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Fungal pathogens kill approximately 1.5 million individuals per year and represent
a severe disease burden worldwide. It is estimated over 150 million people have
serious fungal disease such as recurrent mucosal infections or life-threatening systemic
infections. Disease can ensue from commensal fungi or new infection and involves
different fungal morphologies and the expression of virulence factors. Therefore, anti-
fungal immunity is complex and requires coordination between multiple facets of
the immune system. IL-1 family cytokines are associated with acute and chronic
inflammation and are essential for the innate response to infection. Recent research
indicates IL-1 cytokines play a key role mediating immunity against different fungal
infections. During mucosal disease, IL-1R and IL-36R are required for neutrophil
recruitment and protective Th17 responses, but function through different mechanisms.
During systemic disease, IL-18 drives protective Th1 responses, while IL-33 promotes
Th2 and suppresses Th1 immunity. The IL-1 family represents an attractive anti-fungal
immunotherapy target. There is a need for novel anti-fungal therapeutics, as current
therapies are ineffective, toxic and encounter resistance, and no anti-fungal vaccine
exists. Furthering our understanding of the IL-1 family cytokines and their complex role
during fungal infection may aid the development of novel therapies. As such, this review
will discuss the role for IL-1 family cytokines in fungal infections.
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INTRODUCTION

Fungal pathogens represent an increasingly severe disease burden and are responsible for ∼1.5
million deaths per year. Patients who are immunocompromised, have undergone invasive clinical
procedures or suffered trauma are particularly susceptible to fungal infection. Fungi can be
frequently encountered, such as Aspergillus through inhalation or Candida, which colonizes
mucosal barriers (Brown et al., 2012). Anti-fungal responses must strike a careful balance to provide
protection and maintain homeostasis. Regularly encountered fungal pathogens must be cleared
with minimal effect on the host, while commensal fungi must be maintained without reducing
barrier integrity. The majority of serious fungal disease arises from poorly cleared infection or
disrupted barrier integrity (Rautemaa-Richardson and Richardson, 2017). Here, the IL-1 family
play a crucial role mediating both barrier and systemic anti-fungal immunity. As such, modulating
IL-1 family cytokines to enhance anti-fungal immunity may provide valuable therapeutic strategies
that overcome current therapeutic inadequacies.

The IL-1 family possess numerous potent biological activities and mediate a wide range of
immunological responses (Garlanda et al., 2013). IL-1 was identified in the 1980’s but had been
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investigated for many years under various aliases. The discovery
of IL-1 was initially met with skepticism that a molecule at
such low concentration could have potent, systemic effect. Since
then, our understanding of the IL-1 family has grown and
now comprises four sub-families containing eleven signaling
members, five primary receptors and six co-receptors (Figure 1).
Of the eleven signaling members, seven are pro-inflammatory
and four are anti-inflammatory (Table 1). The signaling members
of the IL-1 family share a highly conserved gene sequence and
structure and (except for IL-18 and IL-33) are clustered on
human chromosome 2 (Sims and Smith, 2010). Due to these
similarities, the genomic identification of IL-1 family members
largely preceded the discovery of their function. Aside from
IL-1 receptor antagonist (IL-1Ra), all other IL-1 family cytokines
lack a secretion signal peptide and either require cleaving and
activation or are active in their precursor form. Signaling typically
occurs when cytokines bind their primary receptor and recruit a
co-receptor, which induces signaling through the Toll/interleukin
1 receptor (TIR) domain resulting in mitogen-activated protein
kinase (MAPK) and nuclear factor kappa B (NF-κB) activation
(Fields et al., 2019). In this review, we describe each IL-1
subfamily (IL-1, IL-18, and IL-36) and investigate the mechanism
of induction and functional role of each subfamily member
within the context of fungal disease.

THE IL-1 SUBFAMILY

Interleukin-1 was the first interleukin to be identified and
represented a huge leap forward in immunology. The IL-
1 gene cluster encodes the pro-inflammatory cytokines IL-1α

and IL-1β, and anti-inflammatory receptor antagonist IL-1Ra
(Garlanda et al., 2013). IL-1α/β bind their receptor IL-1R1,
which recruits IL-1RAcP and permits signaling through both
receptor’s TIR domain (Fields et al., 2019). This domain is
well conserved throughout IL-1 and Toll-like receptor (TLR)
signaling where it drives inflammation (Heguy et al., 1992).
IL-1α/β are recognized as major inflammatory cytokines that
mediate innate and adaptive immunity, and also general health.
IL-33, a recent addition to the IL-1 subfamily, was discovered in
2005 and signals through its receptor IL-1R4 (formerly ST2) in
complex with IL-1RAcP. IL-33 has many functional capabilities
which influence barrier integrity and inflammation (Mehraj et al.,
2016). IL-33 signaling has been implicated in numerous allergic-
type diseases and, along with IL-1α/β, has recently been shown as
a mediator of adaptive immunity (Kamijo et al., 2013).

IL-1 Subfamily Expression and
Processing
Although IL-1α and IL-1β signal through the same receptor and
have similar biological activities, these two pro-inflammatory
cytokines differ in several aspects. IL-1α is constitutively
expressed in epithelial and mesenchymal cell types and
expression increases in response to growth factors, inflammation
or stress-associated stimuli (Di Paolo and Shayakhmetov, 2016).
Here, IL-1α is released from cells during damage or necrosis
(Chen et al., 2007). IL-1α also possesses a nuclear localization

signal and can interact with histone acetyltransferase complexes
to mediate transcription of cytokines including IL-6 and IL-8
(Werman et al., 2004). However, nuclear translocation of IL-1α

during apoptosis inactivates IL-1α signaling, likely sequestering
it and blocking inflammatory effects (Cohen et al., 2010). IL-
1α also functions as an active membrane bound precursor
promoting inflammation through IL-1R1 binding. Membrane-
associated IL-1α is present on the surface of numerous immune
cells including macrophages (Kurt-Jones et al., 1985), monocytes,
and B lymphocytes (Zola et al., 1993).

Interleukin-1β is mainly produced by mononuclear
phagocytes as an inactive precursor and activated via a two-step
process. During the initial priming step, pro-IL-1β is induced
by the recognition of pathogen-associated molecular patterns
(PAMPs) by pattern recognition receptors (PRR) (Takeuchi
and Akira, 2010). Activation requires pro-IL-1β cleavage by
the intracellular cysteine protease caspase-1 and is regulated
by inflammasomes (Franchi et al., 2009). Although caspase-1
is the main protease responsible for pro-IL-1β activation, Fas
stimulation is also able to induce secretion of biologically active
IL-1β from caspase-1-deficient murine macrophages (Bossaller
et al., 2012). Once activated, IL-1β is secreted through one or
more non-conventional secretory pathways (Lopez-Castejon
and Brough, 2011). Here, another role for caspase-1 has been
described in that it can cleave the pore forming toxin gasdermin
D, which induces pore formation in the plasma membrane,
and pyroptosis to enhance IL-1β release (Heilig et al., 2018).
Importantly, the release of pro-IL-1β upon membrane disruption
has functional consequences. Multiple proteases, mainly derived
from neutrophils and mast cells, can cleave and activate pro-IL-
1β in the extracellular environment which drives inflammation
(Stehlik, 2009).

