
Citation: Kibble, M.J.; Domingos, M.;

Hoyland, J.A.; Richardson, S.M.

Importance of Matrix Cues on

Intervertebral Disc Development,

Degeneration, and Regeneration. Int.

J. Mol. Sci. 2022, 23, 6915. https://

doi.org/10.3390/ijms23136915

Academic Editor: James Melrose

Received: 26 May 2022

Accepted: 20 June 2022

Published: 21 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Review

Importance of Matrix Cues on Intervertebral Disc Development,
Degeneration, and Regeneration
Matthew J. Kibble 1, Marco Domingos 1,2, Judith A. Hoyland 1 and Stephen M. Richardson 1,*

1 Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology,
Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK;
matthew.kibble@postgrad.manchester.ac.uk (M.J.K.); marco.domingos@manchester.ac.uk (M.D.);
judith.a.hoyland@manchester.ac.uk (J.A.H.)

2 Department of Mechanical Aerospace and Civil Engineering, School of Engineering, Faculty of Science and
Engineering & Henry Royce Institute, University of Manchester, Oxford Road, Manchester M13 9PL, UK

* Correspondence: s.richardson@manchester.ac.uk

Abstract: Back pain is one of the leading causes of disability worldwide and is frequently caused by
degeneration of the intervertebral discs. The discs’ development, homeostasis, and degeneration are
driven by a complex series of biochemical and physical extracellular matrix cues produced by and
transmitted to native cells. Thus, understanding the roles of different cues is essential for designing
effective cellular and regenerative therapies. Omics technologies have helped identify many new
matrix cues; however, comparatively few matrix molecules have thus far been incorporated into
tissue engineered models. These include collagen type I and type II, laminins, glycosaminoglycans,
and their biomimetic analogues. Modern biofabrication techniques, such as 3D bioprinting, are also
enabling the spatial patterning of matrix molecules and growth factors to direct regional effects.
These techniques should now be applied to biochemically, physically, and structurally relevant disc
models incorporating disc and stem cells to investigate the drivers of healthy cell phenotype and
differentiation. Such research will inform the development of efficacious regenerative therapies and
improved clinical outcomes.
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1. Introduction

The extracellular matrix (ECM) is a non-cellular three-dimensional network of
biomolecules and minerals that provides biochemical and physical support to the cells that
produce it. The ECM of different tissues varies enormously but can generally be consid-
ered as a mixture of fibrous components, including collagenous and elastic fibres, plus a
gel-like ground substance, containing proteoglycans, glycoproteins, enzymes, ions, and
other non-fibrous elements. The ECM is able to transmit biochemical and physical cues to
cells, affecting cellular morphology and phenotype. Changes to cellular activity/function
result in linked changes to the ECM, meaning that matrix cues are important drivers of
tissue development, homeostasis, ageing, and disease [1–5].

Matrix cues are received by cells via a range of biochemical and physical mechanisms,
both directly and indirectly. Biochemical cues, for example, are sensed via cell-surface
receptors such as integrins and N-cadherins [6]. Physical cues, such as matrix stiffness, are
transmitted most notably through the intracellular actin cytoskeleton. Stiffness, or Young’s
modulus, is determined by a range of factors including the relative abundance of matrix
proteins, their orientation, the degree of fibre crosslinking, and the mechanical properties
of individual fibres [7]. Structural and topographical cues, including fibre size, texture,
regional alignment, and orientation are additionally important factors that influence cell
morphology, phenotype, and matrix synthesis and degradation. A variety of cues are
also sensed by cells indirectly, through changes in nutrient transport regulation, tissue
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diffusion profile, and variations in hydrostatic pressure or mechanical loading. Such factors
intrinsically link to other microenvironmental cues, including tissue pH, hydration, and
oxygen concentration.

Understanding the impact of these various cues is of vital importance both for under-
standing tissue homeostasis and disease processes, and in regenerative medicine, where
matrix cues may be exploited in cellular therapies to help enhance clinical outcomes. This
review will therefore focus on the importance of changes to the intervertebral disc (IVD)
ECM during development, homeostasis, ageing, and disease and will outline current at-
tempts to integrate biochemical and physical matrix cues into cell-based experimental
systems and regenerative therapies.

2. IVD Physiology, Structure, and Function
2.1. The IVD

The human spine contains 23 IVDs which separate the vertebral bones and whose
primary functions are to absorb biomechanical forces and permit a range of motions in
three dimensions [8]. The IVDs vary in size depending on their position within the spine,
but the largest of the lumbar discs, found in the lower back, are approximately 4 cm
in diameter and 7–10 mm thick. The IVDs retain a similar composition between disc
levels [9], are generally axially symmetrical, and collectively contribute one third of total
spinal height [10]. They are hydrated fibrocartilaginous structures consisting of two main
regions, each contributing approximately 50% of tissue volume: first, a central gelatinous,
proteoglycan-rich nucleus pulposus (NP) and second, an outer fibrous ring-like annulus
fibrosus (AF). Each IVD is enclosed by two semi-rigid cartilaginous endplates (CEPs) that
connect via the bony endplates (BEPs) to the vertebrae. The CEPs are thin (<1 mm) and
difficult to isolate [11], so are frequently excluded from discussions surrounding the IVD;
however, the CEPs are essential for nutrient transport and are believed to play a key role in
maintaining IVD health [12–15]. Overall, the complex organisation of the IVD makes the
organ a viscoelastic, non-linear, anisotropic structure with compressive, tensile, and shear
strength in the axial and radial directions—properties highly suited to the IVDs’ primary
structural function [8,16].

2.1.1. The NP

The central NP is an amorphous gelatinous tissue composed primarily of water (80%
wet weight) interspersed with a loose matrix of collagen type II fibrils and aggregating
proteoglycans, particularly aggrecan. Other collagens (types VI, IX, and XI), proteoglycans
(biglycan, versican, decorin, lumican, fibromodulin, and perlecan), laminins, fibronectin,
and elastin are also prevalent [17]. The NP’s main function is to distribute compressive
strain. This is principally enabled by the large quantity of proteoglycans relative to col-
lagens (the GAG/hydroxyproline mass ratio is 27:1) [18] and a correspondingly high
level of hydration. The healthy young and adult NP has a Young’s modulus under un-
confined compression of 0.3–5 kPa [8,16,19–24], is viscoelastic, and has been described
as a ‘tethered fluid’ [25,26]. NP tissue is maintained by a sparse population of NP cells
(~4 × 103 cells/mm3), which display a rounded, chondrocyte-like morphology [27,28] and
express a range of phenotypic and functional markers, including Shh, Brachyury, KRT18/19,
CA12, CD24, GLUT1, and stabilized expression of HIF1α protein [29].

