by the application of a force or gravity. This device mea-
sures the acceleration on a 3G scale and uses a voltage level
of 3.3 V. The Arduino MEGA-25602 (https://www.arduino.
cc/en/Main/ArduinoBoardMega2560) is a card that con-
tains, among others, 16 analog inputs, 4 UARTs (serial
ports), a USB connection, a power connector, and a reset
button. These electronic devices allowed the development
of a useful and, above all, low-cost sensor network: 38.27
USD (Table 1).

A prototype of the sensor network was validated with a
sociocultural gender group: boys and girls (Figure 1(b)). The
data captured were clean; i.e., noise-free data were obtained,
thus allowing an acceptable classification by combining the
LogitBoost + RandomPForest algorithms, as reported else-
where [5].

3.2. Creation of the Database. The selection of subjects was
based on the work presented in [26]. In that work, the
authors referred to the creation of a dataset with human gait
information and the effect of mechanical perturbations of
fifteen subjects walking at three speeds on an instrumented
treadmill.

Due to the characteristics of the subjects for our study,
we opted to use the purposive sampling technique described
in [27]. This is a nonprobability sampling that is highly
effective when researchers need to study a certain domain as
it allows them to use only those elements from the pop-
ulation that best suits the purpose of the study. This kind of
sampling method is fundamental for the quality of data
gathered because the reliability and competence of the
source is controlled by the researchers, thereby providing an
effective selection of the limited resources.

In accordance with the gait cycle or stride, as shown in
Figure 2, the database was created for patients suffering from
DN using a sensor network. The data represented a par-
ticular region of the state of Tabasco, located in the southern
zone of Mexico. For this purpose, a gait laboratory was
created, consisting of a 20 m 3 m space with 8 m labelled for
the track (Figure 3(a)) in the premises of the Medical Ser-
vices Unit of the Autonomous University of Tabasco. The lab
also had seating arrangements to allow the patients’ care-
givers to wait and to sign the consent report forms.

We worked with 10 patients who presented abnormality
in gait due to DN, in addition to 5 healthy subjects (con-
trols). The distribution of characteristics such as gender, age,
weight, height, years of suffering, and cause is shown in
Table 2. The inclusion criteria were any gender; age equal to
or greater than 15 years; and ambulatory; i.e., they moved
without support. We excluded patients who had experienced
falls due to their condition, patients who did not sign
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FIGURE 1: Sensor network: (a) topology; (b) validation.

TaBLE 1: Cost of materials for the sensor network.

Device Amounts Price Totals
Accelerometer ADXL-335 5 90.00 450.00
Arduino MEGA-2560 1 250.00 250.00
Wire-UTP cat. 5 10m 2.00 e/m 20.00
Total in MXN $ 720.00
Total in USD $ 38.27

Informed Report, pregnant women and patients with medical
conditions that visibly did not allow them to walk for 5
minutes. Similar studies for gait analysis in patients have
been published, for 13 subjects with amyotrophic lateral
sclerosis [29], 14 subjects with Huntington’s disease [30], 15
subjects related to Parkinson’s disease [31], and 17 subjects
with stroke [32].

The study subjects were instructed to walk normally to
perform two familiarization trials with the sensor on prior to
conducting the real test involving the capture of gait bio-
markers (Figure 3(b)).

Therefore, one file was created for each patient with the
raw data of the x, y, and z axes of each of the 5 acceler-
ometers. These data were then used as inputs for the clas-
sifiers. In addition to each file, the attribute “case” was added,
which refers to patients with DN pathologies or control
subjects (Table 3). This resulted in the classes of binary sets:
{diseased, control} with a total of 16 attributes.

3.3. Data Segmentation. For a visual quantitative analysis,
the 10 files of the patients and the 5 files of the healthy
controls were integrated into a single dataset, from which
some statistical measurements (Table 4) and correlation
(Figure 4) were obtained.

These measures minimum, maximum, mean, and stan-
dard deviation, facilitating correct data collection, i.e., the
values oscillated in the same ranges, indicating no “outlier”
noise. A relationship analysis of the attributes allowed the
generation of correlation graphs of each sensor for all 15
study subjects (Figure 4).