Interleukin-33 is constitutively expressed in multiple cell types
but is mainly found in fibroblasts, epithelial and endothelial
cells (Moussion et al., 2008), with expression further increasing
during inflammation (Liew et al., 2016). In macrophages, IL-33
induction was dependent on glutaredoxin-1/TRAF6 and NF-κB
signaling (Weinberg et al., 2019). Similar to IL-1α, IL-33 has
dual functions acting as a transcriptional repressor of NF-κB
following nuclear localization (Ali et al., 2011) and enhancing
inflammation after being released from damaged or necrotizing
cells (Moussion et al., 2008). Again like IL-1α, IL-33 is also
sequestered during apoptosis (Bessa et al., 2014). Interestingly,
caspase-1 IL-33 cleavage attenuated inflammation (Luthi et al.,
2009), while neutrophil proteases enhanced biological activity
(Lefrancais et al., 2012). Following the release of IL-1α and IL-33,
and the release and activation of IL-1β, the cytokines drive potent
immunological functions.

The Immunological Function of the IL-1
Subfamily
The first discovered IL-1 cytokine was named hemopoietin-1
after its signaling drove myeloid “emergency” responses
(Pietras et al., 2016). Since then, the sub-family has expanded
and IL-1α/β are now known to promote myelopoiesis and
inflammation, lead to the release of antimicrobial compounds,
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FIGURE 1 | A schematic representation of IL-1 family receptors, co-receptors, and ligands. Each ligand, receptor and co-receptor are separated into their
appropriate IL-1 subfamily. An arrow indicates the induction of signaling; a flat line indicates the blocking of signaling. The latest nomenclature is used, for
previous/alternative nomenclature see Table 1.

TABLE 1 | Nomenclature and function of IL-1 family members.

Cytokine Primary receptor Co-receptor Effect

Name Alternate name(s) Name Alternate name(s) Name Alternate name(s)

IL-1α IL-1F1 IL-1R1/IL-1R2 (Decoy) IL-1RAcP IL-1R3 Pro-inflammatory

IL-1β IL-1F2 IL-1R1/IL-1R2 (Decoy) IL-1RAcP IL-1R3 Pro-inflammatory

IL-1Ra IL-1F3 IL-1R1 Anti-inflammatory

IL-33 IL-1F11 IL-1R4 ST2 IL-1RAcP IL-1R3 Pro-inflammatory

IL-18 IL-1F4 IL-18Rα IL-1R5 IL-18Rβ IL-1R7 Pro-inflammatory

IL-37 IL-1F7 IL-18Rα IL-1R5 IL-1R8 SIGIRR Anti-inflammatory

IL-36α IL-1F6 IL-36R IL-1Rrp2/IL-1R6 IL-1RAcP IL-1R3 Pro-inflammatory

IL-36β IL-1F7 IL-36R IL-1Rrp2/IL-1R6 IL-1RAcP IL-1R3 Pro-inflammatory

IL-36γ IL-1F8 IL-36R IL-1Rrp2/IL-1R6 IL-1RAcP IL-1R3 Pro-inflammatory

IL-36Ra IL-1F5 IL-36R IL-1Rrp2/IL-1R6 Anti-inflammatory

IL-38 IL-1F10 IL-36R IL-1Rrp2/IL-1R6 Anti-inflammatory

and mediate immunity (Dinarello, 2018). Following the release of
IL-1α and active IL-1β, the cytokines bind their receptor IL-1R1
and drive MAPK and NF-κB signaling through the myeloid
differentiation primary response (MyD88) adaptor protein
(Cohen, 2014). Two mechanisms antagonize the effects of
IL-1α/β. Firstly, IL-1Ra binds IL-1R1 to prevent IL-1α/β-IL-1R1
interactions. The importance of IL-1Ra is highlighted in IL-1Ra
deficient mice, which spontaneously develop Th17-associated
rheumatoid arthritis (Koenders et al., 2008). Secondly, IL-1R2
acts as a decoy receptor and lacks a TIR domain, therefore
blocking downstream signaling. Overexpressing IL-1R2 in mice
reduced inflammation in numerous IL-1-induced inflammatory
diseases (Peters et al., 2013).

While IL-1α/β have central roles in driving inflammation
and mediating immune responses, each cytokine possesses
distinct function. IL-1α acts as an alarmin and is the principal

trigger of inflammation following cell membrane disruption or
cellular necrosis. In this context, constitutively expressed IL-1α is
released from cells and drives neutrophil recruitment and local
inflammation (Chen et al., 2007; Eigenbrod et al., 2008). IL-1β

signaling promotes the recruitment of monocytes, macrophages,
and neutrophils; enhanced phagocytosis and killing; increased
reactive oxygen species/nitrogen oxide synthase (ROS/NOS)
production; and Th1 and Th17 immunity (Garlanda et al., 2013;
Altmeier et al., 2016; Dinarello, 2018). Mice deficient in caspase-
1 were protected from Th1 and Th17-associated experimental
autoimmune encephalomyelitis (Gris et al., 2010) and mice
deficient in IL-1Ra developed spontaneous Th17-associated
autoimmunity (Horai et al., 2000). IL-1 is also associated with
numerous autoinflammatory diseases, with blockade of IL-1
signaling rapidly improving symptoms (Dinarello et al., 2012).
Interestingly, even when the autoimmune disease is primarily
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tumor necrosis factor (TNF)/IL-6 driven (as in rheumatoid
arthritis), blocking IL-1β signaling reduced disease severity
(Dinarello, 2011). This highlights the central role of IL-1α/β
mediating immunity and health.