2.1.2. The AF

The surrounding AF tissue, in contrast, is a highly organised structure comprising
25–30 discrete concentric rings, called lamellae, which are composed principally of fibrillar
bundles of collagen type I, collagen type III, and elastin [30]. The AF’s main function is to
distribute tensile and shear forces whilst constraining NP swelling [31]. The thickness of
the lamellae increases with distance away from the NP, ranging between 0.05 mm in the
inner AF (IAF) to 0.5 mm in the outer AF (OAF) [32], whilst lamellae are also organised in
an angle-ply formation, with adjacent rings orientated obliquely at 30–60◦ to the spine. This
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angle alternates between adjacent rings [33,34]. Fibre angle is elevated in the IAF compared
to the OAF [35], and these structural features combined reflect the variations in mechanical
loading experienced across different AF regions. Throughout the tissue, lamellae are
furthermore connected by trans-lamellar cross bridges consisting of proteoglycans, most
significantly aggrecan and versican, plus collagen type VI [36]. The impact these have on
AF integrity and cellular behaviour has not been comprehensively studied (Table 1) [37,38],
although micro-computed tomography (µCT) and other advanced imaging techniques are
increasingly being applied to better understand the AF microstructure [33,39–41]. Overall,
the complex structure of the AF confers it with excellent shear and tensile properties, with
tensile Young’s modulus in the order of ~100 kPa.

Table 1. Composition and biological function of key matrix components within healthy adult
IVDs [8,28,42–47].

Tissue Matrix Component Relative Composition
(Dry Weight) Structural/Biological Effects

NP Collagen (esp. type II) 5–20% Confine hydrating proteoglycans within NP matrix.
Modulation of cellular metabolism and extracellular signalling.

Proteoglycans (esp.
aggrecan, versican,

biglycan)
35–65%

Generate swelling pressure; influence expression of NP
cytoskeletal elements and matrix anabolism/catabolism during

compression, particularly collagen fibrillogenesis.
Non-collagenous proteins

(esp. laminin) 15–60% Play a key role in matrix organisation through interaction
with integrins.

AF Collagen (esp. type I) 50–70% Fibre orientation and composition ratio influences
biomechanics and matrix production within IAF/OAF.

Proteoglycans (esp.
aggrecan, versican,

decorin)
10–20%

Generate swelling pressure; influence expression of AF
cytoskeletal elements and matrix anabolism/catabolism during

tension and shear; regulate matrix assembly and repair
following damage.

Non-collagenous proteins
(esp. elastin) 10–40% Support development of elastic matrix and enable collagen fibre

recovery after deformation.

The AF is maintained and populated by AF cells (~9 × 103 cells/mm3), which display
an elongated fibroblast-like morphology and express the phenotypic markers COL1A2,
COL5A1, COL12A1, CD146, SFRP2, LAM1, THY1, and MKX [48,49]. The consensus re-
garding healthy adult AF cell phenotype remains fragile at present, although a recent study
identified 1161 genes showing higher expression in AF than in NP cells [50]. Notably,
there is no clear interface between NP and AF tissues; however, there is a discernible
transition between IAF and OAF tissue types. Compared to OAF tissue, the IAF is richer
in aggrecan, whilst collagen type I and type II fibrils are present in more equal quanti-
ties [34,51]. IAF tissue is also comparatively enriched in COL3A1, COL5A1, COL11A2, and
proteins relating to matrix synthesis (PCOLCE) and remodelling (MXRA5), as well as those
relating to WNT and BMP inhibition [9]. In contrast, the OAF is comparatively enriched in
COL6A1/2/3, COL12A1, COL14A1, basement membrane and anchoring proteins, plus
ligamentous, tendinous, and cartilaginous components, including tenomodulin and throm-
bospondins [9]. The presence of these particular ECM components likely reflects the OAF’s
proximity and integration with the CEPs, BEPs, and ligamentous structures around the
spine [14,15].

2.1.3. The CEPs

The CEPs are semi-rigid layers of hyaline cartilage, approximately 0.6 mm in thickness
that perform a range of functions. They have a 60% water content and an ECM rich
in aggrecan and collagen type II at a ratio of 2:1 [52]. They therefore deform during
mechanical loading, dissipating stress across the IVD [8], although their biochemical
and physical properties are regionally dependent [53]. The CEPs also reduce the rate of
water expulsion from the NP during compression, making them important regulators of
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diffusion; nutrients, oxygen, metabolic by-products, and other small molecules are known
to diffuse through the CEPs bidirectionally [54]. The CEPs are penetrated by a thin capillary
network [55] and the diffusion profile of the CEPs during mechanical loading, age-related
calcification, and IVD degeneration are active areas of study, both in basic research and
in tissue engineering [14,27,54,56–60], because of the important role the CEPs play in IVD
nutritional balance. The CEPs are populated by chondrocytes (1.5 × 104 cells/mm3) [27,28]
and whilst knowledge concerning phenotype is limited, COL10 has been identified as a
potential CEP cell marker in adult IVDs [61]. CEP cells have also been shown to express
high levels of the NP markers Brachyury and KRT19, plus the AF cell marker MKX [62].
Given the tissue’s similarities with both NP and AF tissues, the CEPs and role of CEP-
related matrix cues deserve greater inclusion in future IVD discussions and regenerative
approaches; CEP matrix cues and other instructive factors are almost certainly linked to NP
and AF cell behaviour and phenotype, plus overall IVD development, homeostasis, ageing,
and degeneration.

3. Changes to the ECM during IVD Development and Degeneration
3.1. IVD Development and Maturation

The NP develops from the precursor foetal notochord, a soft rod-like structure com-
posed of clusters of vacuolated notochordal cells and an ECM rich in collagens (types II,
VIII, XI, XV, and XXVII), glycoproteins (laminins, fibronectin, and fibrillins), and chon-
droitin sulphate (CS)-rich proteoglycans, such as aggrecan. Many of these have been found
to vary regionally, indicating their diverse functional roles [63]. The notochord supports
musculoskeletal development and provides a series of dynamic biochemical and physical
matrix cues crucial for directing IVD development [64–67]. Over time, identifiable noto-
chordal cells are lost from the NP, disappearing almost entirely by adolescence and skeletal
maturity. The mechanisms driving the loss of notochordal cells in humans remain unclear
and whether the notochordal cells differentiate into, or are replaced by, NP cells continues
to be a source of major contention. Recent progress in identifying phenotypic markers for
notochordal [68] and NP [29] cells has revealed that NP cells are derived directly from the
notochordal cell population [69]. However, subpopulations of NP [70,71] and AF [72,73]
cells with potentially differing ontogenies have been identified in adult IVDs, including
those of non-notochordal origin. It is therefore speculated that a small notochordal cell
population persists into adulthood, producing ECM that encourages the development of a
healthy NP cell phenotype and guards against the onset of early IVD degeneration [74–77].

