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ABSTRACT 18 

The Arabian Peninsula is considered the initial site of historic human migration out of Africa. 19 

The modern-day indigenous Arabians are believed to be the descendants who remained from 20 

the ancient split of the migrants into Eurasia. Here, we investigated how the population history 21 

and cultural practices such as endogamy have shaped the genetic variation of the Saudi 22 

Arabians. We genotyped 3,352 individuals and identified twelve genetic sub-clusters that 23 

corresponded to the geographical distribution of different tribal regions, differentiated by 24 

distinct components of ancestry based on comparisons to modern and ancient DNA references. 25 

These sub-clusters also showed variation across ranges of the genome covered in runs of 26 

homozygosity, as well as differences in population size changes over time. Using 25,488,981 27 

variants found in whole genome sequencing data (WGS) from 302 individuals, we found that the 28 

Saudi tend to show proportionally more deleterious alleles than neutral alleles when compared 29 
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to Africans/African Americans from gnomAD (e.g. a 13% increase of deleterious alleles 30 

annotated by AlphaMissense between 0.5 - 5% frequency in Saudi, compared to 7% decrease of 31 

the benign alleles; P < 0.001). Saudi sub-clusters with greater inbreeding and lower effective 32 

population sizes showed greater enrichment of deleterious alleles as well. Additionally, we 33 

found that approximately 10% of the variants discovered in our WGS data are not observed in 34 

gnomAD; these variants are also enriched with deleterious annotations. To accelerate studying 35 

the population-enriched deleterious alleles and their health consequences in this population, 36 

we made available the allele frequency estimates of 25,488,981 variants discovered in our 37 

samples. Taken together, our results suggest that Saudi’s population history impacts its pattern 38 

of genetic variation with potential consequences to the population health. It further highlights 39 

the need to sequence diverse and unique populations so to provide a foundation on which to 40 

interpret medical- and pharmaco- genomic findings from these populations.    41 
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INTRODUCTION  42 

Saudi Arabia is the largest country in the Arabian Peninsula (AP), the central hub of the world 43 

that connects Africa, Asia and Europe. The AP is considered one of the initial sites of historic 44 

human migration out of Africa (OOA), with presence of human footprints reported at least since 45 

50 – 60 thousand years ago (kya) and as early as 85 – 120 kya 1–6. The contribution of the 46 

earliest expansion in present-day Arabians or other modern non-Africans has not been fully 47 

explored. However, genetic evidence suggests that all present-day Middle Eastern populations 48 

predominately descend from the same ancestral OOA population, as is the case for the other 49 

non-Africans 6.  50 

The genetic diversity of today’s Arabians is shaped by a complexity of ancestries from historic 51 

and recent splits and admixture events. An early divergence of Arabian ancestors from other 52 

non-Africans is estimated to have happened shortly after the OOA event 3. Among the non-53 

Africans, Arabians carry a higher proportion of a deeply diverged ‘ghost’ ancestry, labeled ‘Basal 54 

Eurasian,’ and lower levels of Neanderthal admixture 7,8. It has been hypothesized that the 55 

Arabians descended from the Basal Eurasians which diverged from other non-Africans before 56 

the major Neanderthal admixture 7–10. Alternatively, the Basal Eurasians diverged from the non-57 

Africans shortly after the OOA and was isolated until experiencing a later admixture in the 58 

Middle East around 25kya, which diluted the Neanderthal ancestry 11. Since the OOA, Arabians 59 

have experienced series of admixtures, and the present-day Arabians have shared ancestries 60 

with various groups including Africans, South Asians, Europeans, Levantines, and Iranians 6,12,13.  61 

Despite the rich history of ancestries and being in the center of the world, for centuries the 62 

genetic pool of the Arab countries and the Greater Middle East (GME) have been greatly 63 

influenced and refined by mating practices. Arab countries have a high rate of endogamous and 64 

consanguineous marriages 14,15, especially in Saudi Arabia with rates as high as 58% 16,17. These 65 

endogamous marriages are meant to preserve family structure and strengthen bonds, as well as 66 

to ensure cultural, religious, financial and social stability 17–19. Many of the consanguineous 67 

marriages are found among close relatives (e.g. 28.4% among first cousins16), but can also 68 
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extend to members of the same or related tribal groups. Endogamy leads to regional genetic 69 

isolation and population substructure. A recent study analyzing the population structure of 70 

Saudi Arabia based on less than a thousand indigenous genotyped samples showed a signature 71 

of tribal stratification within the population 20. Furthermore, because many deleterious 72 

mutations are recessive-acting, consanguineous unions have the potential of increasing the 73 

burden of deleterious alleles in a population as these deleterious recessive alleles are co-74 

inherited in offsprings 14,21. This could increase the prevalence of genetic disorders, some of 75 

which have indeed been observed in Saudi Arabia 22,23. While in the long run these deleterious 76 

recessive alleles are likely exposed to purifying selection due to increased homozygosity 24,25, 77 

previous studies in the GME region have found no evidence of genetic purging of deleterious 78 

alleles due to the long-term practices of endogamy and consanguinity. Instead, intense 79 

inbreeding and/or reproductive compensation have been suggested to counteract the 80 

effectiveness of purifying selection in consanguineous populations 26–29. Moreover, with small 81 

effective population sizes and inbreeding, variants acting additively tend to accumulate at a 82 

much higher rate and negative selection is less effective in removing weakly deleterious alleles 83 

30–33. Overall, small effective population size and intense inbreeding through consanguinity may 84 

result in an abundance of deleterious alleles due to its negative impact on the effectiveness of 85 

negative selection.   86 

In the present study, we genotyped 3,352 individuals with high-density SNP array and whole 87 

genome sequenced (WGS) 302 individuals to investigate how the population history and 88 

cultural practices have shaped the genetic structure of the Saudi population. We investigated 89 

the pattern of admixture in Saudi sub-populations through the lens of both modern and 90 

available ancient DNA samples and inferred the population size trajectories over time. Finally, 91 

we leveraged the 302 whole genome sequenced individuals to further explore the impact of the 92 

population history on the distribution of genetic variation within social structure and potential 93 

consequences to today’s population health. 94 

 95 
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RESULTS  96 

Genetic substructure and admixture patterns of Saudi Arabians 97 

We merged 3,352 genotyped Saudi individuals after quality control (see Methods) with 302 98 

whole genome sequencing (WGS) samples, based on 603,833 shared segregating sites, to 99 

explore the population structure. We performed principal component analysis (PCA) on the 100 

combined set and projected the first 10 principal components (PCs; Figure S1) down to 2 101 

dimensions using Uniform Manifold Approximation and Projection (UMAP). Average Silhouette 102 

Width (ASW) clustering on the UMAP results suggested that twelve genetic sub-clusters within 103 

the Saudi population best fit the data, although visually 6 to 8 sub-clusters may also be sensible 104 

(Methods; Figure 1A). The distribution of individuals by ASW clusters are presented in Figure 105 

S2A. To aid in the geographical interpretation of these sub-populations, we intersected the 106 

clustering results with self-reported or predicted tribal geographic labels from the cohort 107 

(Methods). Due to privacy protection and ethical restrictions, we did not have access to specific 108 

tribal name of each individual but rather the geographic regions of the tribes. We found that the 109 

12 clusters corresponded to geographical structure of the tribes within Saudi Arabia, with each 110 

cluster generally consisting of a majority of its members from a single geographical region 111 

(Central, West, North, South, or East) whether using harmonized tribal labels or self-reported 112 

labels when available, except for clusters 11 and 12 (Table S1, Figure 1A and Figure S2B). Both 113 

clusters 11 and 12 had multiple dominating tribal regions. We note that there were multiple 114 

separate genetic clusters affiliated to the same geographic regions (e.g. clusters 2, 3, and 9 from 115 

Central region; 4, 5, 7, and 10 from the Western region, etc.). This observation is unlikely due to 116 

errors in inferring tribal regional labels, since previous studies using completely self-identified 117 

indigenous tribal information also showed limited inter-tribal marriages within a region 20. 118 

Among the clusters we inferred, cluster5 from the Western region appeared to be most 119 

differentiated from the rest of the cohort, in both UMAP (Figure 1A) and PCA (PCs 6 and 7; 120 

Figure S1).  121 
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For a global comparison, we compared the Saudi clusters to the populations from the Human 122 

Genome Diversity Panel (HGDP) 34. Consistent with previous reports 20,35, the Saudi individuals 123 

clustered between Africans, Central & South Asians and Europeans and were the most distant to 124 

East Asians (Figure 1B). Cluster12 showed the strongest affinity towards the African reference 125 

individuals, followed by cluster3, while cluster11 showed affinity towards Europeans, Africans 126 

and Central & South Asians. The remaining clusters co-localized mainly with the Middle Eastern 127 

reference individuals from the HGDP panel.  128 

Our observation of population structure from PCA is also supported by unsupervised 129 