Interleukin-33 acts in a similar fashion to IL-1α, being
released from barrier cells and functioning as a damage-
associated molecular pattern (DAMP). Here, IL-33 activates
T-cells directly through PRR/IL-1R4 binding or indirectly
through local inflammatory responses. Immune cells such as
mast cells, basophils, dendritic cells, macrophages, natural killer
cells, and Th2 cells are receptive to IL-33 and express IL-1R4
(Martin and Martin, 2016). The soluble form of IL-1R4 sequesters
“off-target” IL-33 and antagonizes IL-33 activity (Kakkar and
Lee, 2008). IL-33 was originally identified as driving allergic
and anti-helminthic immunity but is also a key mediator of
adaptive immunity. During acute infection, IL-33 promotes
tissue remodeling and drives Th1, Th2, and T regulatory
(Treg) responses. In contrast, during chronic infection, IL-33
enhanced local inflammation, tissue damage and fibrosis (Li et al.,
2014). IL-33 signaling has been implicated in numerous diseases
associated with exacerbated inflammation including allergic-
asthma (Salter et al., 2016), Crohn’s disease (Pastorelli et al.,
2010), and rheumatoid arthritis (Tang et al., 2013). While the
broad and potent consequences of IL-1α/β and IL-33 signaling
are known, the induction of these cytokines during fungal
infection is less clear.

Fungal Induction of the IL-1 Subfamily
Numerous fungal pathogens infect mucosal barrier sites and
systemic disease often results from a loss in barrier integrity.
It is therefore unsurprising that IL-1α/β and IL-33 have been
implicated in anti-fungal immunity. All three cytokines are
induced following Aspergillus fumigatus infection, a pathogen
that typically infects mucosal surfaces. IL-1α expression in the
lung is positively correlated with A. fumigatus strain virulence
(Caffrey-Carr et al., 2017). This is likely a result of conidial
germination and subsequent damage to mucosal barriers. IL-1β

was rapidly induced and sustained for 2 days in an A. fumigatus
keratitis model. Here, IL-1β induction was dependent on Dectin-
1 signaling and c-Jun N-terminal kinase (JNK) phosphorylation
(Yuan et al., 2017). Numerous PRRs that induce IL-1β signaling,
including C-type lectin-like receptors (CLRs) and TLRs, are
involved during A. fumigatus infection (Steele et al., 2005).
The requirement of CLRs for IL-33 induction appears more
complex. During acute A. fumigatus infection the induction of
IL-33 occurred independently of Dectin-1 (Garth et al., 2017),
while induction during chronic allergic-type infection required
Dectin-1 (Lilly et al., 2012).

Candida albicans infection also results in IL-1α/β and IL-
33 induction. IL-1α induction has been described in oral and
vaginal epithelial cells (Steele and Fidel, 2002) and required
membrane disruption and Ca2+ influx (Gross et al., 2012).
Here, the peptide toxin candidalysin, secreted when C. albicans
forms hyphae, disrupts host membranes resulting in IL-1α release
(Moyes et al., 2016). IL-33 is also induced during C. albicans
infection at barrier sites (Le et al., 2012) and likely requires
candidalysin expression in a similar manner to IL-1α. The

induction of IL-1β in monocytes was only achieved with live
Candida and does not require CLR involvement (Castro et al.,
1996). In contrast, dendritic cells (that require two signals
for IL-1β induction and activation) were dependent on spleen
tyrosine kinase (Syk) signaling for IL-1β induction during
C. albicans infection (Gross et al., 2009). In macrophages, IL-1β

is induced by C. albicans, C. tropicalis, and C. krusei, although
the requirement for CLRs is disputed (Joly et al., 2009; Kasper
et al., 2018). As such, there are several mechanisms by which
Candida induce inflammasome activation and IL-1β release
(Camilli et al., 2020). One particularly interesting mechanism
involves the non-tyrosine kinase Tec which was found to activate
non-canonical caspase-8 exclusively following fungal challenge
(Zwolanek et al., 2014). IL-1α/β induction during mucosal
C. albicans infection occurs through NF-κB and a biphasic MAPK
response. Activation of NF-κB and the first MAPK c-Jun phase
was dependent on fungal PAMP recognition, while the second
MAPK MKP1/c-Fos phase was dependent on hyphae formation
and fungal burden. This identifies an interesting mechanism by
which the host may detect the switch from commensalism to
pathogenicity (Moyes et al., 2010). A similar biphasic recognition
mechanism has not yet been described for other fungal infections,
although such a mechanism may also differentiate between
A. fumigatus conidia and hyphae during infection.

Interleukin-1 subfamily members are also induced by
Cryptococcus neoformans, Paracoccidioides brasiliensis,
and Paracoccidioides lutzii [the causative agents of
paracoccidioidomycosis (PCM)], and Sporothrix schenckii
(the causative agent of sporotrichosis). IL-1α/β and IL-33 are
induced in both mucosal and systemic compartments during
C. neoformans infection (Flaczyk et al., 2013; Alvarez et al.,
2019). During P. brasiliensis challenge, IL-1β was induced in
human monocytes, macrophages and plasmacytoid dendritic
cells (pDC). As was found with Candida, CLRs and Syk signaling
were required for pDC IL-1β induction (Kurokawa et al.,
2007; Preite et al., 2018). IL-1β release from macrophages was
caspase-1 dependent; however, a non-canonical IL-1β processing
pathway requiring Dectin-1 and caspase-8 activity has been
described (Ketelut-Carneiro et al., 2018). P. brasiliensis challenge
also induced IL-1α release through a macrophage-derived
IFN-β/procaspase-11 pathway which enhanced pore-mediated
cell lysis (Ketelut-Carneiro et al., 2019). Patients with severe
PCM possessed high levels of IL-1β, IL-33, and IL-1R4 in serum
which decreased following anti-fungal therapy (Silva et al.,
1995; Alves et al., 2018). Recently, IL-1β has been implicated in
S. schenckii infection. Here, IL-1β was induced in a caspase-1
dependent manner with increased IL-1β correlating with higher
fungal burden (Goncalves et al., 2015). While it is clear the IL-1
subfamily is induced by fungal pathogens and contributes to
fungal immunity, the sequence and mechanism of IL-1 subfamily
induction during fungal challenge is still unclear.

The Role of the IL-1 Subfamily in Fungal
Immunology
Interleukin-1α/β drive crucial immune mechanisms and are
central mediators of immunity. Following their induction during
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fungal infection, both IL-1α/β play a key role orchestrating
the immune response. While IL-33 is induced during fungal
disease, its functional role is not yet fully delineated. Much of
our understanding of the IL-1 subfamily during fungal disease
has been revealed using mice deficient in IL-1 components.
Mice lacking IL-1R1 exhibit reduced neutrophil recruitment and
emergency granulopoieses following oropharyngeal candidiasis
(OPC) challenge. Here, both IL-1β from hematopoietic cells
and IL-1α from non-hematopoietic cells promoted neutrophil
recruitment (Altmeier et al., 2016). However, neutrophil
recruitment is not always protective, since in vulvovaginal
candidiasis (VVC) IL-1α promotes damaging inflammation and
neutrophil recruitment (Barousse et al., 2004). In agreement,
mutations increasing Nod-like receptor family pyrin domain
containing 3 (NLRP3) inflammasome activity are associated with
VVC in patients (Jaeger et al., 2016; Roselletti et al., 2017).