At all stages of NP development, cell–matrix interactions are important; however,
notochordal ECM is especially rich in laminin isoforms. Laminins generally act as structural
proteins in both basement membrane and the notochordal sheath [66,78], but are also known
to encourage NP cell clustering behaviour in developing NP tissue [7]. Notochordal and
young NP cells strongly express specific laminin isoforms (LM-511, LM-521, and LM-332)
and receptors (integrins α6, β1, β4, and CD239) [78–80], whilst laminin–cell interactions are
believed to encourage cell–cell interaction, healthy cell morphology, and the proteoglycan
production required for notochordal and IVD development [78]. Developmental changes
within the notochord and early NP have additionally been associated with the upregulation
of molecular functions linked to laminin and BMP receptor binding, strengthening the view
that laminins are particularly important biochemical matrix cues relevant to developmental
research and regenerative therapies.

Notochordal ECM has a lower Young’s modulus (<1 kPa) than adult NP, another
factor known to encourage notochordal cell clustering behaviour and NP tissue develop-
ment [7,66,80,81]. From the third to tenth weeks of embryonic development, the notochord
stiffens and eventually segments, influenced by a variety of biomolecules including the
intracellular transcription factors Brachyury, SOX5/6, and PAX1, plus secreted morphogens
and signalling molecules BMP 2/7 [82], Shh, and Noggin [83]. The 23 NP regions even-
tually result from this variety of interconnected cues and further research is required to
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understand the full relevance of the spatial and temporal changes inherent to such cues as
they drive development.

In contrast, the adult AF and CEP regions are of mesenchymal origin, developing
from sclerotomal tissue surrounding the foetal notochord. From around the fifth week
post-conception, this sclerotomal tissue condenses and expands, encompassing the noto-
chord, whereupon elastin, fibrillin, and perlecan influence the formation of collagenous
attachments between nascent AF lamellae and the cartilage and vertebral bodies [83,84].
Knowledge of the impact of cell–cell and cell–matrix interactions on AF development lags
significantly behind that of NP and the notochord; however, it is suspected that the organisa-
tion of the AF is specified by physical cues present during early development. For example,
the number of lamellae is fixed during early foetal development, with fibres subsequently
thickening and increasing in volume according to the physical and geometrical stresses
induced by the stiffening notochord and surrounding ECM [85]. It is furthermore proposed
that early fibre organisation informs the development of intracellular actin stress fibres
within developing AF cells [86], which in turn may guide the production of aligned ECM
and help redistribute mechanical loading as the IVD develops. Intriguingly, the orientation
and integration of AF fibres into the BEPs, CEPs, and surrounding tissues appears to be
driven by physical constraints caused by the emergence of the endplates and vertebral
bodies [34,85,87], implying that physical matrix cues are central to AF development.

3.2. IVD Degeneration

Degeneration is a broad term that encompasses the myriad changes taking place
within the IVD, which ultimately result in a loss of structural integrity, pain, and an overall
reduction in quality of life. Many of the changes that occur in the IVD due to age and
degeneration are indistinguishable from one another, and as a result, the root causes of
degeneration remain only partially understood. It is widely accepted, however, that a
combination of mechanical loading, genetic factors, and reduced cellular activity are all
responsible for the changes in matrix production that lead to the loss of tissue homeostasis
and increased matrix degradation typically observed with degeneration [75,88–95].

The healthy IVD is avascular, with the possible exception of the extreme OAF, and so
cells must maintain tissue health by balancing matrix anabolism and catabolism within
each disc region. A variety of anabolic and anti-catabolic factors are therefore important
for NP and AF health, including those from the TGFβ superfamily, matrix metallopro-
teinases (MMPs), aggrecanases/a disintegrin metalloproteinase with thrombospondin mo-
tifs (ADAMTS), and tissue inhibitors of metalloproteinases (TIMPs), along with a number of
genes relating to structural proteins correlated with IVD degeneration. Damage-associated
molecular patterns (DAMPs), including hyaluronic acid and fibronectin fragments, are also
believed to be primary contributing factors to the inflammation and pain experienced by
most sufferers of IVD degeneration [96,97].

Degeneration typically begins within the NP region, where an upregulation of inflam-
matory cytokine production leads to the downregulation of matrix synthesis, especially
aggrecan and collagen type II. This shift coincides with an increase in matrix degradation
via upregulation of matrix degrading enzymes (MMPs/ADAMTS), which results in pro-
teoglycan fragmentation [98] and a corresponding loss in the ability of the tissue to retain
water [99,100]. The linked loss in hydrostatic pressure leads to an overall reduction in
disc height, which impairs the IVD’s overall mechanical integrity and encourages further
degeneration, the start of a vicious cycle [101]. The NP also experiences a shift in the
production of collagens, from predominantly collagen type II to the more fibrous type I,
resulting in increased ECM stiffness, a key driver of NP degeneration [102,103] (Figure 1).



Int. J. Mol. Sci. 2022, 23, 6915 6 of 27

Int. J. Mol. Sci. 2022, 23, 6915 6 of 26 
 

 

tissue to retain water [99,100]. The linked loss in hydrostatic pressure leads to an overall 
reduction in disc height, which impairs the IVD’s overall mechanical integrity and 
encourages further degeneration, the start of a vicious cycle [101]. The NP also experiences 
a shift in the production of collagens, from predominantly collagen type II to the more 
fibrous type I, resulting in increased ECM stiffness, a key driver of NP degeneration 
[102,103] (Figure 1). 

 
Figure 1. Comparison of healthy and degenerate IVD ECM. Created with Biorender.com. 

There is a growing body of work documenting the negative impact of increased 
stiffness on both NP and notochordal cell phenotype [7,66,104,105]. Interestingly, 
degeneration of the NP coincides with the loss of identifiable notochordal cells, a 
phenomenon observed spontaneously in many species, including humans and 
chondrodystrophic dogs, but not in pigs, rabbits, or non-chondrodystrophic dogs. Species 
which retain their notochordal populations do not generally suffer from significant IVD 
degeneration [103], reinforcing the view that notochordal cells are a promising target for 
regenerative therapies. Work is ongoing to determine the roles of master notochordal cell 
regulators and to identify how best to use these for the detection of early degeneration 
and to retard disease progression [105–109] using novel regenerative therapies. 