Figure 4(a), which corresponds to the center of gravity,
shows that no definite correlation exists between the Carte-
sian coordinates. Instead, the hip axes are grouped due to the
linear displacement during gait. In relation to the knees, the
right extremity (Figure 4(b)) shows a positive correlation and
the left extremity (Figure 4(c)) depicts a grouping that cor-
responds to a weak relationship. In the right ankle
(Figure 4(d)), a positive tendency is noted, while the left ankle
(Figure 4(e)) denotes the presence of clustering. These ob-
servations confirm the assumption, derived from Table 4, that
no addition or removal of attributes is required from the
dataset.

3.4. Sampling Criteria. From the binary dataset, {diseased,
control} was used to construct three subsets of data that
considered the sampling criteria: cross-validation, 2/3-1/3,
and representative sample.

(i) Cross-validation. The data were divided into K
subsets (folds). One subset is used as test data and the
rest (K — 1) as training data. The process was re-
peated during K iterations, with each of the possible
test set. The error was calculated as the arithmetic
mean of each iteration error to obtain a single result;
therefore, if MSE; (mean squared error) denotes the
error in the ith iteration, then the cross-validation
error is estimated by CV ;) = (i/k)Zf-ilMSEi.
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FIGURE 3: Gait laboratory [28]. (a) General classification model (gait lab); (b) capture of biomarkers.

(ii) 2/3-1/3. Another way to divide the data is in a n= (y*pqN)/(e* (N - 1) + y*pq), where n = sample
training set D, and its corresponding test set size, y = confidence level, p = probability of occurrence
D> such  that D, ,;,,UD.c=D and (0.50), g=probability of nonoccurrence (0.50), N=
Dipgin N Dy = 0. The model is trained in Dy, to total population, and e = permissible error(0.1).
obtain f = Dy,;, and calculate the generalization

error using the data points in D,.. The GE estimate . . o
s POUIIS I Pest == 3.5. Classifiers. For each sampling subset (cross-validation,
(generalization error) is given by GEj 4 ou =

o . i 2/3-1/3, and representative sample), 23 assembled algo-
GE(fp,,» Drest). This approachis alsoknownasthe i, 116 were tested by combining them with the deep RNA

hold-out method. Multilayer perceptron, known as the DI4jMlIpClassifier al-
(iii) Representative Sample. Statistical measure to obtain  gorithm in Waikato Environment for Knowledge Analysis
the test subset. This is obtained with the equation (WEKA):
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TaBLE 2: Characteristic distribution of the study subjects.
Patient Gender Age Weight (kg) Height (cm) Suffering years Cause
1 M 54 89 1.70 5 Hereditary
2 M 60 108 1.65 10 Nutrition
3 F 56 99 1.60 4 Hereditary
4 M 56 81.5 1.62 6 Hereditary
5 M 62 73 1.57 15 Nutrition
6 F 50 70 1.59 8 Hereditary
7 M 58 102 1.61 6 Nutrition
8 M 57 87.7 1.58 8 Nutrition
9 F 61 90 1.65 3 Hereditary
10 M 50 83.2 1.63 5 Hereditary
11 F 35 72 1.61 0 Healthy
12 M 38 82 1.65 0 Healthy
13 M 45 95 1.67 0 Healthy
14 M 40 75 1.59 0 Healthy
15 F 29 59 1.55 0 Healthy
TaBLE 3: Dataset attributes with gait biomarkers, fragment.
rodDer-X rodDer-Y rodDer-Z rodlzq-X rodlzq-Y [...] cad-Z Case
1.87011821 2.08441092 2.06435782 2.3633454 e S S Control
2.16604624 2.14561741 2.07332365 2.3833754 e . S Control
2.06336545 2.13543299 2.07334487 2.3633567 e .. . Diseased
1.75786965 2.05353455 2.04234677 2.3733436 e S S Diseased

(1) AdaBoostM1 + D14jMlIpClassifier,
(2) AdditiveRegression + DI4jMIpClassifier,
(3) AttributeSelectedClassifier + DI4jMlpClassifier,
(4) Bagging + DI4jMlpClassifier,
(5) ClassificationViaClustering + DI14jMIpClassifier,
(6) ClassificationViaRegression + DI4jMIpClassifier,
(7) CostSensitiveClasifier + D14jMlIpClassifier,
(8) CVParameterelection + D14jMlpClassifier,
(9) FilteredClassifier + DI4jMlpClassifier,
(10) LogitBoost + DI4jMlIpClassifier,
(11) MetaCost + DI4jMlpClassifier,
(12) MultiClassClassifier + DI4jMlpClassifier,
(13) MultiClassClassifierUpdateable + DI4jMlpClassifier,
(14) MultiScheme + DI4jMlpClassifier,
(15) MultiSearch + D14jMlpClassifier,
(16) OneClassClassifier + DI4jMlpClassifier,
(17) OrdinalClassClassifier + DI4jMlpClassifier,
(18) RandomCommittee + D14jMIpClassifier,
(19) RandomizableFilteredClassifier + DI4jMlpClassifier,
(20) RandomSubSpace + D14jMIpClassifier,
(21) Stacking + D14jMlpClassifier,
(22) ThresholdSelector + DI4jMIpClassifier,
(23) WeightedInstancesHandlerWrapper + DI4jMIp
Classifier.