Mice deficient in IL-1α or IL-1β were more susceptible
to systemic C. albicans infection, with mice lacking both IL-
1α/β possessing the highest fungal burdens and lowest survival.
Interestingly, IL-1α/β deficient mice continued to possess higher
fungal burdens in a neutropenic model of systemic C. albicans
infection, suggesting the role of IL-1α/β is not just in neutrophil
recruitment. Instead, IL-1α was found to activate macrophages
and IL-1β enhanced neutrophil killing, and both IL-1α and
IL-1β were involved in the development of IFN-γ Th1 and
IL-10 Th2 responses (Vonk et al., 2006). A role for epithelial
and hematopoietic IL-1α/β has also been described to promote
essential Th17 immunity during mucosal Candida infection
(Bishu et al., 2014; Verma et al., 2017, 2018). In patients,
mutations in caspase recruitment domain-containing protein
9 (CARD9) or TLR1 (pathways that lead to IL-1β induction)
resulted in defective Th17 responses and increased Candida
susceptibility (Glocker et al., 2009; Plantinga et al., 2012).
Th17 immunity is also vital during Coccidioides infection.
Here, Th17 responses were dependent on CARD9 and IL-
1R1, with IL-1R1 deficient mice lacking Th17 immunity and
being highly susceptible to C. immitis infection (Hung et al.,
2014; Viriyakosol et al., 2018). IL-1R1 deficient mice are highly
susceptible to C. neoformans infection; however, susceptibility
was associated with the induction of harmful Th2 immunity
(Shourian et al., 2017).

Both IL-1α and IL-1β drive protective immunity during
PCM. In vivo models of P. brasiliensis infection determined
mice with impaired IL-1β responses had higher fungal burden
and a dysregulated inflammatory response. IL-1α promoted
local inflammatory responses, nitric oxide production and
Th17 immunity (Ketelut-Carneiro et al., 2018, 2019). Whilst
signaling through IL-1R1 is required for protective immunity
against pulmonary A. fumigatus infection; unlike Candida and
P. brasiliensis infection, only IL-1α was required. Here, IL-
1α promoted neutrophil and macrophage recruitment through
monocyte-induced CXCL1 signaling. Administration of CXCL1
partially restored neutrophil recruitment in IL-1R1 deficient
mice (Caffrey et al., 2015), while mice lacking inflammasome
components, and thus IL-1β activation, cleared A. fumigatus
infection (Caffrey et al., 2015). However, IL-1β may play a
key role during systemically disseminated Aspergillus infection,

as was described with systemic Candida infection (Vonk
et al., 2006). The Dectin-1 Y238X polymorphism, which
results in diminished Dectin-1 activity and reduced IL-
1β responses, significantly enhanced patient’s Aspergillus and
Candida susceptibility (Plantinga et al., 2009; Cunha et al., 2010).

While the potent effects of IL-1α/β are clear during fungal
disease, the effect of IL-1Ra and IL-1R2 are less well explored.
Patients with severe fungal-sensitized asthma have higher
levels of IL-1α/β and IL-1Ra, indicating the antagonist is
involved. In an animal model of fungal-sensitized asthma, a
lack of IL-1Ra enhanced Th1 and Th17 immunity, increased
neutrophil recruitment and exacerbated disease. Treatment with
recombinant IL-1Ra (Anakinra) reduced these responses and
resolved disease. In the same model, IL-1R1 deficient mice
displayed improved lung function, suggesting IL-1α/β enhance
chronic disease (Godwin et al., 2019). IL-1Ra also has a protective
role in VVC by restraining activation of damage-enhancing
NLRP3 through an IL-22/NLR family CARD domain-containing
protein 4 (NLRC4)/IL-1Ra pathway. Here, mice deficient in IL-
1Ra displayed enhanced disease that could be rescued with the
administration of Anakinra (Borghi et al., 2015). While the role
of IL-1Ra and IL-1R2 in balancing IL-1 agonist activity during
fungal disease requires further investigation, early indications
suggest IL-1Ra and IL-1R2 play important roles in mediating and
resolving potentially damaging inflammation during acute and
chronic disease.

The role of IL-33 signaling is now being explored in the
context of fungal infection. During C. neoformans infection,
IL-1α/β drives protective Th17 immunity and reduces Treg
responses, while IL-33 promotes the suppressive function of
Treg cells (Alvarez et al., 2019) and enhances IL-5 and IL-
13-derived Th2 immunity. This IL-33-Th2 response resulted
in increased fungal burdens and reduced survival in murine
models (Flaczyk et al., 2013). A deleterious role for IL-33 has
also been described during acute and chronic A. fumigatus
disease. Mice deficient in IL-33 produced more IL-17A and IL-
22 and displayed enhanced fungal clearance when challenged
with acute A. fumigatus infection. Furthermore, blocking IL-
1R4 in a model of Aspergillus-sensitized asthma improved airway
hyperresponsiveness and fibrosis (Ramaprakash et al., 2011). In
contrast, pre-treatment of mice with IL-33 prior to peritoneal
and systemic C. albicans infection resulted in fungal clearance
and improved survival. Here, IL-33 enhanced the recruitment
of neutrophils and increased their killing capability while also
mediating T-cell tolerance (Le et al., 2012; Tran et al., 2015).

Therapeutic Potential of the IL-1
Subfamily
The activity of IL-1α, IL-1β, and IL-33 must be carefully
regulated. Protection from pathogen-derived and
autoinflammatory diseases likely involves a balance of IL-1
subfamily agonist and antagonist activity. Excessive IL-1/Th17
signaling results in numerous diseases including asthma, chronic
obstructive pulmonary disease (Gurczynski and Moore, 2018),
inflammatory bowel disease (IBD), and psoriasis (Beringer et al.,
2016). As such, the IL-1/Th17 pathway has been therapeutically
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targeted. Anakinra blocks IL-1α/β activity and is used as a
therapy in multiple inflammatory diseases (Dinarello et al.,
2012). Similarly, targeting IL-1 signaling components is known
to reduce inflammation and pathology in fungal-induced
respiratory disease (Gresnigt et al., 2016; Griffiths et al., 2018;
Godwin et al., 2019). Alongside Anakinra, numerous other
IL-1 therapeutic strategies have been investigated. Examples
include EBI-005, an IL-1R1 antagonist (Hou et al., 2013),
Rilonacept (trade name Arcalyst), a decoy IL-1R1 (Economides
et al., 2003), SL1067, a DNA aptamer that disrupts IL-1α (Ren
et al., 2017), AF10847, a peptide inhibitor of IL-1R1 (Vigers
et al., 2000), and AMG108, an antibody inhibitor of IL-1R1
(Cohen et al., 2011). IL-33 also has therapeutic potential and
was effective in supporting immune defenses prior to C. albicans
infection (Tran et al., 2015). The exogenous administration
of IL-1 sub-family agonists or antagonists has potential to
enhance protective anti-fungal immunity or resolve excessive,
damaging immune responses. Another therapeutic route may
involve the modulation of receptors or proteins that regulate
IL-1 sub-family signaling. A clear link between CLRs and
IL-1α/β signaling exists, as evidenced by CARD9-deficient
patient’s reduced IL-1α/β expression and susceptibility to fungal
infection (Drummond et al., 2015). Furthermore, Dectin-1-
induced IL-1β protected against mucosal Candida infections
becoming systemic and lethal (Hise et al., 2009). In summary,
modulating mediators of IL-1 sub-family induction, translation
and processing may provide novel therapeutic targets in the fight
against fungal infections.