ADMIXTURE analysis combining Saudi with HGDP populations. For instance, at K = 4, clusters 11 130 

and 12 also exhibited the highest levels of admixture (Figure 1C and Table S2). We labeled 131 

ancestry components by the HGDP population with dominating or highest admixture 132 

proportions (Table S2).  The most dominating ancestry in the Saudi clusters was one largely 133 

shared with the HGDP Middle Eastern populations (Druze, Bedouin, Mozabite, and Palestinian 134 

(Figure 1C, top), which we termed Middle Eastern-like (ME-like; cyan) ancestry, with Bedouin 135 

showing the largest amount of this ancestry among the HGDP Middle Eastern individuals (Table 136 

S2). On the other hand, clusters 12, 11, and 3 had on average less than two-thirds of this ME-137 

like ancestry component and were enriched with African (AFR)- (red) and/or European (EUR)-138 

like (green) ancestries. 139 

 One of the lowest cross validation errors occurred at K = 9 (Figure S3C), which also introduced a 140 

new ancestry component distinguishing the CSA-like ancestry from the EUR-like ancestry (For K 141 

= 5 to 8 (Figure S3A) the ADMIXTURE algorithm were mostly distinguishing ancestries within 142 

Saudi Arabian clusters themselves). At K = 9 (Figure 1C bottom, and Table S3), the relationship 143 

between cluster11 and the Central & South Asians (CSA) that we observed on PCA can also be 144 

observed, where cluster11 carried more (average proportion = 0.223) of such CSA-like ancestry 145 

compared to other clusters (average proportions less than 0.1). We also observed three ME-like 146 

ancestries (Table S3 and Figure 1C, bottom). One of the Middle Eastern-like ancestry (ME-2) 147 

that is dominant in several (> 10% in 10 out of the 12) clusters, particularly in clusters 6, 8, 1, 148 

and 7, is also found in Sardinians and other Italians & Adygei but completely missing in the 149 
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Russians. The other Middle Eastern-like ancestries (ME-1 and ME-3) are found distributed in a 150 

subset of the clusters. In particular, the ME-3 ancestry is found in high proportions in clusters 151 

10, 4, 5, and 2 (average proportions = 0.45 - 0.92), and was also found in HGDP-Bedouin (but 152 

absent from HGDP-Druze, HGDP-Mozabite and HGDP-Palestinian). This ancestry appears to be 153 

enriched in Qataris Bedouins and Saudi Arabians but not other Middle Eastern populations, and 154 

was suggested to reflect an indigenous Arab ancestry 3.  155 

 156 

  157 

 158 
Figure 1. The genetic structure of Saudi Arabians and its relation to global populations. (A) A 159 

two-dimensional UMAP of Saudi Arabians based on the top 10 principal components. Each 160 

individual is colored based on the affiliated tribal region (see (D)). WGS samples did not have 161 

self-reported or harmonized tribal affiliation and are assigned their own color. (B) PCA of Saudi 162 

Arabian clusters and HGDP populations. Saudi Arabians are grouped in a single group. Inset 163 
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shows clusters 1 - 10 colored according to the most prevalent tribal region represented in the 164 

cluster (see Table S1). Because clusters 11-12 has no single dominating tribal region, they were 165 

assigned distinct separate colors. (C) Admixture analysis of Saudi Arabian clusters and HGDP 166 

populations for K = 4 (top) and K = 9 (bottom). ME – Middle Eastern, AFR – African, EA – East 167 

Asian, CSA – Central & South Asian, EUR – European, OC – Oceania, AMR – American. The 168 

names of Saudi clusters and HGDP populations are shown on the bottom X-axis. However, due 169 

to limited space some of the labels for smaller populations from HGDP are omitted. Grouped 170 

regional labels are shown on the top X-axis of plots. We show the admixture results of the Saudi 171 

clusters alone in Figure S3B. (D) A regional map of Saudi Arabia with matching colors to the 172 

regional labels in (A) and (B). 173 

 174 

The evidence for admixture for clusters 12, 11, and 3, together with clusters 8 and 1 were also 175 

corroborated by admixture f3-statistics. Using all possible pairs of HGDP populations as potential 176 

proxies of ancestral sources (possibly through shared ancestry), only these five Saudi sub-177 

clusters showed any significantly negative f3-statistics indicative of admixture (Tables S4 - 8). We 178 

further investigated the degree of shared drift between the Saudi clusters and the HGDP 179 

populations using the outgroup f3-statistics. We used HGDP-Han population as the outgroup 180 

over the typical choices of the San, Mbuti, or Yoruba populations since we expect African being 181 

a plausible admixing source in Saudi and indeed found positive gene flow between the HGDP 182 

African populations and the Saudi clusters (Methods; Figure 1C). We found the pattern of the 183 

outgroup f3-statistics to be similar among Saudi clusters 1 - 10, in contrast to clusters 11 and 12 184 

(Figure S4). Clusters 1 - 10 showed highest shared drift to other Saudi clusters followed by the 185 

Middle Eastern and European populations (Figure S4). On the other hand, cluster12 showed 186 

most shared drift to HGDP-African populations, even more so than it is to other Saudi clusters, 187 

further corroborating the results in Figure 1B and C. In relation to other Middle Eastern 188 

populations from HGDP, clusters 1 - 10 showed greater shared drift to Bedouin while cluster12 189 

was most related to the Mozabite. Given the high African ancestry in cluster12, this relationship 190 

with Mozabite population from North Africa is not surprising, and could have either arose from 191 

shared sub-Saharan ancestry or an Arabic admixture event during the Islamic expansion into 192 

North Africa about 1,200 – 1,400 kya 36, or a combination of both. Interestingly, in relation to 193 

the European populations, all Saudi clusters shared the greatest drift with the Sardinians, and 194 
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the least with the Russians. The relationship to the Sardinians is in concordance with Charati et 195 

al., 37. Sardinians heavily harbor early farmer Neolithic ancestry, which expanded into Europe 196 

from the Near East and Anatolia 38–40. Saudi Arabians are estimated to have split from Sardinians 197 

around 20 kya 6. Their relationship might be reflecting the ancient Neolithic ancestry, a product 198 

of the Arabian migration into Italian islands or a result of continuous and recent admixtures 199 

37,40–42.   200 

 201 

Genetic legacy of ancient ancestry in modern day Saudi Arabians 202 

We expanded our understanding of Saudi genetic history by integrating 302 WGS Saudi 203 

individuals with ancient DNA (aDNA) datasets (1240k AADR v54.1 43 and ancient Bahrain 204 

individuals 12; Figure S5; Methods). Our integrated analysis with aDNA data corroborated many 205 

of our findings above on population structure and admixture history using only modern DNA. 206 

Previous studies have shown that Eastern Arabian Peninsula (AP) populations have higher 207 

ancient Zagros mountains/Caucasus mountains hunter-gatherer (CHG)-related ancestry than 208 

Western AP populations 7,11,44. We observed a similar geographical divide among Saudi 209 

Arabians. Using an Epipaleolithic sample from the Natufian culture (Natufian EpiP) to represent 210 

Levantine ancestries and a sample from the Ganj Dareh Neolithic settlement in western Iran 211 

(Ganj Dareh N) along with other CHG to represent Zagros ancestries, we found that Saudi 212 

clusters mainly from the West and South region of Saudi Arabia (clusters 6, 10, 5, 8, 7, and 4) 213 

showed significant (f4 Z-score < -3) excess shared drift with Levantine ancestries relative to 214 

Zagros ancestries (Figure S6, bottom, and Table S9). We also evaluated the spatiotemporal 215 

distribution of African ancestry amongst the Saudi clusters using the outgroup f3-statistic of 216 

form f3(Han.DG; ancient and present-day African population, Saudi cluster) along with 108 217 

African populations spanning from the present-day to ~15 kya. Temporal analysis across four 218 

time bins ([0,0], (0, 1,000 kya], (1,000 kya, 4,000 kya], and (4,000 kya, 15,500 kya]) revealed 219 

that Saudi clusters 12 and 3 consistently exhibited elevated African ancestry (Figure S7 and 220 

Table S10), consistent with Figures 1B, 1C, and S4. Importantly, this increased genetic affinity 221 
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appears associated with African populations south of approximately 20°N latitude, whereas 222 

genetic affinity to Northern African ancestry remains relatively uniform across all time bins and 223 

Saudi clusters. This finding is also corroborated by f4-statistic confirming that Saudi cluster12 224 

shows the highest level of African ancestry (Figure S6, top and Table S11).  225 

Previous research has identified genetic continuums amongst present-day AP populations with 226 

respect to ‘Basal Eurasian’ ancestry—a hypothesized ghost lineage that diverged from the 227 

primary out-of-Africa lineage prior to Neanderthal introgression 10,45. We used the f4-statistic of 228 

form f4(Saudi cluster, Han.DG; Ust-Ishim, ancient African population) to estimate the relative 229 

amount of Basal Eurasian ancestry (i.e. the drift basal to the shared drift between Han.DG and 230 