The combinations 2, 5,7, 11, 13, 14, and 16 were discarded

since the required nature of parameters could not be

implemented. The tests with the other combinations revealed
the best result with the representative sample test set and with
the combination of FilteredClassifier+DI4jMIpClassifier clas-
sifiers, which are described below.

(i) FilteredClassifier. This refers to a class in order to
execute an arbitrary base classifier (in this case the
Dl4jMIpClassifier) in data that have been passed
through an arbitrary filter (in this case Discretize
[33, 34], which discretizes a range of numeric attri-
butes in the dataset in nominal attributes). Like the
classifier, the filter structure is based exclusively on
the training data, and the test instances are processed
by the filter without changing its structure. If unequal
instance weights or attribute weights are present and
the filter or classifier cannot deal with them, the
instances and/or attributes are resampled with re-
placement, based on the weights, before passing them
to the filter or classifier (as appropriate).

(ii) DI4jMIpClassifier. This is based on the multilayer
perceptron (Algorithm 1) and is an artificial neural
network made of multiple layers. The neurons of
the hidden layer use the weighted sum of the in-
puts with the synaptic weights w;; as a rule of
propagation, and on that weighted sum, a transfer
function of sigmoid type or hyperbolic tangent is
applied, which is bounded in response. The
learning that is usually used in this type of net-
works is called backpropagation of the error. Both
are increasing functions with two saturation levels:
the maximum, which provides output 1, and the
minimum, which provides output 0, for the
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FIGURE 4: Correlation of Cartesian coordinates of each sensor: (a) gravity center; (b) right knee; (c) left knee; (d) right ankle; (e) left ankle.

sigmoidal function, and output -1, for the hy-
perbolic tangent.

3.6. Generation of Random Weights. A synaptic weight
called {w; ;} is assigned for each input value. Although the
values are assigned randomly, several methods exist in the
literature to generate these values. One of them is Xavier’s
method [35], which was implemented in this study, as
follows: Given a set of inputs {x;, x,, . . ., x,,}, the weights of
a distribution with zero mean and specific variance are

initialized: Var (W) = (2/(ny, + n,y,)), where Var (W) is the
variance of the initialized weights with a normal distri-
bution (usually Gaussian or uniform) for the neuron in
question and n;, and n,,, are the input and output number
of neurons of a layer.

3.7. Base Function. The base function f =) w;x; is ap-
plied to the input values, with their assigned weights. In
related work, the base function is also called the summation
of initial values, the aggregation function, and the network
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Input: {x,,x,,...,x,}
(1) begin

(6) end
Output: result y.

(2)  Synaptic weights are initialized {w; ;} to {x;,x,,..
(3)  The base function f is applied, obtaining u; (see Section 3.7).

(4)  The Softmax activation function is implemented on u; (see Section 3.8).
(5) It is generalized by mean output function (see Section 3.9).

.»X,} with Xavier’s method (see Section 3.6).

ALGorITHM 1: Multilayer perceptron.

function, among others, and, in general, can have different
expressions.

3.8. Activation Function. Given the sum of initial values, the
activation function is obtained, which is chosen according to
the task to be performed by the neuron. For the multilayer
perceptron, the most used activation functions are the
sigmoidal function and the hyperbolic tangent function.

These functions have as image a continuous interval of
values within the intervals [1,1] and [0,1], and they are
given by the following equations: f oy = (1/(1+e7))
and fyy, () = (1 —e™)/ (1 +e™)). The activation function
used in this research is discussed in Section 4.2.2.

3.9. Output Function. The output is given by the
Y = F (X, W) function, where Y is the vector formed by the
outputs of network (y,,z,, ¥3, ..., ¥,), X is the input vector
to network, W is the set of all the network parameters, i.e.,
weights and thresholds, and F is a nonlinear function.