THE IL-18 SUBFAMILY

Interleukin-18 was first described in 1989 as IFN-γ inducing
factor before it was re-named when its function was described
as pro-inflammatory (Dinarello, 2018). IL-18 and IL-1β share
similar structures and signaling pathways, and are produced
as inactive precursors requiring caspase-1 activation; however,
the two cytokines are functionally distinct (Dinarello, 2019).
IL-18 forms a low affinity signaling complex by binding IL-
18Rα, the ligand for mature IL-18. A high affinity signaling
complex is formed in cells that also express the co-receptor IL-
18Rβ (Kaplanski, 2018). Similar to IL-1α/β, signal transduction
requires the TIR domain and drives NF-κB and MAPK signaling
(Hoshino et al., 1999; Wyman et al., 2002). IL-18 is regulated
by IL-18 binding protein (IL-18BP), a soluble protein with
high affinity for IL-18 (Krumm et al., 2014), and IL-37 which
binds IL-18Rα and inhibits recruitment of IL-18Rβ. Moreover,
IL-37 binding of IL-18Rα induces recruitment of IL-1R8 (also
called SIGIRR), which induces anti-inflammatory signaling
(Nakanishi, 2018).

IL-18 Subfamily Expression and
Processing
Interleukin-18 is a pleiotropic cytokine that plays a central
role in immunity (Novick et al., 2013). Like IL-1β, IL-18 is
produced as an inactive precursor and must be processed by
the inflammasome/caspase-1 complex in order to be activated

and secreted (Franchi et al., 2009). However, unlike IL-1β,
IL-18 is constitutively expressed by several hemopoietic and
non-hemopoietic cells, including macrophages, dendritic cells,
Kupffer cells, keratinocytes, osteoblasts, adrenal cortex cells,
intestinal epithelial cells, microglial cells, and synovial fibroblasts
(Gracie et al., 2003). Fas stimulation was able to induce
secretion of biologically active IL-18 in caspase-1-deficient
murine macrophages (Bossaller et al., 2012). In addition,
proteases secreted by the inflammatory cell infiltrate contribute
to inflammation via activation of IL-18 (Omoto et al., 2006,
2010). IL-18 can be secreted from monocytes and macrophages
in its active form (Fantuzzi et al., 1999), or released from dying
endothelial and epithelial cells in its precursor form before being
activated outside the cell (Sugawara et al., 2001). IL-37 acts as an
IL-18 antagonist and is found in many human tissues (Dinarello
et al., 2016), although more specific roles for IL-37 reducing
inflammation in the lung, spleen, plasma and in dendritic cells
have been described (Nold et al., 2010). IL-37 is similar to IL-
1α and IL-33, functioning as a dual-action cytokine that does not
require activation (Li et al., 2015), however, caspase-1 processing
was required for IL-37 to translocate to the nucleus to modulate
transcription. IL-37 can be released in a processed or precursor
form, resulting from exogenous administration of ATP (Bulau
et al., 2014). IL-18BP also acts as an IL-18 antagonist and contains
a signal peptide that directs secretion into the extracellular
environment (Novick et al., 2001).

The Immunological Function of the IL-18
Subfamily
Following induction and activation, IL-18 signaling drives
inflammation and promotes innate and adaptive immunity.
Accordingly, IL-18 signaling can direct robust anti-
pathogen immunity but is also associated with numerous
autoinflammatory diseases. A clear role for IL-18 promoting Th1
immunity through IFN-γ induction has been described during
models of viral and bacterial infection. In addition, IL-18BP is
targeted by viruses to reduce host-protective IL-18 mediated
immunity (Born et al., 2000; Reading and Smith, 2003). Mice
deficient in IL-18 components were highly susceptible to viral
and bacterial challenge (Mastroeni et al., 1999; Kinjo et al., 2002;
Freeman et al., 2015). However, IL-18 can only induce IFN-γ
and Th1 immunity in combination with IL-12 or IL-15 signaling;
IL-18 signaling alone enhances Th2 immunity (Nakanishi et al.,
2001), which is typically detrimental for fungal clearance. An
IL-18 synergy primarily with IL-12 but also IL-15 exists with each
cytokine modulating the others transcription, expression, and
receptor expression (Fantuzzi et al., 1999). Recently, IL-18 has
also been shown to drive IL-17 production from γδ T-cells and
promote Th17 responses (Sutton et al., 2012), modulate adhesion
molecules in endothelium (Carrascal et al., 2003), promote nitric
oxide (NO) synthesis (critical for viral and bacterial killing) and
enhance production of numerous chemokines (Kaplanski, 2018).
IL-18 contributes to autoimmune disease including Type-1
diabetes, psoriasis, IBD, asthma and numerous myocardial and
kidney diseases (Nakanishi et al., 2001; Garlanda et al., 2013).
Here, increased expression of IL-18 and IL-18BP has been
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observed suggesting that poor agonist/antagonist balance may
result in disease. In agreement, the majority of IL-18 associated
autoimmune diseases result from excess Th2 immune responses
(Monteleone et al., 1999; Tanaka et al., 2001; Gerdes et al., 2002),
potentially from IL-18 activity without IL-12 or IL-15.