Ust-Ishim, a 45 ky sample from western Siberia) across the Saudi cluster cohort. Strongly 231 

negative f4 values of this form is consistent with elevated shifted drift with Basal Eurasian 232 

ancestry. However, recent African admixture could confound this signal, and different African 233 

aDNA samples are likely to represent Basal Eurasian ancestry to different degrees, thereby 234 

prompting us to test a range of ancient African populations. We found that most Saudi clusters, 235 

regardless of geographical locations, showed similar levels of Basal Eurasian ancestry (Figure 2B 236 

and Table S12). We found that Saudi cluster12, and to a lesser extent cluster3, indeed showed 237 

stronger negative f4 values when the African aDNA source is from Central, Southern, or Eastern 238 

parts of Africa, consistent again with their recent African admixture from these regions (Figure 239 

2B and Table S12). The estimates of Basal Eurasian ancestries across Saudi clusters are much 240 

more comparable to each other when using the North African references (Figure 2B and Table 241 

S12), consistent with the recent proposal that the Epipaleolithic Iberomaurusian Taforalt 242 

population is the best proxy for Basal Eurasian ancestry 7. Moreover, these results confirm that 243 

the North African aDNA references are not closely related to the admixing African source in 244 

Saudi clusters 12, and 3.  245 

To investigate the recourse of Saudi cluster ancestries through time, we implemented qpAdm 246 

modeling with chronologically stratified sources across four temporal bins: Paleolithic-Neolithic 247 

(P-N), Chalcolithic (C), Bronze Age (BA), and Historical (H), maintaining a fixed set of 11 right 248 

groups throughout (Methods and Tables S13 - S16). Saudi clusters were most successfully 249 
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modeled using sources from the temporal bookends, the earliest (P-N) and most recent (H) 250 

periods (Figure 2A). The poor performance of Chalcolithic and Bronze Age sources in modeling 251 

Saudi cluster ancestry (Table S14 - S15) likely reflects the current absence of well-represented 252 

sources, such as an absence of ancient Arabian Peninsula genetic data from these intermediate 253 

periods. In the P-N period a two-source model combining similar proportions of North African 254 

(Taforalt EpiP) and Neolithic Armenian (MasisBlur N) components appeared to be the most 255 

plausible model for most of the Saudi clusters, corroborating f4-statistic evidence of 256 

approximately equal ancient North African genetic affinity (Figure 2B). Clusters 3, 11, and 12 257 

were rejected in this relatively simple model, reflecting their complicated admixture history as 258 

described above. Re-analysis of clusters 3, 11, and 12 by removing Mbuti.DG from the qpAdm 259 

construct (owing to their greater African-related ancestry) did not result in a better fitted model 260 

either (data not shown). We used DATES 46 to estimate admixture timing and only Saudi 261 

clusters 1 (4792 ± 2102 years) and 4 (5065 ± 1789 years) returned well-fitting admixture timing 262 

estimates (normalized root mean standard deviation (NRMSD) < 0.7, Z-score > 2 and Table S17). 263 

Analysis of Saudi cluster ancestry through Historical sources revealed consistent ancestral 264 

contributions from two Bahraini groups (MH3 LT and MH1-MH2 LT; MH3 LT has greater 265 

Levantine-related ancestry 12). The MH3 LT + Ethiopia 4500BP model was plausible for seven 266 

Saudi clusters: clusters 1, 3, 4, 6, 7, and 9 with only Saudi cluster3 returning a well-fitting 267 

admixture date estimate (682 ± 167 years). For Saudi clusters 2 and 8, the inclusion of Sardinia 268 

LBA as a third source on top of Ethiopia 4500BP + MH3 LT appeared to improve the model. 269 

However, admixture timing analysis revealed high-uncertainty estimates for both two-source 270 

and three-source qpAdm models, whereby MH3 LT + Sardinia LBA was well-fitting for only 271 

cluster8 (612 ± 835 years) and the Ethiopia 4500BP + Sardinia LBA model well-fitting for Saudi 272 

clusters 2 (474 ± 625 years) and 8 (820 ± 952 years). Interestingly the Arabian ancestry 273 

component for both Saudi clusters 12 and 5 is best modeled by the MH1-MH2 LT group, 274 

characterized by reduced Levantine affinity 12. Consistent with their high African ancestry, Saudi 275 

cluster12 is plausibly modeled possessing 0.60 ± 0.005 Ethiopia 4500BP ancestry, with the 276 

estimated timing of their Ethiopia 4500BP + MH1-MH2 LT admixture model at 358 ± 27 years. 277 

Ancestry modeling of Saudi cluster5 required a third source component from Egypt's Third 278 
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Intermediate Period (Egypt 3IP: 0.71 ± 0.14; MH1-MH2 LT: 0.26 ± 0.13). DATES analysis of Saudi 279 

cluster5’s ancestry formation revealed well-fitting estimates for Ethiopia_4500BP + Egypt 3IP 280 

(1120 ± 330 years) and Ethiopia_4500BP + MH2_MH1_LT (1242 ± 528 years) models, while 281 

Egypt + MH2_MH1_LT modeling failed statistical fitting criteria. Finally, the unique ancestry 282 

configuration of Saudi cluster11 demonstrated above (Figures 1C, S3, and S4), is also manifest 283 

in qpAdm modeling whereby all models across all time periods fit the data poorly. Taken 284 

together, these findings suggest the present-day Saudi Arabian ancestry component was formed 285 

through multiple ancient non-local ancestry contributions to a predominant local Arabian 286 

background – represented by Bahraini groups MH3 LT and MH1-MH2 LT.  The majority of 287 

clusters showed compatibility with MH3 LT and Ethiopian ancestry, while specific clusters 288 

exhibited unique patterns: clusters 2 and 8 incorporated Sardinian ancestry, clusters 12 and 5 289 

showed strong African components with MH1-MH2 LT base, and cluster11 displayed a 290 

distinctive genetic profile unable to be plausibly modeled with the current sources, further 291 

revealing the importance of future ancient DNA research in this region. 292 

 293 
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Figure 2. Ancestry compositions in Saudi Arabians estimated with aDNA data as reference. (A) 295 

Barplots for plausible (p-value ≥ 0.01 and admixture weights between 0 and 1) qpAdm models 296 

grouped by age brackets of source populations (top and bottom; Methods). For Pre-Pottery 297 

Neolithic – Neolithic sources (top), three clusters were rejected under the Armenia_MasisBlur N 298 

+ MAR_Taforalt_EpiP qpAdm model at the statistical threshold cut-off: cluster12, 3, and 11. We 299 

display under the corresponding qpAdm barplot well-fitting (nrmsd < 0.7 and Z > 2) estimates of 300 

admixture timing in years. (B) ‘Basal Eurasian’ ancestry estimated from f4-statistic of form 301 

f4(Saudi cluster, Han.DG; Ust-Ishim, African aDNA group) with varying ancient African groups  47–302 
55. We plotted three standard errors for each f4-statistic. The Saudi cluster (y axis) order in each 303 

plot is retained throughout (c12, c3, c11, c4, c8, c7, c10, c1, c5, c2, c6, and c9) following 304 

decreasing value for the statistic f4(Saudi cluster, Han.DG; Ust-Ishim, Ethiopia 4500BP). 305 

Significant (absolute Z-score > 3) negative f4-statistic values indicate the Saudi cluster possesses 306 

excess shared drift basal to the shared drift between the groups (Han.DG and Ust-Ishim), 307 

commonly interpreted as deriving from a population basal to the OOA event (i.e. the Basal 308 

Eurasian). 309 

 310 

Genetic variation within Saudi is shaped by the social structure 311 

The sub-clusters of Saudi Arabians identified in this study exhibits a diverse distribution of runs 312 

of homozygosity (ROH) between the individuals. The general pattern of number of ROH (NROH) 313 

vs. the sum total length of ROH (SROH) showed a distinct relationship with the proportion of 314 

ME-like ancestries (Figure 3A). Across Saudi clusters, the median total sum of runs of 315 

homozygosity ranged from 38.12 Mb to 232.6 Mb, while the median number of ROH ranged 316 

from 42 to 150 ROHs. In terms of the mean, cluster12 had the shortest mean length and 317 

smallest mean number of ROHs, followed by cluster11 and cluster3 (Figure 3A), which is 318 

characteristic of larger effective population size and consistent with greater admixture from 319 

more diverse African ancestral populations (Figure 1C). Cluster5 had the highest burden of ROH, 320 

with highest average number and total length of ROH, followed by cluster10, reflecting a 321 

consequence of both long-term small effective size and/or consanguinity 56.  322 

We also followed a previous approach 57 and divided the ROHs into three classes based on 323 

length: < 635 kb for short ROHs, between 635kb and 1671kb for intermediate ROHs, and > 324 

1671kb for long ROHs (Methods). Short ROHs indicate homozygosity from ancient or distant 325 
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ancestry, i.e. background relatedness. Intermediate ROHs likely arise from background 326 

relatedness with moderate level of inbreeding from past few generations, often due to reduced 327 

population sizes or reproductive isolation (e.g. due to geographic or cultural preferences), or 328 

from recent bottlenecks followed by recovery. Long ROHs indicate recent inbreeding and are 329 

common in populations with high levels of consanguinity 56–58. When classified by the sizes, we 330 

can observe that the overall pattern of NROH vs. SROH (Figure 3B) are driven by the long ROHs 331 