3.10. Validation Metrics. To validate the results, the fol-
lowing techniques were used:

(i) Through the confusion matrix, each column rep-
resents the predictions of each class, while each row
represents the instances in the real class. One of the
benefits of the confusion matrix is that it allows to
see if the model is confusing two classes, that is,
recognizing one {class A} as other {class B}.

(ii) Through the ROC space (receiver operating char-
acteristic), which is elaborated from the sensitivit y
and speci ficit y values.

(iii) Validation of the medical specialist.

4. Results and Discussion

4.1. Combination of Assembled Algorithms and Deep Learning.
The raw data from the dataset described in Section 3.2 were
used for Creation of the database, and the binary tests were
conducted {diseased, control}, as shown in Table 5. To do
this, each assembled classifier of the WEKA family of
metaclassifiers was combined with the deep learning algo-
rithm, multilayer perceptron with backward propagation
DI4jMLPClassifier. The best result of the combination of

FilteredClassifier + DI4jMIpClassifier was obtained with the
criterion of the representative sample.

The tests were performed using a Lenovo laptop G470,
Intel (R) Celeron (R) CPU B800 @ 1.50 Hz, RAM 2.00 GB,
64 bit Operating System, Windows 7 Professional, with the
WEKA (available from http://www.weka.org) tool de-
veloped by Witten and Frank [36].

4.2. Parameters Configuration of the Deep Learning Algorithm

4.2.1. Iterations. Table 5 shows that the best accuracy was
85.0829% with 10 iterations (epochs) for training, which is
the preset configurational parameter in WEKA. The results
were confirmed or improved by conducting the tests by
increasing the iteration number to 20, 30, 40, 50, 60, 70, 80,
90, 100, 200, 300, 400, 500, 600, 700, 800, 900, and 1000
(Figure 5). Figure 5 does not show an elbow graph because
the graph does not represent the search for the optimal
number of elements for analysis; rather, it shows the
maximum number of iterations of the algorithm needed to
obtain the best performance.

The trend shows that, with 40 iterations, the percentage
increases to 86.46% and does not show an increase in ac-
curacy with higher iterations; thus, 40 iterations were
considered as the ideal value.

4.2.2. Activation Functions. The preset activation function
in the WEKA tool is Softmax, which was used to obtain the
maximum classification percentage, as mentioned before in
section above. It was also tested with Cube, for 40 iterations
and the percentage of classified instances decreased (see
Table 6).

4.3. Validation Metrics. The results were validated using the
following techniques.

4.3.1. Confusion Matrix. Accuracy was calculated from the
equation ((TP + TN)/total) (100), where TP are the true
positives, TN are the true negatives, and total is the number
of instances used for the test, that is, ((228 + 85)/362)
(100) = 86.46 (see values in Table 7).

Of the total number of test instances for the {diseased}
class, 228 were classified correctly and 25 were confused with
healthy controls. By contrast, 85 instances were correctly
classified out of the control class and 24 were confused.
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TaBLE 5: Results of combining machine learning algorithms.

11

Metaclassifier Deep learning 10-fold cross-validation 2/3-1/3 Representative sample
DI4jMlpClassifier 75.7 79.05 80.1105
AdaBoostM1 DI4jMlpClassifier 76.6333 75.5 80.3867
AttributeSelectedClassifier DI4jMlpClassifier 77.3833 77.4 78.1768
Bagging DI4jMlpClassifier 79.4167 79.65 81.4917
ClassificationViaRegression DI4jMlpClassifier 66.6667 67.5 69.8895
CVParameterelection DI4jMlpClassifier 75.7 79.05 80.1105
FilteredClassifier DI4jMlipClassifier 81.7333 84.5 85.0829
LogitBoost DI4jMlpClassifier 66.6667 67.5 69.8895
MultiClassClassifier DI4jMlpClassifier 75.7 79.05 80.1105
MultiSearch DI4jMlpClassifier 75.7 79.05 80.1105
OrdinalClassClassifier DI4jMlpClassifier 75.7 79.05 80.1105
RandomCommittee DI4jMlpClassifier 79.1833 81.3 80.1105
RandomizableFilteredClassifier DI4jMlpClassifier 73.9 76.75 79.8343
RandomSubSpace Dl4jMlpClassifier 79.7333 80.7 78.7293
Stacking DI4jMlpClassifier 36.6667 67.5 69.8895
ThresholdSelector Dl4jMlpClassifier 72.9167 76.65 47.7901
WeightedInstancesHandlerWrapper DI4jMlpClassifier 75.7 79.05 80.1105

88

74

72 T T T T T T T T

85.91

1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19

FIGURE 5: Iterations for training.