Interleukin-37 has a broad anti-inflammatory effect limiting
IL-18 responses. Reducing IL-37 in human cells increased the
production of cytokines (IL-1β/TNF/IL-6) induced by IL-1 and
TLRs (Nold et al., 2010). IL-37 is the only member of the
IL-1 family not to have a mouse homolog, as such in vivo
work is only possible with transgenic IL-37 models. Here, the
anti-inflammatory effects of IL-37 have been demonstrated to
reduce colitis, metabolic syndrome, acute lung injury, myocardial
infarction, and asthma (Wu et al., 2014; Li et al., 2015). IL-18BP
also acts to reduce IL-18 agonist activity and an imbalance of IL-
18 and IL-18BP has been described in Wegener’s granulomatosis
and systemic lupus erythematosus (Novick et al., 2009, 2010).
Administration of IL-18BP reduced inflammation in a model
of rheumatoid arthritis; however, at high concentrations IL-
18BP also bound IL-37 and the anti-inflammatory effect was
lost (Banda et al., 2003). The functional implications of IL-18
signaling driving inflammation, innate and adaptive immune
responses in autoimmune and anti-pathogen disease are clear.
However, the induction, function, and balance of the IL-18
subfamily during fungal disease is less well explored.

Fungal Induction of the IL-18 Subfamily
Interleukin-18 is a crucial cytokine that mediates innate and
adaptive immunity and likely plays a key role during fungal
infection. The cytokine is expressed in cells of mesenchymal
origin and hematopoietic cells and therefore may share functions
with both IL-1α and IL-1β. In agreement, the induction
of IL-18 has been observed during systemic and mucosal
fungal infections. IL-18 was induced following acute Aspergillus
challenge and during a chronic model of fungal-sensitized
asthma (Cenci et al., 1997, 1998). A recent study revealed IL-
18 expression increased rapidly following Aspergillus challenge
peaking at 24 h before resolving over the next 48 h (Cheng
et al., 2020). However, the signaling events leading to IL-18
induction in these models has not been defined. Aspergillus
conidia frequently interact with barrier surfaces and systemic
disease arises from germination in this setting. Understanding the
induction of IL-18 as Aspergillus conidia persist, germinate, and
promote disease may lead to important findings.

Interleukin-18 is also induced during Candida infection.
Oral epithelial cells constitutively expressed IL-18 mRNA and
precursor IL-18. During C. albicans challenge expression of IL-
18 mRNA and pre-IL-18 was reduced while active IL-18 was
released in a caspase-1 dependent manner (Rouabhia et al., 2002).
A similar effect was seen in a model of human oral mucosa
where C. albicans challenge resulted in active IL-18 expression. In
agreement, patients with oral candidiasis possess increased levels
of active IL-18 in saliva samples (Tardif et al., 2004). There is
limited evidence describing the signaling events required for IL-
18 induction in fungal disease. Recent investigation determined
that Dectin-1 signaling and activation of the non-canonical NF-
κB subunit RelB resulted in IL-18 induction (Shen et al., 2020);

however, little else is known. Investigating the mechanism of IL-
18 induction during mucosal and systemic Candida disease may
provide insight into protective anti-Candida immunity. Aside
from the induction of IL-18 during Aspergillus and Candida
disease, IL-18 has been functionally implicated in P. brasiliensis
infection (Panagio et al., 2008; Alves et al., 2018), S. schenckii
infection (Goncalves et al., 2015), and C. neoformans infection
(Kawakami et al., 2000b; Wang et al., 2011), suggesting at the
very least a general role in host immune response. Whether IL-37
and IL-18BP are induced during fungal disease currently unclear;
however, increased serum IL-37 was identified in PCM patients
with severe disease (Alves et al., 2018).

The Role of the IL-18 Subfamily in Fungal
Immunology
While the induction of IL-18 requires further investigation, the
functional consequences of IL-18 signaling during fungal disease
highlight the importance of this IL-1 subfamily member. During
acute Aspergillus lung infection, IL-18 promoted protective
immunity and enhanced Th1 immunity and neutrophil
recruitment in concert with IL-12 and IFN-γ (Blease et al.,
2001). Skewing toward Th2 immunity during acute Aspergillus
infection is non-protective and promotes chronic disease
(Cenci et al., 1998). A study of acute Aspergillus infection
determined 72 h after infection IL-18 mediates protection
independently of IFN-γ, suggesting that the IL-18/IFN-γ axis
occurs rapidly and IL-18 continues to mediate immunity
independently of IFN-γ if the infection persists (Brieland et al.,
2001). However, in immunocompromised models, IFN-γ was
essential throughout infection and exogenous administration
of IFN-γ was consistently protective (Nagai et al., 1995; Cenci
et al., 1997, 1998). In an Aspergillus-sensitized asthma model,
IL-18 was again found to be protective and acted without
IL-12 or IFN-γ to enhance Aspergillus clearance. Depleting
IL-18 in this model increased fungal burden and resulted in
persistent airway hyperactivity and fibrosis (Blease et al., 2001).
These results suggest IL-18 is protective during both acute and
chronic Aspergillus disease but provides protection through
distinct mechanisms.

Interleukin-18 is also vital for protection during Candida
infection. Similar to Aspergillus infection, IL-18 induced
protective Th1 immunity against Candida. Mice deficient in
caspase-1 displayed reduced Th1 responses and were susceptible
to Candida challenge. Here, the exogenous administration of
IL-18, without IL-1β, restored Th1 responses and protection
(Mencacci et al., 2000). In addition, the exogenous administration
of IL-18BP reduced IFN-γ-derived Th1 immunity in human
whole blood cultures (Netea et al., 2002) and in mice
(Fantuzzi et al., 1999). In agreement, administration of anti-
IL-18 antibodies prior to systemic Candida infection depleted
IFN-γ responses and enhanced fungal disease (Stuyt et al.,
2002), whereas increasing IL-18 enhanced IFN-γ and Th1
responses which ultimately promoted protection (Stuyt et al.,
2004). Interestingly, the role for IL-18 mediating neutrophil
recruitment is unclear with one study suggesting IL-18 is
uncoupled from neutrophil recruitment (Netea et al., 2003).
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This aligns with the protective role of IL-18 during VVC,
where neutrophil recruitment enhances disease. VVC disease
results from unrestrained NLRP3 activation/continuous IL-
1β stimulation and is regulated by the IL-22/NLR4C axis.
In this setting, IL-18 acts in a cross-circuit with IL-22 with
both cytokines regulating each other and reducing NLRP3
activity (Borghi et al., 2019). IL-18 appears to be broadly
protective during Candida infection, although, as was found with
Aspergillus, IL-18 acts through many distinct mechanisms to
promote immunity.

