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Abstract
Introduction Post-haemorrhagic hydrocephalus is common amongst premature infants and one of the leading indications 
for paediatric cerebrospinal fluid (CSF) diversion. Permanent CSF diversion is often delayed until the infant is older but 
there is no clear consensus on the timing for this. The outcomes for permanent shunting in this patient group are poor, with 
higher rates of failure and infection compared to other aetiologies of hydrocephalus.
Methods We conduct a single-centre retrospective review of infants with post-haemorrhagic hydrocephalus requiring a 
permanent shunt insertion over a 5-year period. Demographic and clinical data from time of shunt insertion were collected 
and used to generate generalised linear models (GLMs) to predict shunt success at 12 months after insertion.
Results Twenty-six infants underwent permanent shunting in this period for post-haemorrhagic hydrocephalus, with 10 suf-
fering shunt failure within the first 12 months. The best-performing GLM was able to predict shunt success with a sensitivity 
of 1 and specificity of 0.90, with head circumference, weight, and corrected age at the time of shunt insertion being the most 
significantly associated variables for shunt success in this model.
Conclusion Our proof-of-principle study suggests that highly accurate prediction of shunt success for infants with post-
haemorrhagic hydrocephalus is possible using routinely available clinical variables. Further work is required to test this 
model in larger cohorts and validate whether pre-operative use can improve outcomes for this patient group.
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Introduction

Post-haemorrhagic hydrocephalus (PHH) is common amongst 
premature infants and the leading cause of acquired paediat-
ric hydrocephalus in Europe and North America [1, 2]. PHH 
develops after intraventricular haemorrhage (IVH), caused 
by bleeding from the fragile germinal matrix in premature 
infants. IVH occurs in around a quarter of premature infants 
and an estimated 15% of these infants suffering IVH develop 
hydrocephalus that requires permanent CSF diversion [3, 4]. 
This permanent CSF diversion is often delayed until the infant 

is older, with temporising measures undertaken to reduce CSF 
volume in the interim, including the insertion of ventricular 
access devices and ventriculo-subgaleal shunts.

Despite its prevalence, there remains considerable uncer-
tainty about the optimal management of PHH, both with regard 
to the timing of permanent shunt insertion and the method of 
managing CSF volume before any permanent shunting [5, 6]. 
This clinical uncertainty is borne in the context of poor out-
comes for this cohort, with higher rates of shunt failure and 
neurodevelopmental disability compared to patients with other 
aetiologies of paediatric hydrocephalus [7–9].

In this retrospective cohort study, we set out to identify 
clinical characteristics that are associated with shunt success 
in patients with PHH.

Methods

We conducted a single-centre, retrospective cohort study 
of consecutive infants with PHH. We searched operative 
records for primary shunt insertion at Addenbrooke’s 
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Hospital, over the 5-year period between January 2015 
and December 2019. We identified patients undergoing 
primary shunt insertion for PHH and extracted data from 
the electronic health record system. Demographic and 
surgical data were collected, as well as clinical charac-
teristics including gestational age at birth, Papile Grade 
of Intraventricular Haemorrhage, previous temporising 
measures employed, corrected age, weight, and head cir-
cumference (HC) at the time of shunt insertion. The date 
of shunt failure, if applicable, was recorded. The outcome 
at 12 months was dichotimised as success or failure for 
the original shunt.

Generalised linear models (GLMs) were applied to the 
data to identify parameters that predict this dichotimised 
outcome at 12 months. Four models using different combi-
nations of clinical characteristics were tested, all of which 
included gender, corrected age, and Papile Grade. Three 
of the four models also included weight and head circum-
ference, one model further included gestational age, and 
the final model further included the method of previous 
temporising measures. Model fit was compared using the 
Akaike information criterion (AIC), Bayesian informa-
tion criterion (BIC), and p-values. Lower AIC, BIC, and 
p-values indicate a better model fit. The contribution and 
directionality of individual parameters within each model 
were evaluated using t-statistic values. All statistical analy-
ses were performed using R: A Language and Environment 
for Statistical Computing [12].

Results

Demographics

Twenty-six patients underwent primary shunt insertion for 
PHH in this period. The decision to progress to shunting 

in this period was made by treating clinician based on per-
sistently enlarged ventricular index (> 97th centile + 4 mm) 
and/or a regular, on-going need for CSF withdrawal to con-
trol head circumference or the signs of raised intracranial 
pressure. The first two CSF withdrawals were by lumbar 
puncture and further requirement led to insertion of a ven-
tricular access device.

All patients received ventriculo-peritoneal shunts with 
NSC Strata valves (Medtronic, USA). Valves were implanted 
in an in-line configuration and secured to the periosteum 
using a nylon stitch. Clinical data of interest was available 
for all patients.

Ten patients suffered from shunt failure within the first 
12 months. The most common cause of failure was migra-
tion of the proximal catheter (n = 4). Other causes of failure 
included infection (n = 2), obstruction (n = 2), migration 
of the distal catheter (n = 1), and proximal wound break-
down (n = 1). The mean time to shunt breakdown was 
5.1 ± 3.5 months. The cohort’s demographic and clinical 
data is summarised in Table 1.

The majority of patients in this cohort received tempo-
rising measures to manage hydrocephalus by serial CSF 
removal via an inserted ventricular access device (n = 22), 
further summarised in Table 1.