Overall, such observations suggest physical matrix cues are important contributors 
to the initiation or progression of degeneration. Such a view is reinforced by changes 
occurring in the AF during degeneration, where the impacts appear mainly mechanical. 
For example, additional mechanical stress due to NP degeneration can lead to AF 
microfissuring and a widening of the interlamellar spaces, meaning lamellae lose their 
organisation and orientation due to load redistribution [102]. Stiffening of AF tissue is 
another contributing factor to this structural deterioration; however, it is the loss of 
aggrecan which particularly impacts AF health, since aggrecan is anti-angiogenic and its 
absence leads to neovascularisation [110]. AF vascularisation results in increased oxygen 
concentration and disrupted signalling pathways, and can be responsible for driving AF 

Figure 1. Comparison of healthy and degenerate IVD ECM. Created with Biorender.com.

There is a growing body of work documenting the negative impact of increased stiff-
ness on both NP and notochordal cell phenotype [7,66,104,105]. Interestingly, degeneration
of the NP coincides with the loss of identifiable notochordal cells, a phenomenon observed
spontaneously in many species, including humans and chondrodystrophic dogs, but not in
pigs, rabbits, or non-chondrodystrophic dogs. Species which retain their notochordal popu-
lations do not generally suffer from significant IVD degeneration [103], reinforcing the view
that notochordal cells are a promising target for regenerative therapies. Work is ongoing to
determine the roles of master notochordal cell regulators and to identify how best to use
these for the detection of early degeneration and to retard disease progression [105–109]
using novel regenerative therapies.

Overall, such observations suggest physical matrix cues are important contributors
to the initiation or progression of degeneration. Such a view is reinforced by changes
occurring in the AF during degeneration, where the impacts appear mainly mechanical.
For example, additional mechanical stress due to NP degeneration can lead to AF microfis-
suring and a widening of the interlamellar spaces, meaning lamellae lose their organisation
and orientation due to load redistribution [102]. Stiffening of AF tissue is another con-
tributing factor to this structural deterioration; however, it is the loss of aggrecan which
particularly impacts AF health, since aggrecan is anti-angiogenic and its absence leads
to neovascularisation [110]. AF vascularisation results in increased oxygen concentration
and disrupted signalling pathways, and can be responsible for driving AF and NP cell
senescence [111], further impairing tissue homeostasis and overall mechanical integrity. In
the most serious instances of AF degeneration, herniation of the NP through the AF may
even occur, permanently fissuring the already weakened AF structure [112,113].

Degenerative changes also take place in the CEPs and adjacent vertebral structures,
although the significance of many of these remains unclear. Degeneration-associated CEP
calcification is known to be important [13,14,56,60], as a loss of CEP permeability results
in reduced nutrient transport and altered CEP mechanical profile [114], plus knock-on
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effects for NP and AF cells. These include cellular quiescence [115,116], deregulation of
matrix anabolism and catabolism [117], and a reduction in the release of exosomes, recently
discovered to inhibit IVD degeneration and NP cell apoptosis [118,119]. Nerve ingrowth
and neovascularisation through the CEPs into the AF are additional disease pathologies
directly linked to pain [120], highlighting the links between the condition of the CEPs and
other tissue regions, as well as the importance of understanding the range of matrix cues
spanning all three regions as these change over time.

Transcriptomic and proteomic analyses have begun to reveal many of the IVD-wide
and more subtle spatiotemporal changes in genes and proteins that may result in down-
stream regulation of matrix anabolism and catabolism or influence cell phenotype and
matrix production, both in non-humans [73,121–127] and in humans (Table 2). Collectively,
they have additionally identified age-related compositional differences and regionally
specific variations in matrix proteins [128], indicating that some ageing and degenerative
mechanisms act only locally within NP and AF tissues, as opposed to at the organ-wide
level. Such novel approaches open up vast new avenues of study and will transform
our understanding of the importance of different transcription factors influencing matrix
cues during degeneration. In turn, this will allow the accelerated development of degen-
erative models and novel therapies incorporating a variety of spatiotemporally defined
matrix cues.

Table 2. Important matrix genes and proteins identified during IVD omics studies in humans.

Source Method Matrix-Related Genes/Proteins Investigated References

Transcriptomic

Foetal/notochord Microarray analysis
Identified CD24, IGF1 and eight other notochord-specific
markers, plus molecules involved in inhibiting vascularisation
(WISP2, Noggin, and EDN2) and inflammation (IL1-RN).

[105]

Foetal/notochord scRNA-seq Identified eight drivers of notochordal differentiation: PAX6,
GDF3, FOXD3, TDGF1, SOX5, LMX1A, LEFTY1, and LEFTY2. [109]

Young/healthy NP Microarray analysis
Identified marker genes including PAX1, FOXF1, HBB, CA12,
and OVOS2 for NP; GDF10, CYTL1, IBSP, and FBLN1 for
articular chondrocytes.

[129]

Young/healthy NP
and AF scRNA-seq

Higher expression of COL2A1, COL9A3, and COL11A1 in NP.
Signature transcription factor for NP (KDM4E) and AF
(FOXM1) identified.

[130]

Young/healthy NP, AF,
and CEP scRNA-seq Identified progenitor IVD cell markers plus PDGF and TGFβ

cascades important for regulating NP microenvironment. [131]

Young/healthy and
degenerate NP, IAF,

and OAF
Microarray analysis

Overall, showed relative enrichment of COL5A1, SERPINA5,
and MXRA5 in IAF; LAMB2, THBS1, and CTSD in OAF.
Identified that clearest transition in proteomic signature is
between ECM of OAF and IAF, not between IAF and NP.

[9]

Degenerate NP RNA-seq

Used integrin- and syndecan-binding laminin-mimetic
peptides to upregulate 148 genes, including NP markers
(Noggin and ITGA6), and downregulate 277 genes, including
known fibroblastic markers linked to matrix catabolism
(CTGF).

[132]

Degenerate NP and AF RNA-seq

High expression of genes encoding proteoglycan-rich ECM and
TGF superfamily signalling pathways in NP (GPC6, INHBA,
INHA); fibrous, vascular matrix and WNT/NOTCH signalling
in AF (COL1/4/6, VEGFC, and JAG1/2).

[133]

Immortalised NP and AF
cell lines Microarray analysis

Identified membrane-associated genes for cellular subtypes,
including CLDN11, TMEFF2, EFNA1 and NETO2 for NP;
COLEC12, LPAR1, and CHIC1 for AF. Indicated that regulation
of WNT signalling separates AF from NP cells.

[50]
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Table 2. Cont.

Source Method Matrix-Related Genes/Proteins Investigated References

Proteomic

Foetal NP LC-MS/MS
Identified 1316 proteins, 1096 of them unique, and 10 significant
protein clusters including collagens, SLRPs, and matrilins.
Highly expressed COL14A1 identified for the first time.