Interleukin-18 signaling has also been described during
C. neoformans and P. brasiliensis infection. IL-18 deficient mice
exhibit increased C. neoformans fungal burdens and reduced
IFN-γ/IL-12 responses (Kawakami et al., 2000a,b). In addition,
IL-18R deficient mice were more susceptible to C neoformans
than IL-1R deficient mice, suggesting IL-18 and not IL-1α/β
signaling mediates C. neoformans immunity (Wang et al., 2011).
While IFN-γ and Th1 immunity are vital during PCM, the
role of IL-18 is controversial. IL-18 deficient mice on a BALB/c
background were protected from PCM challenge and displayed
increased survival and reduced fungal burden (Panagio et al.,
2008). In contrast, IL-18 deficient mice on a C57BL/6 background
were susceptible to PCM and displayed enhanced fungal burdens
(Ketelut-Carneiro et al., 2015). In patients with PCM, increased
IL-18 in serum correlated with more severe forms of disease
(Corvino et al., 2007), suggesting the C57BL/6 mouse model may
be more appropriate.

A role for IL-37 has been described in a murine model
of pulmonary aspergillosis. Here, administration of IL-37
decreased NLRP3 activity and IL-1β expression through the
SIGIRR signaling pathway and resulted in reduced inflammatory
cell recruitment. This reduced tissue damage during acute
Aspergillus infection, and dampened adaptive responses in
chronic Aspergillus infections (Moretti et al., 2014). SIGIRR
signaling has been described to prevent lethal dysregulated IL-
1 dependent Th17 responses in fungal disease (Warris et al.,
2005). The induction and function of IL-18BP and IL-37
during fungal disease requires investigation but these antagonists
may provide important functions mediating IL-18 signaling,
enhancing immune responses, and resolving inflammatory effect.
Numerous viruses target IL-18BP as an immune evasion strategy;
whether fungi can do the same would be interesting to determine.

Therapeutic Potential of the IL-18
Subfamily
The exogenous administration of IL-18 enhances immunity in
systemic models of C. albicans infection. This strategy may
also provide protection during Aspergillus and Cryptococcus
infection where IL-18 responses also confer protection. IL-18
therapy may be targeted at barrier sites or systemically once
any difference in IL-18 induction and function at these two
sites is determined. Although the exogenous administration
of IL-18BP and anti-IL-18 antibodies enhanced acute fungal
susceptibility, both these IL-18 depleting strategies promote the
resolution of autoinflammatory disease and improve chronic
autoimmune disease (Kanai et al., 2001; Sivakumar et al., 2002).

Although no IL-18 therapeutics are currently licensed, IL-18BP
therapy was examined in rheumatoid arthritis and psoriasis
patients with positive tolerance and safety profiles (Tak et al.,
2006). IL-37 has clear therapeutic potential as the administration
of IL-37 during Aspergillus infection promoted beneficial
inflammatory resolution in both acute and chronic disease
(Moretti et al., 2014).

THE IL-36 SUBFAMILY

Interleukin-36 is a recent addition to the IL-1 superfamily that
was discovered and characterized 20 years ago. Initially, IL-36
was thought to be similar to IL-1 as the two members of the IL-1
family shared similar gene sequences, exon-intron arrangements
and predicted protein structure (Smith et al., 2000). Intriguingly,
however, these new IL-36 cytokines were unable to bind IL-1R
or any known orphan receptors in the IL-1 superfamily (O’Neill
and Dinarello, 2000). Shortly after, two studies determined
that IL-36 cytokines signal through a complex of IL-36R and
IL-1RAcP leading to NF-κB and MAPK activation, and IL-6
and IL-8 production (Debets et al., 2001; Towne et al., 2004).
We now know the IL-36 subfamily is comprised of four IL-
36 isoforms, three agonists IL-36α, IL-36β, and IL-36γ driving
proinflammatory functions (Towne et al., 2004), and the IL-36Ra
antagonist mediating inflammation (Debets et al., 2001). It is
worth noting that although the IL-36 subfamily was renamed in
2010, the previous nomenclature is still frequently encountered.
IL-36α, IL-36β, IL-36γ, and IL-36Ra were known as IL-1F6, IL-
1F8, IL-1F9, and IL-1F5, respectively, and IL-36R was named
IL-1Rrp2 (Dinarello et al., 2010). IL-38 also belongs to the IL-36
sub-family, signals through IL-36R and functions as a receptor
antagonist similar to IL-36Ra (van de Veerdonk et al., 2012).

IL-36 Subfamily Expression and
Processing
The IL-36 subfamily plays a key role driving immune responses
at mucosal barriers in the skin, respiratory tract and intestine
and are the only cytokines constitutively expressed in epithelium
(D’Erme et al., 2015). This location-specific expression is not
found with IL-1 or IL-18 (Gresnigt and van de Veerdonk, 2013).
IL-36 agonist expression is predominantly restricted to epithelial
cells (Towne et al., 2004; Blumberg et al., 2007), although
expression has also been observed in macrophages, dendritic
cells and monocytes (Smith et al., 2000; Vigne et al., 2011;
Mutamba et al., 2012; Boutet et al., 2016). IL-36R transcripts
are highly prevalent in keratinocytes and epithelial cell types
(Kumar et al., 2000; Towne et al., 2004), and have been
found in naïve CD4 + T-cell subsets (Vigne et al., 2012),
monocytes and dendritic cells (Vigne et al., 2011). IL-36 agonists
bind the same receptor complex and are expressed in similar
cells; adding each IL-36 agonist to keratinocytes resulted in
similar immunological outcomes (Swindell et al., 2018). However,
certain isoforms have been described in specific disease settings
such as IL-36α in arthritis (Frey et al., 2013) and IL-36γ in
psoriasis (D’Erme et al., 2015), with the blocking of IL-36γ

achieving a reduction in psoriasis-associated inflammation in a
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3D skin model (Todorovic et al., 2019). Whether there is isoform
redundancy or whether each isoform has its own role, potentially
associated with location or stimulus, remains unclear.

Interleukin-36 cytokines, like all members of the IL-1 family,
are expressed without a signal peptide and are not secreted
via the classical secretory pathway (Rubartelli et al., 1990).
Unlike IL-1 and IL-18, IL-36 cytokines do not possess a
leading peptide sequence required for caspase-1 cleavage and
are therefore regulated independently of the inflammasome
(Barton et al., 2000). However, a role for IL-36 cytokines
facilitating activation of the NLRP3 inflammasome has been
described (Chi et al., 2017). IL-36 cytokines are produced as
inactive, full-length proteins that must undergo N-terminal
truncation 9 amino acid residues upstream of a conserved
A-X-D motif for biological activity. This precise cleavage of
IL-36 cytokines increased their receptor affinity over 10,000-
fold (Towne et al., 2011). It is thought that IL-36 expression
is regulated by epidermal growth factor receptor (EGFR)
signaling (Satoh et al., 2020) and positive feedback loops
associated with Th17 cytokines (Carrier et al., 2011). There
has been a recent focus on proteases that can cleave and
activate IL-36 cytokines. Interestingly, blocking these proteases
in inflammatory disease may have therapeutic potential. The
neutrophil-derived proteases elastase and proteinase 3 appear
to cleave IL-36 agonist cytokines, although their non-specific
protease activity rarely activated IL-36. While neutrophils are
not abundantly resident at mucosal barrier surfaces, neutrophil
elastase was able to specifically activate IL-36Ra (Macleod et al.,
2016), suggesting neutrophils may mediate inflammation once
recruited. A clear role for the cysteine protease cathepsin S
activating IL-36 agonists has also been described. Crucially,
cathepsin S is found in fibroblasts and keratinocytes and its
activity was increased in psoriatic lesions (Ainscough et al.,
2017). IL-38 lacks a signal peptide and caspase-1 cleavage site,
suggesting that, unlike IL-36Ra, activation is not required. IL-38
is expressed mostly in the skin but has also been found in B-cells
(Lin et al., 2001).