4.3.2. ROC Space: Sensitivity and Specificity. The ROC space
was elaborated considering the values of sensitivity and
specificity, which were calculated from the confusion matrix,
as follows: sensitivity = (TP/(TP + FN)) and specificity =
1- (FP/(FP + TN)), where TP were true positives, FN were
false negatives, and FP were false positives. The above
equations gave a specificity of 0.77 and a sensitivity of 0.90.

4.3.3. Expert Opinion. The medical specialist (Dr. Roberto
German Weber Burque Palacios), who validated this re-
search based on his experience, notes that, at least for the
study region, the precision of 86.46% is satisfactory for a first
approach in this type of study concerning gait biomarkers in
patients with DN. This corroborates the Swets affirmation:
“In clinical diagnosis, when the sensitivity and specificity
values represented in the Cartesian plane (or ROC space)

TABLE 6: Activation functions implemented and performance.

Activation functions %
Softmax 86.46
Cube 79.27

exceed 0.8 to the left (y axis), it can be considered appro-
priate” [37].

In this research, patients and healthy individuals have
been categorized with a high percentage of precision by
applying a combination of assembled classifiers and deep
learning to a dataset with gait biomarkers of DN. The expert
suggested a future collection of more gait information of
patients affected by DN, more healthy controls, and pa-
tients with another related disease that affects gait, to
observe the performance of algorithm combination in a
multiclass set.
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TaBLE 7: Confusion matrix for the binary set {diseased, control}.

Diseased Healthy control Classified as

228 25 Diseased

24 85 Healthy control

Another recent study has shown a positive predictive value
of 87% for detection of neuropathy in patients [38]. The
classification is based on pseudomotor dysfunction; however, it
requires a more expensive setup of equipment when compared
with the cost of the sensors used here. One of the objectives of
this study was to provide a low-cost tool for early identification
of possible neuropathy. A limitation of the present study, which
could be improved in future work, involves the details of the
clinical characterization of the patients, such as the presence of
diabetic complications. This information is important since
complications can bias the results.

5. Conclusions and Future Work

The results presented here confirm the assumption that a
combination of metaclassifiers with deep learning can
generate a reliable and acceptable classification percentage of
more than 85% by categorizing the gait biomarkers of af-
fected subjects with DN and healthy controls. The best result
obtained for the present study corresponds to the repre-
sentative sample with 40 iterations. In addition, the con-
vergence of disciplines is confirmed to help in solving
complex problems—in this case, the categorization of DN.

The results were obtained from patients suffering from
DN at different stages. Diagnosis of patients with DN at the
early stages of disease is crucial, and the high sensitivity of
the motion sensors can allow the detection of gait patterns
that are otherwise imperceptible to the specialist.

The following seven efforts are considered worthwhile
for the continuation and improvement of this research: (i)
To corroborate the study with patients from other regions of
Mexico, taking into consideration both DN cases and
healthy controls, in order to build a dataset of greater di-
mensions and containing more information about gait
biomarkers. (ii) To add sensors that record other parameters,
such as heart rate, temperature, or others that provide ad-
ditional relevant attributes and, if possible, that permit
feature selection. (iii) To include information from other
body limbs, such as the arms and neck. (iv) To develop an ad
hoc expert system to support studies of diabetic diseases with
atrophy factors in the patient’s gait and/or to assist the
specialist in predicting DN in persons, given the efficiency
achieved by combining the metaclassifier with the deep
learning algorithm  FilteredClassifier + DI4jMIpClassifier.
This proposed expert system, motivated by the biometric
recognition of Hernandez et al. [39], could be used online
with only basic and standard network protocols, without
requirements for advanced network mechanisms (i.e., from
the perspective of ubiquitous computing for a better ex-
perience for study subjects). (v) To improve the results by
considering the implementation of the use of the method of
Combined selection and optimization of hyperparameters of
classification algorithms [40, 41], to explore the behavior of

this method, and to increase the maximum percentage of
86.46% achieved in the present research. (vi) To extend this
study to other ailments that cause immobility, such as os-
teoarthritis, as many other diseases are associated with
movement disorders. (vii) To expand the database with more
cases in future work.
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