(Figure S8). For both the short and intermediate ROHs, there are clear linear relationships 332 

between NROH and SROH (Figure S8). In contrast, for the long ROHs, as SROH increase per 333 

individual genome, the NROHs are not increasing at the similar linear pattern as observed for 334 

short and intermediate ROHs. That is, for individuals with greater SROH due to the long ROHs, 335 

they do not have proportionally greater NROH compared to those with less SROH, suggesting 336 

that the contributions of SROHs are driven by fewer but longer ROHs in this length class due to 337 

recent consanguinity. Therefore, the consequences of consanguinity in not only increasing SROH 338 

but also increasing the variance of SROH in a population 56,59. We also observed the impact of 339 

this when considering each Saudi sub-clusters. In general, clusters 12, 11, and 3 have the fewest 340 

NROH and the smallest SROH across the ROH classes while clusters 5, 2, and 10 tended to have 341 

the most NROH and longest SROHs (Figure S9A and S9B). The ranked order by both NROH and 342 

SROH across the 12 Saudi clusters were very similar for both the short and intermediate length 343 

ROHs (Figure S9A and S9B), but varied for the long ROH class, implying a different pattern of 344 

recent inbreeding that differed from ancient demographic events.  345 

To further support the relationship between ROH and ancestry components, we modeled the 346 

ROH by ancestry proportion, based on admixture analysis at K = 4 with the HGDP populations. 347 

We found that SROH increase with the increase in ME ancestry proportions, while they are 348 

negatively correlated with the proportion of African, European and East Asian ancestries (Figure 349 

S9C). This observation is seen across length classes of ROHs, though more attenuated for long 350 

ROHs (Figure 3C). We reasoned that this ancestry effect across length classes is likely reflecting 351 

the long-term endogamous marriages and recent consanguinity associated with the ME-like 352 

ancestry relative to admixture component of other ancestries.  353 
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  354 

 355 

Figure 3. Runs of homozygosity in Saudi Arabians. (A) Average total length and number of ROH 356 

per cluster. The numbers next to the symbol represents the mean ME-like ancestry proportion. 357 

(B) Total length and number of ROH per individual across the Saudi Arabian cohort. For (A) and 358 

(B), symbols are colored by the geographical region associated with each cluster (Figure 1D).  (C) 359 

Total length of ROH vs ancestry proportion per individual stratified by three length classes of 360 

ROHs. ROH – Runs of homozygosity, ME - Middle Eastern, EA – East Asia.  361 

 362 

We leveraged the dense marker information from the 302 WGS individuals to reconstruct 363 

genome-wide genealogies and infer the population size trajectories within the Saudi social 364 

substructure (Figure 4). Consistent with the out-of-Africa event, all clusters experienced and 365 

subsequently recovered from a decline in the effective population size (Ne) about 100 kya. All 366 
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Saudi clusters reached a local maximum Ne around 9 -10 kya, a period consistent with the early 367 

Holocene Wet Phase / Holocene Humid Period, characterized by wet conditions which resulted 368 

in expansion of lakes and rivers and extensive grasslands 60. Following the Holocene period, 369 

populations in the Arabian Peninsula experienced another bottleneck dating around 6 - 7 kya, 370 

along with divergence among sub-clusters. This period coincided with the Arabian aridification, 371 

which is responsible for the desert conditions in most of the Arabia as we know it today 6,60. 372 

Clusters with less ME-like ancestries and stronger signature of admixture (such as clusters 12, 373 

11, 8, & 3), showed less severe decline in Ne compared to those that have high ME-like 374 

ancestry. Cluster5 in particular, showed the most severe bottleneck and remained low in Ne in 375 

the recent times, consistent with long-term isolation. Cluster5 appears to resemble the pattern 376 

of the tribe labelled as T25 in a previous study 20: both originated from the Western region 377 

showing the highest level of inbreeding within the respective study. T25 is said to have been 378 

subjected to strict intratribal marriages. Such social practices can indeed result in persistent 379 

small Ne as observed here, as well as our observed pattern in ROH (Figure 3). 380 
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 381 

Figure 4. Population size trajectories between the Saudi Arabian sub-clusters. Effective 382 

population sizes were computed from genealogical trees using RELATE (see Methods). The 383 

number of samples per cluster used for the estimates can be found in Table S1.  384 

 385 

Saudi’s social structure does not impact imputation accuracy but lack of 386 

reference representation does 387 
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Using the Trans-Omics for Precision Medicine (TOPMed) reference panel 61,62, we imputed the 388 

genotypes based on Saudi array data and compared the imputation accuracy of the Saudi to the 389 

Europeans from the United Kingdom 10,000 Genomes (UK10K) project matched by sample size 390 

and SNP content to further evaluate the impact population history may have on haplotypic 391 

pattern of variation and implications for genetic epidemiology studies in Saudi today. 392 

Unsurprisingly, the imputation accuracy was lower for Saudi compared to Europeans across all 393 

MAF bins (Figure S10A). This is consistent with what was reported in Cahoon et al., 63 which 394 

showed Saudi Arabia among the populations with the lowest imputation accuracy when 395 

compared to Europeans and populations within North America. Across Saudi sub-clusters, the 396 

imputation accuracies were quite similar, except for a slight difference in cluster12 which had 397 

lower imputation accuracy of common variants (Figure S10B). This observation is consistent 398 

with Cluster12 showing elevated shared drift with Africans from the Southern and/or Eastern 399 

region (Figures 2 and S7), which may not be well-represented in the TOPMed.   400 

 401 

Allelic architecture of Saudi Arabians 402 

Genetic variation in Saudi Arabian WGS data 403 

Having investigated extensively the population structure, admixture and demographic history 404 

and their impact on ROHs in the Saudi, we then leveraged the WGS data from 302 Saudi 405 

individuals to investigate the consequence of population history on the pattern of genetic 406 

variation in Saudi. A total of 25,488,981 autosomal variants were called and retained after 407 

quality control (QC) (Methods), of which 2,459,950 (9.7%) variants were not previously 408 

identified in gnomAD v4.1 64,65 and thus are potentially novel or Saudi-specific. We refer to 409 

these variants as the “previously unknown variants”. As expected, the previously unknown 410 

variants are highly enriched with rare alleles (83% of them are singletons in our dataset, 411 

compared to 32% singletons among the known variants; Figure S11). Of all variants, 63% have 412 

MAF < 1%. Although there are some Middle Eastern individuals in gnomAD v4, they are 413 
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proportionally underrepresented in this global dataset (2,884 exomes among 730,947 total, 147 414 

genomes among 76,215 total), resulting in a large number of Saudi Arabian variants missing 415 

from the database (although pipeline differences may explain some of the missing variants). 416 

Previously, Almarri et al., 6 found that of 23.1 million single nucleotide variants identified in 147 417 

Arabian and Levantine individuals, 4.8 million (20.8%) were not found in the Human Genome 418 

Diversity Project (HGDP-CEPH) global dataset. Taken together, both our and Almarri et al., 419 

studies showed that variation from the Arabian Peninsula are not yet well captured. Thus, 420 

genetic association studies will be limited to only the common variation, which we have also 421 

shown to be currently sub-optimally imputed (Figure S10). Here we provide all the 25,488,981 422 

variants that remained after QC and their allele frequencies, see the “Data availability” section 423 

for access. 424 

We compared allelic frequency spectra and allelic homozygosity in the Saudi Arabians (all WGS 425 

individuals) to the Middle Eastern population in gnomAD (gnomAD-MID). The two have 426 

relatively similar patterns in the genome-wide alternative allele frequency spectra though Saudi 427 

had proportionally slightly fewer common variants (Figure S12A). The allele frequencies are 428 

highly concordant (r = 0.98) between the two populations (Figure S12B), but Saudi Arabians 429 

have approximately 2x more homozygous genotypes than gnomAD-MID (e.g. an average of 20% 430 

vs. 10% of the genotypes are homozygous for variants with alternative allele frequency > 5% in 431 

Saudi and gnomAD-MID, respectively; Figure S12A and S12C). The higher proportion of 432 

inbreeding suggests that the Saudi and the gnomAD-MID population are not reflective of the 433 

same underlying populations. However, because the frequency spectra and correlation of allele 434 

frequencies are highly similar (Figure S12), we thus utilize both samples to compare the pattern 435 

of variation with gnomAD African/African Americans (gnomAD-AFR) and non-Finnish Europeans 436 

(gnomAD-EUR) below to better understand the impact of the unique history in the Arabian 437 

Peninsula on its current pattern of variation. 438 

 439 

Distribution of functionally deleterious variants 440 
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We annotated the variants using three different annotation tools: VEP (v.110) (McLaren et al., 441 