[134]

Foetal/notochord and
degenerate NP LC-MS/MS Identified 12 degeneration-linked proteins including

interleukin-11, LTA, ECM1, and matrilin-3. [135]

Foetal/notochord,
young/healthy, and

degenerate NP
ESI–LC–MS/MS

Identified ten ECM regulators and ECM affiliated proteins of
interest, including four (P4HA1, PLOD1/2, and SERPINH1)
involved in collagen biosynthesis.

[136]

Young/healthy and
degenerate AF

MS and silver-stained 2-D
electrophoresis gels

Degeneration led to decreases in three proteins and increases in
seven, suggesting possible degenerative biomarkers and loss of
cell adhesion ability.

[137]

Young/healthy NP
and AF

LC-MS/MS and
iTRAQ analysis

High level of lubricin and low levels of biglycan compared to
seven other cartilaginous tissue types. [138]

Young/healthy and
degenerate NP and AF

LC-MS/MS and
iTRAQ analysis

Increased levels of CILP and CILP2 in NP; HTRA, COMP, and
CILP in AF with degeneration. [139]

Young/healthy IVDs Peptide location fingering

Indicated age-related structural differences in over one
hundred ECM-associated proteins including COMP, CILP,
CILP2, and LRP1. Regionally specific variations in collagen
type II and type V, and aggrecan across ages.

[128]

Young/healthy and
degenerate IVDs LC-MS/MS

Observed reduction in structural and other matrix proteins
including COL2A1, KRT, BGN, VCAN, and DCN with
degeneration.

[140]

Degenerate NP and AF FTMS/ITMSMS and
iTRAQ analysis

Fifty-four and seventy-three proteins differentially regulated in
NP and AF, including integrin-mediated cell adhesion
pathways.

[141]

Bone marrow-derived
stem cells (BMSCs)

exposed to
young/healthy and

degenerate IVD
environment

LC-MS/MS

Altered regulation of 224 and 223 proteins following exposure
to healthy or degenerate IVD microenvironments compared to
baseline secretome. Following trauma, MMP and IL production
observed; however, CTGF, LTBP2, and TIMP1 were also
recorded, indicating attempted inhibition of matrix degradation
and inducement of NP cell growth and matrix production.

[142]

Metabolomic

DegeneraH HR MAS
NMR te NP and AF

1H HR MAS NMR
spectroscopy

Correlation between degree of degeneration and metabolites
including glycine and hydroxyproline, associated with
significant collagen breakdown. Reduced abundance of CS
observed in highly degenerate specimens.

[143]

4. Incorporation of Matrix Cues into Experimental Models Using Biomaterials
4.1. The Need for Regenerative Therapies

Back pain is one of the leading causes of disability worldwide. In the UK alone, it has
an estimated socio-economic cost of £12 billion [144], whilst in the USA the total impact may
be as high as $100 billion [145]. It is predicted that 85% of individuals from Western societies
will experience back pain at some point in their lives [146], and an estimated 632 million
people are suffering from the condition at any one time [147]. However, treatments focus
principally on pain management and non-invasive interventions such as physiotherapy.
Intradiscal injections and the removal of severely degenerate discs are also common [148],
whilst grafting and novel prosthetic implants are increasingly yielding superior clinical
outcomes [149]. However, such innovations, whilst welcome, ultimately fail to address IVD
degeneration and are reported in many instances to accelerate the breakdown of adjacent
IVDs post-treatment [150–153]. The long-term prognosis for surgical procedures is thus
unsatisfactory [154,155]. Efforts to physically repair degenerate IVDs, particularly through
the use of AF sealants and fibrous composites, are progressing [156–158], but it is novel
biological approaches that hold the most promise, including platelet-rich plasma (PRP)
therapy [159–163], gene therapy, and cell-based therapies. Gene therapy, a broad class of
treatments involving the genetic modification of cells for therapeutic effect, is proposed as
the key to long-term inhibition of IVD degeneration [164,165]. Recent advances involving
gene silencing via RNAi, gene editing using CRISPR, and the delivery of non-viral vectors
to cells have hinted at the feasibility of targeting the inflammatory receptors of degenerate
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IVD cells to inhibit degeneration by limiting matrix catabolism [166]. However, the field
is still in its early phases, and many basic questions remain regarding clinical efficacy,
cost-effectiveness, and long-term ethical implications.

4.2. Cell-Based Regenerative Approaches

Cell therapy, the implanting of cells into diseased tissue, offers another exciting
regenerative strategy with real potential for IVD regeneration. Autologous and allogenic
notochordal [167], NP [168], AF [169], chondrocyte [170], and pluripotent/multipotent
stem cells [171–178] have all been trialled in cell-based therapies [17], with experimental
objectives including to limit production of inflammatory cytokines, encourage matrix
anabolism, and repopulate or stimulate native IVD cells [179]. All these cell types appear to
have properties suitable for IVD regeneration. Whilst in vitro evidence is strong and there
is compelling evidence from in vivo studies, current clinical trial data do not yet provide
high quality evidence of efficacy [180], highlighting the need to promote appropriate cell
function or, in the case of stem cells, lineage commitment. Short-acting growth factors
are occasionally employed to stimulate cell function [181], but their high cost and the risk
of off-target effects means that most cell therapies do not use growth factors, and cells
are instead injected in isolation. Cells therefore lack many of the supporting biochemical
and physical cues known to drive healthy phenotypes or discogenic differentiation and
may instead receive abnormal cues linked to degeneration, limiting their regenerative
potential. Cells sourced from or delivered to degenerate tissue show a strong tendency to
de-differentiate or produce degenerative phenotypes, either due to a lack of cell function or
because of cell death in the harsh microenvironment of the degenerate IVD [182–184]. This
highlights the need to identify the most appropriate matrix cues to deliver to cells, in order
to better control and direct their behaviour and health, along with ECM restoration.

If cell-based therapies are to improve, understanding how best to deliver these cues
and minimise the impact of the degenerate IVD microenvironment is of vital importance.
Comparatively little work has focused on how different cell types respond to the matrix
cues presented by the degenerate IVD environment. These cues are substantially different
from those in healthy IVD tissue, which are themselves different from those of the devel-
opmental IVD and foetal notochord, and whether the incorporation of ‘healthy’ matrix
cues can be used to promote a healthy phenotype or drive more appropriate stem cell
differentiation and matrix formation is an open question. There is therefore a real need to
provide the cells used in cell therapies with matrix cues through the use of biomaterials in
experimental models and in clinical regenerative therapies. The designing of systems that
can deliver regionally specific instructive cues to cells is one of the priorities facing IVD
regenerative research moving forward. If achieved, models can be developed that mimic
IVD development, health, and degeneration, allowing the study of the role of specific
matrix cues and the inclusion of cues into regenerative therapies, with the aim of restoring
appropriately functioning ECM and reducing or eliminating pain.