Generalised linear models

A summary of the performance of the four GLMs is pre-
sented in Table 2. Model 2 (which accounted for Papile 
Grade, corrected age, sex, weight, and head circumference) 
provided the best fit to the data, with the lowest scores across 
all three statistical measures of model fit: AIC, BIC, and 
p-values. The area under the receiver operating characteristic 
curve (AUROC) for predicting shunt success using model 
2 was 0.976, with the optimal sensitivity = 1 and specific-
ity = 0.90 (Fig. 1). Within model 2, head circumference was 

Table 1  Demographics of 
patients at time of permanent 
shunt insertion

Mean values ± SD are given for age, weight, head circumference
p-values show significance testing by Mann–Whitney U test

Successful (n = 16) Failed (n = 10) p-value

Gestational age at birth (weeks) 29.5 ± 4.9 28.3 ± 4.1 0.75
Male [%] 10 [63] 6 [60] 0.90
Corrected age (weeks) 7.3 ± 9.1 3.9 ± 10.1 0.21
Weight (kg) 4.9 ± 1.6 4.3 ± 1.8 0.36
Head circumference (cm) 40.1 ± 4.3 41.1 ± 6.1 0.59
Papile Grades (range) [mode] II–IV [III] III–IV [III] N/A
Previous temporising measures (n): N/A
Ventricular access device 13 9
Subgaleal shunt 1 1
Lumbar puncture 1 0
None 1 0
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found to have the most significant effect (t(22) =  − 2.55, 
p = 0.021), with shunt success at 12 months associated with a 
smaller head circumference. Corrected age and weight were 
also found to significantly affect this outcome (t(22) = 2.34, 
p = 0.033 and t(22) = 2.05, p = 0.039, respectively), with 
patients who were older and a greater weight at the time of 
shunt insertion more likely to have successful permanent 
shunts at 12 months.

Discussion

The outcomes for permanent shunting after perinatal PHH 
are poor and, as indicated in Table 1, there is no single clini-
cal variable that is significantly predictive of shunt success 
or failure. However, we show that generalised linear models 

using simple, clinically relevant parameters concurrently are 
able to predict shunt success to a high degree of accuracy. The 
best-performing GLM points towards head circumference, 
corrected age, and weight at the time of shunt insertion as the 
most significant variables, when taken as part of a model that 
accounts for a total of five parameters concurrently.

This is a proof-of-principle study but the results suggest 
that, by using larger datasets from multiple centres, there is 
scope to use similar modelling to derive precise thresholds 
of simple bedside parameters, such as head circumference, 
age, and weight, to optimise the timing for permanent shunt 
insertion and so maximise the chances of success.

Increasing age and weight were both positively associated 
with shunt success but increasing head circumference was nega-
tively associated with this outcome. The negative association 
with head circumference is likely to be related to the severity 
of hydrocephalus that has developed in the infant by the time 
of shunt insertion. Taken together, this modelling suggests that 
while it is advisable to defer permanent shunting until the infant 
is older, as has been suggested previously, this must be balanced 
with the degree of hydrocephalus that can develop in this period 
and patients should be very carefully temporised in the interim 
to avoid excess increases in head circumference [9, 10].

This was a single-centre, retrospective study and is lim-
ited by the small size of the dataset. In particular, the major-
ity of patients were temporised using the same method of 
serial CSF withdrawal from an inserted ventricular access 
device — the standard practice in our centre during this 
period. This study is unable therefore to draw any conclu-
sions about the best method of temporising measure, which 
remains an important outstanding question in this cohort 
[11]. This study also did not control for surgical factors, 
such as operating surgeon and time of day for operation, due 
to limited numbers. However, the single-centre design was 
advantageous in controlling for operating procedures, which 
are standard in our centre across cases, for instance for the 
type of shunt inserted and the intra-operative antibiotics 
received by all patients. Larger cohort studies are warranted 
to validate these findings and develop this modelling further.

Conclusion

There is considerable scope to improve outcomes for infants 
who develop post-haemorrhagic hydrocephalus. We demon-
strate that smaller head circumference, as well as increased 
weight and corrected age, at the time of shunt insertion is sig-
nificantly associated with shunt success in this cohort using a 
generalised linear model. Larger cohort studies will be required 
to validate this finding but our proof-of-principle work sug-
gests there is potential to develop an accurate shunt success 
model to improve outcomes for this patient population.

Table 2  Summary of the four generalised linear models. Four models 
with different predictive variables were compared

AIC The Akaike information criterion, BIC Bayesian information cri-
terion, and p-values provide a measure of model fit, with lower values 
indicating better model fit
PG Papile Grade, CA corrected age, HC head circumference, GA ges-
tational age, TM temporising measures

Model 
number

Predictive variables AIC BIC p-value

1 PG + CA + Sex 38.36 45.18 0.12
2 PG + CA + Sex + Weight + HC 24.85 33.94 0.00052
3 PG + CA + GA + Sex + Weight 

+ HC
26.58 36.80 0.00093

4 PG + CA + Sex + Weight + HC 
+ TM

27.89 39.24 0.0013
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Fig. 1  Receiver operating characteristic curve showing the perfor-
mance of model 2, with a sensitivity = 1.0 and specificity = 0.9 at the 
point indicated
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