2016), AlphaMissense (Cheng et al., 2023), and Genomic Pre-trained Network (GPN) (Benegas 442 

et al., 2023). AlphaMissense predicts the pathogenicity of missense variants 66 while GPN 443 

predicts the deleteriousness for both coding and non-coding variants. The distribution of the 444 

variants by functional classes are shown in Table S18. We first examined the set of previously 445 

unknown variants, relying on AlphaMissense and VEP only as GPN is precomputed only for 446 

variants found in gnomAD 67. In addition to being enriched with rarer alleles, proportionally 447 

more unknown variants (19.63%) were annotated to be deleterious than known ones found in 448 

gnomAD (7.2%). This Implies that the previously unknown variants are not just sequencing 449 

errors distributed randomly across the genome, but are enriched for rare variants of functional 450 

relevance in the Saudi that are maintained or have not been purged from the population.  451 

Non-Africans are expected to have more deleterious alleles due to the relaxation of purifying 452 

selection during the Out-of-Africa (OOA) bottleneck as well as the introduction of new 453 

deleterious mutations during population expansion 30,68,69. Despite some opposing reports on 454 

this hypothesis 70,71, there has been empirical evidence in isolated populations having an excess 455 

of functionally deleterious alleles 72–74. In addition to the OOA bottleneck, Saudi has a deep 456 

culture of endogamy and consanguinity, and these demographic factors are known to 457 

potentially increase the burden of deleterious alleles in a population due to decreased efficacy 458 

of purifying selection 33. Here we investigated the allelic architecture of functionally deleterious 459 

alleles in the Saudi population, compared to other continental populations from gnomAD. 460 

Compared to gnomAD-AFR individuals, the Saudi tend to show proportionally more deleterious 461 

alleles than those annotated to be benign or neutral across algorithms (Figure 5A), particularly 462 

for variants up to ~5% frequency. Overall, relative to gnomAD-AFR, between the 0.5 - 5% 463 

frequency, we found a 13% proportional increase of deleterious (likely pathogenic) alleles 464 

annotated by AlphaMissense in the Saudi Arabians compared to 7% proportional decrease of 465 

the benign alleles (P < 0.01; Figure 5A). When annotated by VEP and GPN, at the same 466 

frequency range, we observed a consistent pattern i.e. a 3% proportional increase in loss of 467 

function variants in the Saudi Arabians compared to 10% proportional decrease in neutral 468 

(synonymous) ones (P < 0.01) by VEP, and an 11% proportional increase in the first percentile of 469 
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alleles by deleteriousness compared to 3% proportional decrease in the 99th percentile (e.g. the 470 

most likely neutral) of alleles when annotated by GPN (Figure 5A).  471 

This pattern of enrichment for functionally deleterious alleles is also qualitatively observed 472 

when comparing the exome samples from gnomAD-MID to gnomAD-AFR (Figure S13), taking 473 

advantage of the larger sample size for gnomAD-MID exomes and the same data processing 474 

pipeline in gnomAD. The pattern is also qualitatively observed when comparing Saudi to 475 

gnomAD-EUR, though the difference may be more attenuated in some allele frequency bins 476 

(e.g. for AlphaMissense annotation; Figure S14). The less significant finding when comparing 477 

Saudi to gnomAD-EUR is probably because Europeans also showed proportionally more 478 

deleterious than neutral alleles across all frequency bins, as previously reported 68,75 and 479 

replicated here (Figure S15).  480 

We also compared the enrichment of deleterious alleles between Saudi sub-clusters. Because of 481 

the smaller number of individuals within each cluster having WGS data (Table S1), we grouped 482 

the clusters into two groups: groupA which contained clusters with greater inbreeding and 483 

lower effective population sizes (clusters 2, 4, 5, 6, 9, and 10), and groupB which has less 484 

inbreeding and higher effective population sizes (clusters 12, 11, 3, and 8). We left out cluster1 485 

from this analysis as it tends to fall in the middle of the two groups. GroupB had generally 486 

greater number of variants compared to groupA (Figure S16), consistent with its higher genetic 487 

diversity and less inbreeding. GroupA, with greater inbreeding and lower effective population 488 

sizes, showed greater enrichment of deleterious alleles (Figure 5B). 489 

 490 
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 491 
Figure 5. Distribution of minor allele frequency across functional classes. (A) Ratio of Saudi to 492 

gnomAD-AFR variants. The sample size of gnomAD-AFR is based on downsampling to Saudi 493 

sample size, n = 302. (B) Ratio of Saudi cluster groupA to cluster groupB variants. The sample size 494 

of cluster groupB is based on downsampling to groupA sample size, n = 124. Variant functional 495 

consequences were annotated based on VEP (loss-of-function, missense, or synonymous 496 

variants), AlphaMissense (likely pathogenic, likely benign, and ambiguous), and GPN. AC and AF 497 

refer to allele count and allele frequency, respectively. AFg5 refers to allele frequency greater than 498 

5%. Top_1p refers to variants with the top 1% of GPN scores (more deleterious) and Bottom_1p 499 

refers to variants with the bottom 1% of GPN scores (more neutral). AFR denotes the gnomAD-500 

AFR sample. LOF refers to Loss of function. ** and * denote frequency bins with significant 501 

difference between the most deleterious (red) and most neutral (green) through bootstrapping 502 

at p < 0.01 and < 0.05, respectively.  503 

 504 

DISCUSSION 505 

Scholars have noted the complexity of diverse histories in shaping the genetic architecture of 506 

Arabian Peninsula populations, and called for better characterization of each population for 507 

better understanding of their genetics and health 35,76. On one hand, being situated 508 
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geographically at the crossroads between Africa and Eurasia, which facilitates intercontinental 509 

interactions, is expected to increase heterozygosity and genetic diversity in the AP populations. 510 

On the other hand, Saudi Arabian culture is rooted in endogamous practices which increases 511 

homozygosity which can result in health consequences 22,25. Here we elucidated the fine-scale 512 

population structure of Saudi Arabian population using 3,252 genotyped and 302 WGS 513 

individuals from various geographic regions within the country and investigated the genetic 514 

variation within the social structure and impact of the demographic histories on the population 515 

health. 516 

Our analyses concur with previous findings about the presence of sub-population structure 517 

within Saudi Arabia 20,77, with twelve distinct genetic sub-clusters being identified in our data. 518 

We chose to infer the sub-clusters based on genetic similarities and use the resulting sub-519 

clusters as units of analysis throughout the study. We note that clustering by genetic similarity 520 

in an admixed population could misrepresent the population structure in the dataset, such as 521 

when multiple clusters of Arabian origin are combined into a single cluster due to sharing a 522 

common admixing source (e.g. African). However, we elected for this approach in part because 523 

of limited tribal affiliation information at the individual level due to privacy concerns, thus we 524 

could not rely on self-reported tribes as units of analysis. Moreover, ancestry-specific 525 

approaches to infer population structure 78,79 are limited to situations where the admixing 526 

ancestries are divergent and that references for the ancestral populations are available, both of 527 

which are understudied or unavailable for Saudi Arabians. While our observation of population 528 

structure should be re-examined in the future with more self-reported demographic 529 

information or with improved methodologies to exclude the impact of admixture, we also note 530 

that our clustering is not driven solely by non-Arabian admixture. For instance, both cluster12 531 

and cluster3 exhibit strong levels of African admixture (Figure 1C; Figure 2A - B), but they also 532 

showed affinity to different Bahraini aDNA references with varying levels of Levantine-related 533 

ancestry (Figure 2A). Therefore, in this case, level of African admixture is not the only reason 534 

that separated clusters 12 and 3 from the rest of the Saudi Arabian with less admixture. 535 

Furthermore, the fine-scale structure in the Saudi Arabian population, brought on at least in 536 

part by the social practices, has previously been reported when studying self-identified 537 
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indigenous tribes 20 and we do observe some similarities of such structure with our clusters. 538 

Proceeding with the genetic sub-clusters defined, we then continue to elucidate several key 539 

features in the pattern of genetic variation in Saudi Arabia. 540 

While geographic proximities increase the chances for gene flow between individuals around 541 

same geographic areas, the strong consanguineous and endogamous culture in Saudi Arabia is 542 

expected to limit such interactions, resulting in distinct sub-clusters residing in relatively close 543 

proximities that we and others have observed 20. We also note that, while recent and/or 544 

ongoing admixture may be taking place between the Saudi Arabians and modern-day Africans, 545 

Europeans and Central & South Asia, the spread of such genetic pool is likely restricted by the 546 

endogamous and consanguineous practices as previously suggested for the Emiratis 35. Both 547 

endogamy and consanguinity increase the burden of ROH (SROH) which increases health risks. 548 

In El-Mouzan et al.,  80, the highest rate of consanguineous marriages was found in Madinah 549 

from the Western region of the country. Similarly, our results show footprints of inbreeding in 550 

all the sub-clusters from the Western region (clusters 4, 5, 7, and 10) as demonstrated by the 551 

longest ROHs, lowered Ne, and less evidence of admixture. On the other hand, the sub-groups 552 

that intermarry benefit from the increased effective population sizes and genetic diversity, 553 

especially those with elevated African admixture. The sub-clusters with elevated admixture in 554 

our study also show reduced ROH numbers and sizes. 555 

Consistent with the Arab slave trade and Islamic expansion in the 7th (1,300 – 1,400 years ago) 556 

century, almost all of the Saudi clusters show a recovery in effective population sizes from the 557 