4.3. Development of Biomimetic Systems for the Delivery of Matrix Cues

Research is ongoing to develop biomaterials and systems that can deliver biochemical
and physical cues to cells and yield experimental insights regarding the roles of specific
instructive cues within the IVD. The most notable body of work in this regard is the
development of a library of laminin-mimetic peptide hydrogels for directing the NP cell
phenotype in 3D. At least six integrin- and syndecan-binding peptide sequences have
been developed which successfully drive healthier NP cell phenotypes [132]. The use of
such systems provides the clearest indication yet that matrix cues can be used to directly
modulate cell behaviours [185] and potentially mimic a combination of cues present in
development, health, and degeneration. Peptide-conjugated alginate hydrogels have
similarly been exploited, with cell-adhesive and syndecan-binding domains encouraging
the production of NP-specific phenotypes within alginate cultures, in some instances
regardless of presented cell-adhesive domains [186]. Such systems can in the future be used
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to determine differences in transduction experienced by young/healthy and degenerate
cell types and the importance of matrix cues and receptor interactions [186].

A number of separate biomaterials systems incorporating collagen-based instruc-
tive cues are also in development and have been shown to modulate cell phenotype and
differentiation. For NP, collagen type II crosslinked with genipin has been used to pro-
mote the differentiation of adipose-derived stem cells (ADSCs) into NP-like cells via the
Shh pathway [187], whilst genipin has been employed to stabilise a collagen type II and
chondroitin sulphate gel capable of encouraging healthy NP-like expression in ADSCs
and the partial restoration of NP [188]. A denatured form of collagen, gelatine, was also
combined with hyaluronic acid and methacrylate in a photo-crosslinkable hydrogel to
achieve NP-like differentiation of ADSCs and the reversal of degeneration in vivo [189],
whilst, in one instance, type II collagen was combined with both hyaluronic acid and
chondroitin sulphate in a rabbit degeneration model to encourage disc cell repopulation
and matrix production [190]. For AF, scaffold materials containing collagen type I are
common, increasingly within stiffness-tuneable materials [191–193] and with the addition
of cells and growth factors [194]. An MSC-laden collagen type I gel was recently applied
to reverse AF degeneration, albeit in sheep [195], whilst AF-derived stem cells have been
trialled in a collagen type I-containing decellularised ECM (dECM) [196]. Many relevant
collagen-based systems exist that have not yet been applied to IVD bioengineering; for
example, combined collagen type I and type II blended hydrogels [197] with chondroitin
sulphate [198] for MSC differentiation and articular cartilage repair, hinting at the use of
combinations of matrix molecules simultaneously in NP, AF, and CEP research in future.
This growing body of work is important, as it indicates collagen-based biomaterial culture
systems can be designed to specifically deliver type I and type II-based instructive cues for
the directing of cell phenotype and healthy matrix production, potentially in combination
with glycosaminoglycans (GAGs) and other collagens [199,200].

Aggrecan, hyaluronic acid, and other GAG-based hydrogel systems and their biomimetic
equivalents are needed moving forward. There is significant research in this regard applied
to cartilage engineering [201–210], including systems that can be localised within ECM
tissue through the incorporation of HA-specific binding peptides [201,205,206] and via
steric interactions with collagen type VI and perlecan [211]. Some of these systems have
been applied to the IVD [212], most notably in the case of a cytocompatible large aggre-
can mimic, which has been chemically, structurally, and mechanically characterised and
injected ex vivo into bovine NP tissue [211]. Proteoglycan-like systems principally mimic
or incorporate heparan sulphate [213] and the chondroitin sulphate chains of aggrecan in
order to confer a hydrating function [214,215]. However, they have also been used to aid
differentiation [216] and deliver growth factors to mesenchymal stem cells (MSCs) [217],
plus encourage collagen and GAG production in MSCs for NP regeneration [218]. Collec-
tively, these studies demonstrate new opportunities for macromolecular matrix engineering
that have potential to alter the degenerate IVD microenvironment and augment cellular
therapies with growth factors, tissue engineered scaffolds, and the delivery of instructive
matrix cues [211] (Table 3).

dECM-based alternatives have also advanced in recent years, although the bulk of
research has focused on cartilage and bone tissue engineering applications, not IVD. Tissue-
specific dECM is regarded as a promising alternative to other biomimetic matrix systems as
they may enable a more accurate reflection of the native tissue environment [219,220], de-
livering collagens, proteoglycans, laminins, and other important matrix components [221].
In the case of IVD, dECM biomaterials have been used to provide scaffold materials and
growth factors to AF-derived stem cells [196] and MSCs co-cultured with degenerate NP
cells [222]. dECM biomaterials are increasingly being developed as scaffold coatings, within
hydrogels, and for bioinks in 3D bioprinting [223–228].
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Table 3. Matrix molecules incorporated into biomimetic systems for IVD.

Matrix Cues(s) Study Outcome References

Type I collagen

Injectable collagen gel upregulates aggrecan and collagen type I production
for in vitro AF repair. [192]

Alginate-collagen porous scaffolds supported MSC proliferation and collagen
type I production. [193]

Injectable high-density collagen gel partially repaired AF defect and
remodelled by host fibroblasts into a fibrous cap. [191]

Injectable high-density collagen gel seeded with MSCs resulted in increased
disc height, reduced Pfirrmann grade, and increased NP area. [195]

Injectable TGFβ1-supplemented collagen hydrogel resulted in production of
collagen type I, CD146, MKX, and SM22α. [194]

Type I collagen and HA
Injectable collagen-HA hydrogel enabled growth factor delivery and
supported growth and chondrogenic differentiation potential of MSCs and
nasal chondrocytes.

[229]

Type II collagen

Injectable, crosslinked collagen hydrogel enriched with HA preserved NP
cell morphology. [230]

Collagen microspheres aided pre-differentiation of ADSCs in degenerate
IVD-like conditions. [189]

Collagen scaffold activated the Shh pathway in ADSCs, promoting
NP-like differentiation. [187]

Type II collagen and HA

Microgels influenced ADSCs to express high levels of collagen type II,
aggrecan, and SOX9, and low levels of collagen type I. [231]

Type I or II with HA hydrogels identified the role of SOCS in combating
pro-inflammatory cytokine effects in degenerate NP. [232]

Type II collagen and CS CS incorporation resulted in increased production of NP-like ECM, including
sulphated GAGs. [233]

Type II collagen and HA and CS Cell-seeded scaffolds supported NP cell viability and resulted in maintenance
of disc height. [190]

Laminin Injectable laminin-111 functionalized poly(ethylene glycol) (PEG) hydrogel
resulted in significantly higher cell retention within NP. [234]

Laminin mimic

Laminin-mimetic peptides resulted in cell signalling downstream of integrin
and syndecan binding, promoted cell migration, and modulated NP
behaviour similarly to full-length laminins.