Arabian aridification (about 6 - 7 kya) bottleneck, at varying ranges, except for the isolated sub-558 

cluster from the Western region (cluster5). Whilst the admixture dates for Saudi cluster5 qpAdm 559 

model of Ethiopia_4500BP + Egypt (1120±330 years ago) and Ethiopia_4500BP + MH2_MH1_LT 560 

(1242 ± 528 years ago) align with the 7th century Islamic expansion we note that historical 561 

documentation of significant North African to Arabian migrations during this period remains 562 

limited and thus, the possible conduit for Northern/Northeastern African ancestry to Saudi 563 

cluster5 remains inconclusive. The increase in the effective population sizes from the recent 564 

times is more for sub-clusters with higher African admixtures. Previous studies have reported 565 
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dominating African admixture source in Arabia originating from Bantu speakers from the East 566 

(Kenya) or South Africa, dating from 400 to 1754 years ago 6,13,81, which is consistent with the 567 

Arab trade slave expansion in the 7th (1,300 – 1,400 years ago) century. In a recent study 20, the 568 

Saudi tribes with highest African admixture were results of recent admixture events, as recently 569 

as 11 generations ago. This may be a sign of continuous admixture beyond the Arab trade slave 570 

expansion. Indeed, we observe a recent (358 ± 27 years ago) estimated timing of Saudi 571 

cluster12 ancestry formation of Ethiopia 4500BP + MH1-MH2 LT. This recent timing, coupled 572 

with distinct Central, Eastern, and Southern African genetic affinity, suggests a possible 573 

connection to 17th - 20th century Red Sea and trans-Saharan slave trades, as opposed to the 574 

older North African Islamic expansion, during which East African regions, including Ethiopia and 575 

Eritrea (historically referred to as Abyssinia), Somalia, and Sudan, were significant sources of 576 

enslaved individuals 82. Additionally, Central African regions extending into present-day Chad 577 

and the Congo Basin contributed to this population due to extensive trade networks. 578 

The impact of the OOA bottleneck and population size histories on the allelic architecture of 579 

deleterious alleles in non-African populations has been a matter of debate  30–32,68–71,73. We 580 

observed an abundance of rare and low frequency (AF = 0.5 – 5%) deleterious alleles in Saudi 581 

Arabians when compared to gnomAD-AFR. This enrichment in deleterious alleles can be 582 

explained to some extent by the demographic history of the Saudi Arabians beyond the OOA 583 

bottleneck event. First, the high percentage of previously unknown deleterious mutations that 584 

we found in sequencing could be driven by consanguinity/inbreeding. Second, although 585 

consanguinity and endogamy could in principle expose deleterious alleles to negative selection 586 

through genetic purging, purging is less effective when effective population sizes are small 587 

thereby the deleterious alleles may drift to high frequencies and even become fixed 33,75, 588 

particularly if population isolation followed a bottleneck 31,72,73,83. Saudi Arabia is not a 589 

completely isolated population, but there is reproductive isolation due to their social practices. 590 

Taken separately, the subgroups with high prevalence of endogamy are indeed enriched for 591 

deleterious alleles than those that have high levels of admixture (Figure 5B). Our results are 592 

consistent with other empirical studies that show enrichment of deleterious in populations with 593 
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different demographic histories following population bottleneck 72,75 and further confirms no 594 

evidence of genetic purging in the Saudi Arabians as previously reported 26. 595 

Overall, our results shows that Saudi’s population history impacts its pattern of genetic variation 596 

with potential consequences to the population health. The legacy of endogamy and 597 

consanguinity in the population poses health risks and the frequency of this practice has not 598 

shown signs of decline 84,85. There have been initiatives to raise public awareness on the health 599 

risks of close relative marriages in Saudi Arabia and other Middle East countries which include 600 

mandatory premarital health screening for recessive illnesses and genetic counselling 22,23,86,87. 601 

Even though the mandatory premarital screening in Saudi Arabia has so far not been very 602 

successful in discouraging or preventing at-risk marriages, it has fostered a more informed pre-603 

birth decisions, reducing the prevalence of children born with the health complications through 604 

altering some of the cultural behaviors including adoption of prenatal detection and therapeutic 605 

abortion 14,85,87. With increasing public education and awareness on risk factors associated with 606 

endogamous and consanguineous unions, its prevalence may change in the future, especially 607 

because the consanguineous marriages are generally most prevalent in poor, rural and least 608 

educated societies of Arabia compared to urbanized and more educated counterparts 88.  609 

We note a common issue with regards to the under-representation of Arabian countries in 610 

global cohorts which is also raised by others 6,26,89. For example, for the genomes in gnomAD 611 

database, only 0.2% of samples are of Middle Eastern origins, compared to 44.6% and 27.3% as 612 

Europeans and Africans, respectively. Even with the newly increased exome data, the Middle 613 

Easterners only make up 0.38% of gnomAD, compared to 4.65% Africans and 77.07% 614 

Europeans. As a result, the human genetics field in general is missing variants that are enriched 615 

to Saudi Arabia and Middle East. It has also been suggested that GME populations tend to 616 

harbor more variants unique to the region 26 e.g. 28% in the Qatar 90. The under-representation 617 

accentuates the understudying of regionally enriched alleles, and contributes to reduced 618 

accuracy of polygenic prediction models when applied to Arabic populations 91 and lower 619 

imputation accuracy when using state-of-the-art reference panel like TOPMed 63 (Figure S10). 620 
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This further highlights the need to sequence diverse and unique populations and include them 621 

in large global genetic data platforms such as gnomAD, TOPMed and others. 622 

 623 

METHODS 624 

Data collection, processing and quality control 625 

For all studied samples, written informed consent was obtained from each participant. The 626 

studies were approved under the Saudi Genome Project by the Institutional Review Board at 627 

King Abdulaziz City for Science and Technology and King Fahad Medical City. In compliance with 628 

Saudi privacy legislation and the protection of human subject confidentiality, the sharing of raw 629 

genotyping and clinical data is restricted. Access to this data requires prior approval from the 630 

Saudi National Bioethics Committee. 631 

Array data  632 

Sample collection, genotyping and quality control.  A total of 3,752 samples were collected in 633 

Saudi Arabia between the years 2017 - 2020 as control individuals for various projects, such as 634 

the GenOMICC International project and covid19 host genetics consortium 92 studies. 635 

Individuals were genotyped on the Axiom Genome-wide CEU 1 Array including customized 636 

variants following the manufacturer's specifications for sample preparation, including whole 637 

genome amplification, fragmentation, denaturation, and hybridization. Genome-wide SNP 638 

genotyping was performed using the automated, high-throughput GeneTitan system from 639 

Affymetrix. 640 

We filtered individuals with sample call rates < 0.9 using PLINK v1.9 93,94 on each plate 641 

individually before merging the autosomal SNPs across the different plates, resulting in a 642 

merged set of 757,790 SNPs. We removed duplicates and non-biallelic variants, retaining 643 

703,986 SNPs. We then filtered SNPs with greater than 10% missing rate and SNPs that did not 644 
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pass Hardy Weinberg Equilibrium (HWE) test (P < 10-6) using PLINK, resulting in a total of 645 

606,349 SNPs for analysis. We lifted over the genomic coordinates from human reference 646 

genome hg19 to hg38. We phased the data using Beagle v5.2 95.  647 

Removing close relatives and filtering out outliers. Using the 3,752 Saudi samples and 606,349 648 

SNPs, we pruned the dataset by linkage disequilibrium (LD) (using the command --indep—649 

pairwise 50 5 0.8 in PLINK), resulting in 547,307 SNPs to estimate individuals’ relatedness using 650 

King v2.2.5 96. We removed twins (or duplicated individuals) as well as first degree relatives, 651 

retaining 3,403 samples. Furthermore, we performed PCA and performed two iterations of 652 

outlier (defined as being > 6 standard deviation (SD) away from the mean in any of the first 10 653 

PCs), resulting in 3,352 samples left for further analyses. 654 

Defining samples’ tribal affiliation and imputing missing tribal information. We aimed to use 655 

available demographic information, i.e. tribal affiliations, in validating and interpreting the 656 

results of clustering based on genetic data. However, 82% of the individuals in our data (2,740 657 

of the 3,352) did not have self-reported tribal information. We thus imputed such information 658 

using the software HARE (harmonized ancestry and race/ethnicity) package 97 based on the 659 

available Self-identified Race/Ethnicity (SIRE) tribal information of 612 individuals. SIRE in our 660 

data were derived from either self-report or individual’s family name that is presumed to reflect 661 

their tribal affiliation (Table S1). The HARE package combines genetically inferred structure 662 

based on PCA with available SIRE information to train a support vector machine (SVM) classifier 663 

that could correct for potentially mislabeled SIRE and predict the race/ethnicity, in this case 664 

tribal label, for those individuals missing SIRE. We used the HARE to impute tribal information of 665 

the samples missing a SIRE label in our dataset using the first 30 PCs as the input data. We used 666 

the highest predicted membership probability (L1, see Fang et., 97 for more details) labels to aid 667 

in the interpretation of the population sub-clusters that we infer from genetic data. 668 

 669 

Whole genome sequencing (WGS) data 670 
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Sequencing information and processing. In addition to the genotyped samples, 349 samples 671 

were whole-genome sequenced (WGS) to a targeted depth of 30x. The samples were prepared 672 

following the Illumina’s TruSeq Nano sample preparation protocol and sequenced on an Illumina 673 

HiSeq X-ten machine. The raw sequences were aligned against the human reference genome 674 

GRCh38 using the Burrows-Wheeler Aligner (BWA) version 0.7.10 98. Picard tools version 1.117 675 

was used to mark duplicates 99. All sample preparation, sequencing, sequence alignment, pre-676 

processing, quality control before calling of variants and BAM file augmentation were 677 

performed by deCODE genetics (https://www.decode.com), and a more detailed information on 678 

these steps is documented in Jónsson et al., 100. 679 

Variant calling and filtering. We merged the gVCFs of the 349 samples using CombineGVCFs in 680 

GATK 99 and subsequently performed a joint genotyping calling using GenotypeGVCFs. We 681 

performed variant quality score calibration (VQRS) on the combined samples using 682 

VariantRecalibrator and ApplyVQRS in GATK 101. We supplied the homo sapiens reference 683 

assembly 38 (Homo_sapiens_assembly38.fasta) and used the following resources: HapMap III 684 

variants were used as training and truth sets with prior priority of 15, 1000G omni2.5 sites were 685 

used as training set with prior priority of 12, 1000G phase1 high confidence SNPs was used as 686 

training set with prior priority of 10 and the dbSNP138 as known SNPs with prior probability of 687 

2. For the annotations, we included the QD, MQ, MQRankSum, ReadPosRankSum FS and SOR. 688 

We used 99% sensitivity level to filter the SNPs. 689 

Quality control on samples and SNPs. All 349 samples had missing genotyping rate < 10%. We 690 

excluded 302,640 SNPs with missing rate > 10% and 53,981 SNPs based on HWE threshold (P < 691 

10 6), leaving 26,781,476 SNPs. We removed non-biallelic sites which left 26,408,559 variants. 692 

Further filtering was applied on specific downstream analyses when appropriate. To exclude 693 

outliers in our samples, we merged the 349 WGS samples with our array data and the HGDP 694 

dataset at segregating SNPs shared across all datasets. A principal component analysis (PCA) 695 

was performed using PLINK and we used HARE to impute missing self-reported individual 696 

nationalities (e.g. self-identified nationality as Saudi or not). We excluded 8 samples which were 697 
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not imputed as a Saudi. We then removed monomorphic sites which were introduced by calling 698 

the variants including these potentially non-Saudi samples, leaving 25,488,981 variants. 699 

We filtered samples based on relatedness using King software v2.2.5 96. For estimating the 700 

relatedness, we randomly sampled 550,000 SNPs with minor allele frequency > 1% after LD 701 

pruning (--indep-pairwise 50 5 0.5 using PLINK) to estimate the relatedness. We removed 37 702 

twins/duplicates and first-degree relatives. Using the PCA, we further removed 2 samples that 703 

appeared as extreme outliers (> 6 SD on any of the first 10 PCs), leaving 302 samples. Haplotype 704 

phasing was performed on the remaining 302 samples and 25,488,981 variants using Eagle 705 

v2.4.1 102.  706 

 707 

Annotation of variants 708 

We annotated the variants using the popular VEP (v.110) 103 as well as two recently published 709 

annotation tools, AlphaMissense 104 and Genomic Pre-trained Network (GPN) 67. The 710 

AlphaMissense only annotates missense variants and has three functional classes, “likely 711 

pathogenic”, “ambiguous” and “likely benign”. The GPN annotates all genomic variants and 712 

assign a deleteriousness score to each variant in gnomAD (v3). We downloaded the pre-713 

computed scores from 714 

https://huggingface.co/datasets/songlab/gnomad/resolve/main/test.parquet, accessed 715 

2/9/2024. 716 

 717 

Merging of Saudi whole-genome-sequence data with ancient genomes  718 

We downloaded the Allen Ancient DNA Resource (AADR) v.54.1 Eigenstrat files which are 719 

genotyped according to hg19 coordinates. We were kindly provided the Bahrain aDNA 12 720 

genome bed files by Rui Leite Portela Martiniano, which were originally mapped to GRCh38. To 721 

have all our genotype files on a consistent reference genome, we mapped the Saudi whole-722 
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genome-sequenced data and ancient Bahrain samples back to human reference genome hg37 723 

using liftOver. We then filtered the variants though PLINK 1.9-beta7 using parameters --geno 0 --724 

snps-only --make-bed --allow-no-sex. Prior to merging the Saudi WGS, AADR, and Bahrain 725 

datasets we filtered mistyped SNPs where the rsIDs are shared between the datasets, but the 726 

AADR reference allele does not match either the reference or alternate allele (n=520). The Saudi 727 

WGS and Bahrain aDNA datasets were then converted from plink to packedancestrymap format 728 

through Eigensoft convert function with parameter familynames: NO. Finally, we merged the 729 

Saudi WGS and AADR datasets with the Eigensoft mergeit function with parameters 730 

strandcheck: YES. The mergeit program merges two data sets into a third, which has the union 731 

of the individuals and the intersection of the SNPs in the first two. We first merged the AADR 732 

and Saudi WGS datasets. The merging of the AADR and Saudi datasets resulted in the filtering of 733 

14,239 SNPs due to A/T or C/G strand checks and 91 SNPs due to allele mismatch. In addition, 734 

there were 770,115 genotype strand flips with the final dataset consisting of 1,032,250 retained 735 

SNPs. We then merged the Bahrain aDNA resulting in a final packedancestrymap genotype file 736 

of 1,030,352 SNPs.  737 

 738 

Data analyses 739 

We used the larger collection of Saudi genotyped samples to investigate the genetic 740 

substructure and historic admixtures of the population. We then utilized the high-density 741 

genome-wide marker information from the WGS data to investigate differences in genetic 742 

ancestries with aDNA, population size trajectories, and allelic architecture of functional variants 743 

within the social structure of the Saudi population. 744 

Evaluation of population structure  745 

We merged the fully filtered array and WGS datasets, based on segregating markers. We 746 

performed PCA followed by UMAP 105 to combine the first 10 PCs and reduced them into two-747 

dimensions in order to explore the population structure. Based on the UMAP results, we 748 
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assigned individuals to subpopulations using K-means clustering from the R package stats 106. To 749 

determine the optimal number of K clusters, we used the Average Silhouette Width (ASW) 750 

(Figure S17; 107) which is a popular and trusted method to produce quality clustering 108. The 751 

ASW uses values between -1 and 1 to measure how similar/dissimilar is an object to others 752 

within its cluster as well as objects in different clusters, with higher numbers representing a 753 

better fit and appropriateness of clustering. Likewise, a high ASW value corresponds to an 754 

optimal number of K clusters for partitioning a particular set of objects 107. We validated these 755 

clustering by evaluating the concurrence between the clusters and the tribal region 756 

assignments. We used these clusters as representative of the social structure and also used 757 

them in the whole genome sequencing samples to evaluate patterns of genetic diversity within 758 

the Saudi population.   759 

Analysis of ancestry components. We conducted the unsupervised admixture analysis using 760 

ADMIXTURE software v1.3 109. We conducted 10 independent runs of admixture analysis for 761 

each K and retained the run with maximum likelihood. We used the cross-validation procedure, 762 

implemented in the program, to identify the best number of ancestral populations K which fits 763 

our data.  764 

Evaluating patterns of admixture. To further test for the presence of admixture within the 765 

identified clusters, we performed supervised admixture analysis using the f3-statistics from the 766 

ADMIXTOOLS 2 package v2.0.4 110. We computed the f3-statistics using the Saudi clusters as 767 

targets and using all pairs of populations in the HDGP data 34 as source populations i.e. f3(Saudi 768 

cluster; HGDP population 1, HGDP population 2).  769 

We also used the outgroup f3-statistics to investigate the degree of shared drift between Saudi 770 

clusters and the HGDP populations. For this statistic, the African San, Mbuti or Yoruba are often 771 

considered as outgroups for investigation of non-African populations. However, HGDP African 772 

populations have showed to be highly admixed with some of the Saudi clusters, and the 773 

outgroup should be close enough but should not be part of the ingroups 111. We first used f4-774 

statistics of the form f4(HGDP population, HGDP population; Saudi cluster, Saudi cluster) to 775 
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determine a suitable outgroup for the Saudi clusters from the HGDP reference populations, as 776 

recommended by Pattersons et al., 111. We found that nearly all HGDP population combinations 777 

showed positive gene flow between the HGDP population and either one or both of the Saudi 778 

clusters, thereby violating the outgroup assumption. The HGDP populations that did not violate 779 

the outgroup assumption in this test were eight East Asian populations: Han, Miao, Japanese, 780 