[185]

Integrin- and syndecan-binding peptide-conjugated alginate hydrogel elicited
NP-specific phenotype and re-expression of more juvenile-like phenotype in
NP cells.

[186]

Integrin- and syndecan-binding peptide-conjugated alginate hydrogel used to
identify novel mechanosensitive targets in NP cells, including several G
Protein-Coupled Receptor genes.

[132]

HA

HA-pNIPAM hydrogel induced greater disc-like differentiation of MSCs
compared to pre-differentiation, including collagen type II, SOX9, KR19, and
CD24.

[235]

Eight different HA-PEG hydrogel formulations used to identify key
parameters influencing IVD cell–material interactions. [236]

Treatment with HA-based hydrogel resulted in downregulation of NGF and
BDNF, plus suppression of IL1R1 in an in vitro inflammation model of NP. [237]

HA and PRP hydrogel blended with batroxobin gelling agent resulted in
heightened sulphated GAG production in MSCs and chondrocyte-like
differentiation.

[218]

Assessed the efficacy of HA hydrogel pain alleviation, demonstrating altered
glycosylation plus modulation of inflammatory and regulatory signalling
pathways.

[238]

HA oligosaccharides shown to stimulate MMPs, ADAMTs, and anabolic
matrix repair genes. [239]

Gelatine-HA hydrogel promoted NP-like differentiation of ADSCs. [188]

HA and GAG mimic Used HA-PEG hydrogels to demonstrate the chondro-inductive potential of
pentosan polysulphate, a sulphated semi-synthetic polysaccharide. [240]
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Table 3. Cont.

Matrix Cues(s) Study Outcome References

GAG mimic

Cytocompatible biomimetic aggrecan analogue comprising a polymeric core
conjugated to CS ‘bristles’ was shown to have comparable osmotic pressure to
natural aggrecan and increase intradiscal pressure upon injection.

[212]

Pentosan polysulphate embedded within a gelatine-fibrin scaffold with MSCs
resulted in restored disc height, morphology, and NP proteoglycan content. [241]

Cytocompatible, large biomimetic aggrecan analogue comprising a polymeric
core conjugated to CS was chemically, structurally, and mechanically
characterised. Injection into ex vivo bovine NP showed localisation in the
pericellular matrix.

[211]

Co-polymerised naAMPS and KSPA GAG mimic provided intrinsic swelling
pressure and restoration of stiffness within ex vivo NP. [214]

Elastin
Bioprinted silk fibronin hydrogel combined with elastin shown to support
ADSC culture and enable creation of scaffolds with structural and mechanical
properties similar to AF.

[242]

Matrilin-3
Gelatine microparticles loaded with TGFβ3 and matrilin-3 promoted
chondrogenic differentiation of ADSC spheroids while preventing
hypertrophy and terminal differentiation of cells.

[243]

Decellularised AF ECM Decellularised ECM and chitosan hydrogels increased production of collagen
types I and II, and aggrecan, in AF-derived cells. [196]

The development of biomaterials capable of delivering variations of combined cues
to guide cell behaviour is a research bottleneck, and there are unfortunately no systems
that can yet deliver a comprehensive range of the many physiologically relevant biochem-
ical cues so far identified, including those that are laminin-, collagen-, aggrecan-, and
GAG-based. Nor are there many that combine the use of these matrix molecules with
stiffness-tuneable biomaterials for mechanical cue incorporation. This has been achieved
in a small number of instances for IVD, using in situ crosslinkable peptide delivery sys-
tems [244,245] and laminin-functionalised pegylated hydrogels of varying stiffnesses [185].
Such approaches are generating novel data regarding mechanotransduction, notochord
morphogenesis, intracellular signalling, cell differentiation, and matrix synthesis, which
are of major relevance to IVD regeneration strategies moving forward [81,132].

As the range of biomaterials systems expands, the inclusion of comparatively unex-
plored molecules known to have matrix regulatory functions is an important step. For
example, perlecan is speculated to directly impact gene regulation and matrix stabilisation
within IVD cells [246,247]; however, its role in regulating healthy and degenerate pheno-
types and stem cell differentiation remains unclear [248,249]. The impact of early protein
and proteoglycan deposition on cellular behaviour within hydrogels has also largely been
overlooked, with recent studies showing that the interface between newly produced peri-
cellular matrix and biodegradable/dynamic hyaluronic acid-based hydrogels modulates
MSC differentiation with some correlation to hydrogel crosslinking density [250,251]. This
implies the effect of matrix cues may vary over time, with short-term impact heightened
and long-term impact reduced, although such aspects are not well understood. It may
be that spatial variations are important, with cues normally localised in the pericellular
matrix having a more profound effect than cues from the inter-territorial matrix. The
importance of laminin cues may be a clear example of this since cells interact more closely
with laminins than collagen type II or aggrecan. Experimental systems must be designed
that can determine exactly which biomaterial cues are masked in the short- and long-term
and how these cues can be exploited through spatial and temporal patterning to direct
regional effects.

One of the main inhibitors of progress in this regard is the difficulty of achieving
spatiotemporal control over stiffness and viscoelasticity in existing hydrogel systems,
along with spatiotemporal presentation of biochemical cues. Graphene-based delivery
systems have been used to provide sustained local delivery of growth factors and have
additionally been incorporated within collagen hydrogels for cartilage engineering and
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MSC differentiation [252,253]. Work could focus in the short-term on the development
of small molecule delivery systems such as graphene-based and BMP2/7-, GDF5/6-,
and TGFβ-laden hydrogels [253] to help understand cell modulation and which cues are
masked. In the longer-term, once comprehensive matrix instructive systems exist, work
would be needed to replace growth factors entirely using a combined selection of more
stable matrix cues.