Tujia, Yi, Hezhen, She and Naxi. We then used Han as an outgroup for the outgroup f3-statistics 781 

in the form: f3(outgroup; population1, Saudi cluster), whereby population1 was an HGDP 782 

population or another Saudi cluster except the target. 783 

Saudi and ancient genome analyses. To assess the genetic affinity of Saudi clusters to present-784 

day and ancient African groups, we computed the f3-statistic of form f3(Han; African groups, 785 

Saudi clusters) using the ADMIXTOOLS 2 package v2.0.4 110,112. We removed individuals that 786 

were indicated on the AADR metadata as relatives, contaminated, duplicated, or have low 787 

coverage. We tested the below allele sharing pattern using f4-statistics in ADMIXTOOLS 2 with 788 

parameters f4mode = TRUE, afprod = TRUE, allsnps = TRUE. To estimate ‘Basal Eurasian’ 789 

ancestry in the Saudi clusters using a selection of eight ancient African groups: 790 

MAR_Taforalt_EpiP 49, Egypt_ThirdIntermediatePeriod 51, Ethiopia_4500BP 54,113, 791 

Kenya_Nyarindi_LSA_Kansyore 114, Tanzania_Zanzibar_1300BP 115, Malawi_Fingira_LSA_6000BP 792 

54, South_Africa_400BP.SG 55, and Cameroon_SMA 54 in the f4-statistic of form f4(Saudi cluster, 793 

Han.DG 34,116,117 Ust-Ishim, African group). The North African Epipalaeolithic Moroccan 794 

Iberomaurusian Taforalt group (Taforalt EpiP) represents the best proxy of Basal Eurasian 795 

ancestry 7, exhibiting genetic connections to both early Holocene Near Easterners, such as 796 

Levantine Epipaleolithic Natufians (Natufian EpiP), and sub-Saharan Africans. Thus, to further 797 

assess the genetic affinity of Saudi clusters to African ancestry relative to the shared ancestry of 798 

North African Upper Paleolithic Taforalt Moroccan and Epipaleolithic Natufian Levantine groups, 799 

we ran the f4-statistic of form f4(Saudi cluster, Upper Paleolithic Taforalt; African group, 800 

Epipaleolithic Natufian). Finally, to assess the relative shared drift between Epipaleolithic 801 

Levantine Natufian 8 and Neolithic Central Zagros 8,118 and CHG 119 ancestries, we used the f4-802 

statistic of the form f4(Saudi cluster, Yoruba.DG 34,120; Ganj Dareh N/CHG, Natufian EpiP). 803 
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We employed replacement qpAdm 112 with parameters allsnps=TRUE and fudge_twice=TRUE to 804 

model the ancestry for each of the Saudi clusters as it is partitioned in ancient groups across 805 

four broad and approximate periods. For each period we kept the following core fixed right 806 

group set of populations: Mbuti.DG 121, Papuan.DG 120, Russia_Ust_Ishim.DG 122,123, 807 

Russia_MA1_HG.SG 124, Russia_Kostenki14 125, WHG 10,119,125,126, CHG 119, EHG 127, 808 

Turkey_Epipaleolithic 128, Iran_GanjDareh_N 8, and ISR_Natufian_EpiP 8. For each of the four-809 

time bins we modeled one to five source models, cycling through the source populations to 810 

form each qpAdm model. In evaluating the qpAdm models, we preferentially selected the 811 

model with the least number of sources with the largest p-value (with a plausibility threshold 812 

cut-off of 0.01 and admixture weights between 0 and 1), iteratively evaluating more complex 813 

models. 814 

Pre-Pottery Neolithic to Neolithic Sources:  Italy_Sardinia_N 38,40, Levant_PPN 8,129, 815 

Mesopotamia_PPN 130, Anatolia_Marmara_Barcin_N 127,129, Turkey_Catalhoyuk_N_Ceramic.SG 816 

131, MAR_Taforalt_EpiP 49, Armenia_Aknashen_N 129, Armenia_MasisBlur_N . Chalcolithic to 817 

Bronze Age Sources: Iran_C_SehGabi 8, Turkey_TellKurdu_EC, Turkey_C 8,129, Israel_C 132 , 818 

Armenia_C 8, Steppe_Eneolithic 133, and Ethiopia_4500BP 54,113. Bronze Age Sources: 819 

Ethiopia_4500BP, Italy_Sardinia_EBA 38,40, Mesopotamia_LBA 129, Israel_MLBA 134, Jordan_LBA 820 

134, Lebanon_MBA.SG 135, Turkey_EBA 129, Armenia_EBA_KuraAraxes 129,133, Armenia_MBA 8,129, 821 

and Germany_BellBeaker 127,136. Bronze Age to Historical Sources: Ethiopia_4500BP, 822 

Italy_Sardinia_LBA 40, Germany_BellBeaker 127,136, Iran_Hasanlu_IA 129, Turkey_IA 129, 823 

Egypt_ThirdIntermediatePeriod, AS_EMT 12, MH2_MH1_LT 12, MH3_LT 12, Hungary_IA_LaTene 824 

137, Israel_Ashkelon_IA2 138, and Jordan_LBA_IA 134. 825 

We sought to date the formation of the plausible qpAdm models with DATES v4010 46 using 826 

parameters binsize: 0.001, maxdis: 1.0, qbin: 10, runfit: YES, qbin: 10, runfit: YES, afffit: YES, 827 

lovalfit: 0.45, samecoeffs: NO, and jackknife: YES. For each of the plausible qpAdm models, we 828 

ran the combination of sources through DATES, evaluating models with a normalized root mean 829 

standard deviation of < 0.7 & Z-score > 2 as well fitting. To obtain admixture dates in calendar 830 

years we used a generation time of 28 years 139. 831 
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Runs of homozygosity. ROH are continuous segments of homozygous genotypes inherited from 832 

common ancestor 56. Following Choudhury et al.,  140 we used PLINK function --option-homozyg 833 

to identify runs of homozygosity (ROH) using the following parameters: we considered at least 834 

100 SNPs for ROH, with a total length ≥ 100 kilobases and at least one SNP per 50 kb on 835 

average; we set a scanning window to contain 100 SNPs, allowed 1 heterozygous call and 5 836 

missing calls per scanning window. We used three component Gaussian mixture model from the 837 

Mclust package (v.6.1) in R 106 following Pemberton et al., 57 to classify the ROHs into short, 838 

intermediate and long sizes.   839 

Demographic history. Utilizing the phased WGS data, we estimated effective population sizes at 840 

different time points within the Saudi sub-clusters using RELATE v1.1.9 141. We used the 841 

RelateFileFormats in the Relate package to convert files from VCF format into haps/sample file 842 

format. For ancestral allele flipping, we provided RELATE with the human ancestor sequences 843 

release 107. We computed the genealogical trees using the parameters -m 1.25e-8 -N 30,000 844 

and subsequently used the EstimatePopulationSize.sh script provided with the Relate package 845 

to estimate the effective population sizes. 846 

Evaluating imputation accuracy of Saudi genotypes 847 

We evaluated the impact of Saudi’s population demographics on the imputation accuracy of its 848 

haplotypes, using the Trans-Omics for Precision Medicine (TOPMed) panel 61. We compared the 849 

imputation accuracy between the Saudi and the Europeans in UK10K dataset 62. For this 850 

comparison, we first selected the variants that are present in both dataset and then subsetted 851 

the Europeans to 3,252 individuals in order to match the same number of individuals as our 852 

Saudi data. 853 

Enrichment of functionally deleterious alleles 854 

We compared the allelic architecture between Saudi Arabian and the gnomAD v4 64,65 855 

African/African American (gnomAD-AFR), non-Finnish European (gnomAD-EUR) and Middle 856 

Eastern (gnomAD-MID) populations. To check for potential enrichment or purging of deleterious 857 
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alleles in the Saudi, we computed the ratio of the proportional site frequency spectra for the 858 

deleterious alleles in Saudi to gnomAD-AFR or gnomAD-EUR, and contrasted it to the same ratio 859 

based on neutral or benign alleles. Utilizing the gnomAD exomes, which have a larger number of 860 

Middle Easterners compared to the genomes, we also made comparisons between the Middle 861 

Easterns and gnomAD-AFR and gnomAD-EUR. Significance differences in the ratios between 862 

variants functional classes were tested through bootstrapping.  863 

For every comparison between populations or subpopulations, we used Hypergeometric (v 864 

3.6.2) distribution in R 106 to downsample both populations to equal sample sizes. All exome 865 

comparisons were downsampled to gnomAD-MID sample size. To account for technical 866 

differences in data generation of WGS call sets between gnomAD and Saudi data, we used the 867 

proportions of variants from the normalized allele frequency spectra rather than number of 868 

variants to compare the ratio between the Saudi and the gnomAD populations at a given allele 869 

count or frequency bin. However, when comparisons were made between two gnomAD 870 

populations or between two Saudi subpopulations, the actual number of variants were used.  871 
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