4.4. Spatially Controlled Patterning of Matrix Cues Using Biofabrication Strategies

Advanced manufacturing techniques are increasingly being applied to model complex
tissues and pattern matrix molecules with the aim of achieving spatiotemporal control
over matrix cues, including electrospinning and 3D bioprinting. Electrospinning uses high-
voltage electric fields to project polymer fibre melts and solutions onto charged surfaces at
varying length scales and can produce highly aligned multi-layer fibre scaffolds [254]. The
technique is therefore a popular tool for replicating AF fibre organisation, plus scaffolds for
AF tissue engineering, both acellularly and in combination with AF and stem cells [255–259].
The technology has also been applied to model the AF-CEP interface [260], an intriguing
approach that exploits electrospinning’s capabilities particularly well. Notable attempts
have been made to investigate and maintain the phenotype of AF and stem cells in elec-
trospun multi-lamellated IAF and OAF constructs by varying fibre diameter, orientation,
and other physical cues [261–263], revealing much about the possible structure–function
relationship of AF tissue and its component cells. For instance, AF-derived stem cells
seeded on aligned polyurethane (PU) scaffolds have been shown to become elongated and
better aligned, exhibiting heightened production of collagen type I and aggrecan compared
to cells cultured on non-aligned scaffold [264]. AF-derived stem cells have additionally
been shown to respond to fibre size, with AF-like morphology and phenotype promoted
by the presence of larger fibres [265,266]. Electrospun scaffolds have also helped shed
light on the stiffness- and topographical-dependency of Yes-associated protein (YAP) in
AF-derived stem cells, hinting at electrospinning’s ability to modulate stem cell behaviour
using structural and physical matrix cues [267,268].

It is notable how few attempts there have been to use electrospun systems incorporat-
ing biochemical or physical matrix cues within an IVD context [268]. Electrospun fibres
containing dECM have been shown to be beneficial for the creation of scaffolds for cartilage
tissue engineering; however, such outcomes have yet to be comprehensively demonstrated
for IVD [269]. One of the only clear examples of biochemical cue inclusion using this
method was achieved by blending TGFβ into a polymer scaffold solution before electro-
spinning. Seeded AF cells subsequently produced greater amounts of GAGs and collagens
than when scaffolds lacking TGFβ were used [270]. More of this is needed moving forward,
preferably with core matrix components as opposed to growth factors, although this is
a technical challenge. It must be considered, however, that whilst electrospinning is a
valuable tool, the technology is ultimately inappropriate for designing whole tissue engi-
neered IVD models in a research or clinical setting. The creation of electrospun IVD models
traditionally relies on the manual rolling of the AF and injection of an NP-like hydrogel,
a labour-intensive process which introduces discontinuities between regions [271–273],
whilst the stiffness of electrospun materials has generally been an order of magnitude
higher (~MPa) than native ECM (~kPa). Any mechanical cues transmitted to cells are
therefore not representative of those present in the native environment, even if the models
are structurally useful. Nevertheless, several electrospun constructs have been implanted
into small and large animal models [192,274,275], and electrospinning is likely to remain a
core technique, both for basic IVD research and for the creation of total disc replacement
devices and other tissue-engineered approaches.

An alternative scalable approach used to model NP, AF, and whole IVDs is 3D bio-
printing. Bioprinting is an umbrella term for a powerful set of 21st century techniques
including vat photopolymerisation, material jetting, and extrusion-based bioprinting,
which allow the precise spatial delivery of cells, matrix components, growth factors, and
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biomaterials [276–279]. This establishes bioprinting as an invaluable tool for the creation
of multi-material ex vivo culture systems for basic research. The printing of low-viscosity
materials such as hydrogels, whilst beneficial for cell culture, remains a challenge, and
the shape fidelity of printed constructs is often compromised. To ensure fidelity and to
main high cell viability, strategies such as Freeform Reversible Embedding of Suspended
Hydrogels (FRESH) and Suspended Layer Additive Manufacturing (SLAM) have been
developed to restrict fluid flow and improve printability [280–284]. These technologies
could in theory allow the patterning of matrix cues in specific locations and concentrations
within bioprintable hydrogel systems. IVD cells have been bioprinted to model NP and
AF tissue using shear-thinning hydrogels; however, the development of biochemically and
physically relevant printable biomaterials for IVD is a major bottleneck [285], particularly
when modelling the stiffer AF region. To address this, hydrogels, including gelatine- [286]
and gellan gum-based [287], have been co-printed with PCL scaffolds, increasing the stiff-
ness of the bioprinted constructs. In one instance, CTGF and TGFβ were included [286],
demonstrating that growth factors could be delivered in a spatially controlled manner
and used to induce bone marrow stromal cell differentiation towards NP and AF cell
phenotypes in different disc regions. Several attempts have also been made to bioprint
hydrogel scaffolds that mimic the AF’s lamellar structure and the changing biochemical
and physical properties across the OAF, IAF, and NP interfaces [269,288–293]. It is therefore
possible to foresee the creation of whole IVD models for basic and clinical research, with
IVD constructs being designed with the aid of patient MRI data [294,295].

It seems likely that bioprinting will be applied in combination with other advanced
manufacturing technologies such as melt electrospinning direct writing (MEDW), the
layer-by-layer assembly of melted fibres. This combined approach, sometimes termed
hybrid bioprinting [296], has the potential to deliver matrix-reinforced cell-seeded hydro-
gels with tailored mechanical properties [297,298]. Whilst much of this research is in its
early stages, the design and fabrication of hybrid MEDW-hydrogel systems for cartilage
engineering is of particular relevance to IVD researchers, as there are several examples
of chondrocyte- and ADSC-based systems [299–302] that could serve as inspiration for
IVD models incorporating matrix cues. Since the importance of many matrix cues for IVD
health and discogenic differentiation has been established (Table 1), the application of these
cues within multiphasic biofabricated IVD and stem-cell-based systems seems a logical
next step. The results of these experiments could pave the way for the creation of a series of
developmental, healthy, and degenerate IVD models where the controlled use of relevant
matrix cues leads to the design of regenerative therapies with better clinical outcomes.

5. Conclusions

The developing, healthy, and degenerate IVDs are primarily composed of ECM. Un-
derstanding the influence of biochemical and physical matrix cues on cellular activity and
matrix production is therefore vital for the development of better clinical therapies targeting
back pain. Lately, progress has been made in the design of experimental systems capable of
delivering key matrix cues. The development of laminin- and proteoglycan-like mimics is
a particularly encouraging step, although the development of biomaterials able to deliver
spatially and temporally controlled cues remains a major challenge moving forward. Tissue-
engineered systems, created using electrospinning and 3D bioprinting, are increasingly
being used to create structurally relevant NP, AF, and CEP models incorporating a range of
disc- and stem-cell types, and this enables the investigation of regionally specific matrix
cues in vitro and in vivo within whole IVD systems. In the future, efforts should focus on
the development of bioprintable materials capable of delivering physiologically relevant
biochemical and physical matrix cues in combination with other advanced manufacturing
techniques such as MEDW. If this is achieved, the effect of individual matrix cues can be
better understood and employed in the design of efficacious regenerative therapies.
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