The Immunological Function of the IL-36
Subfamily
Following their induction and activation, IL-36 signaling has
potent effects on barrier immunity and can lead to protective
responses against pathogens or drive autoinflammatory disease.
IL-36 agonist signaling leads to activation of MAPK and NF-κB
pathways (He et al., 2013). Downstream this results in anti-
microbial peptide release from keratinocytes (Nguyen et al.,
2012), increased recruitment and maturation of myeloid cells
(Foster et al., 2014), increased macrophage phagocytosis and
microbial killing (Tao et al., 2017), and the robust production of
IL-6, IL-8, TNF, CCL3, CCL4, CCL5, CCL20, CXCL1, CXCL2,
and CXCL8 (Carrier et al., 2011; Ramadas et al., 2012; Foster et al.,
2014; Dietrich et al., 2016). It is likely a finely tuned balance of IL-
36 agonist and antagonist activity promotes protective immunity.
This is evidenced in generalized pustular psoriasis (the most
severe form of psoriasis) where patients lack IL-36Ra due to a
missense mutation in the IL-36Ra gene. Furthermore, IL-36Ra

deficiency is associated with systemic inflammation, suggesting
that uncontrolled IL-36 agonist signaling has systemic effect
(Marrakchi et al., 2011).

The IL-36 subfamily also bridges innate and adaptive
immunity. IL-36α/γ secreted from immune and epithelial cells
directly acts on CD4+ T-cells and results in the release of IL-
36β, which through a feedback loop promoted IL-2 secretion,
T-cell expansion, and Th1 differentiation (Vigne et al., 2012).
More recently, IL-36 gene expression has been associated with
Th17 immunity. Here, IL-36 agonist cytokines regulated their
own expression and drove the expression and function of
Th17 cytokines and immunity (Carrier et al., 2011). While our
knowledge of IL-36 is increasing, little information exists about
the function of IL-38. The induction of IL-38 occurs in apoptotic
cells to limit inflammation (Mora et al., 2016). However, as yet no
induction of IL-38 in disease settings has been described apart
from the inhibition of Candida-induced Th17 immunity in a
similar manner to IL-36Ra (van de Veerdonk et al., 2012).

Fungal Induction of the IL-36 Subfamily
Although there is good evidence describing the function of the
IL-36 subfamily, there is limited evidence for the induction
and function of IL-36 during fungal infection. Given the
important barrier function of IL-36, these cytokines likely
mediate interactions with both commensal and pathogenic fungi.
C. albicans induced IL-36γ expression in human keratinocytes
(Braegelmann et al., 2018), IL-36α/γ in TR146 cells (a human
epithelial cell line), and all IL-36 agonists during an in vivo
OPC model (Verma et al., 2018). IL-36α/γ expression was
significantly increased within 24 h of OPC challenge, while IL-
36β increased at 48 h. The induction of IL-36 following Candida
challenge was dependent on candidalysin, with a candidalysin-
null Candida strain inducing drastically reduced IL-36 expression
(Verma et al., 2018). The induction of IL-36 during systemic
Candida infection has yet to be demonstrated. However, systemic
clinical infections typically arise from disrupted barrier integrity.
Replicating this in vivo is challenging and systemic infections are
achieved through intravenous injection.

The signaling events that lead to IL-36 induction following
Candida infection have been investigated using the OPC
model. Multiple signaling pathways are activated during OPC
including MAPK, PI3K, and NF-κB (Moyes et al., 2010, 2014;
Verma et al., 2018) and blocking p38-MAPK but not JNK-
MAPK or ERK1/2 MAPK impaired IL-36α/γ expression (Verma
et al., 2018). Further investigation revealed that blocking c-Fos
impaired IL-36α/γ expression, reducing c-Jun increased IL-36α

expression without effecting IL-36γ. In addition, when the MAPK
phosphatase MKP1 (which negatively regulates p38-MAPK and
JNK-MAPK) was knocked down, IL-36α/γ expression increased
(Verma et al., 2018). While these results suggest p38 MAPK
induces IL-36 expression and this is negatively regulated by
MKP1, MAPK pathways did not fully account for IL-36
expression. Here, while NF-κB was able to mediate some IL-
36α/γ expression, blocking PI3K reduced IL-36α/γ to resting
levels. These data suggest significant roles for p38-MAPK, NF-
KB and PI3K in inducing IL-36 expression, with PI3K playing the
most prominent role (Verma et al., 2018).

Frontiers in Microbiology | www.frontiersin.org 9 February 2021 | Volume 12 | Article 633047

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-633047 February 4, 2021 Time: 15:24 # 10

Griffiths et al. The IL-1 Family and Fungi

Aspergillus fumigatus infection also resulted in IL-36
induction, interestingly in a morphology and-time dependent
manner. IL-36γ was induced in human peripheral blood
mononuclear cells (PBMCs) following incubation with live
conidia and heat-killed hyphae, while IL-36Ra was induced
following incubation with live conidia, heat-killed conidia
and live hyphae. As expected, IL-36α was not induced in
PBMCs (Gresnigt et al., 2013). The induction of IL-36γ during
Aspergillus challenge was dependent on Dectin-1 Syk signaling
and TLR4 (Gresnigt et al., 2013). Dectin-1 and TLR4 signaling
results in NF-κB activation which, as with Candida, controlled
IL-36α/γ expression. The CLR Dectin-2 signals through PI3K
and has an important role driving Th17 immunity against
Candida (Saijo et al., 2010; Lee et al., 2016). Aside from
Candida and Aspergillus, only Trichophyton mentagrophytes has
been shown to induce IL-36 expression (Braegelmann et al.,
2018). Although not extensively investigated, the induction
of IL-36 cytokines appears to be cell-type, fungal morphology
and time-dependent.

The Role of the IL-36 Subfamily in Fungal
Immunology
Following their induction, the role of IL-36 cytokines during
fungal infection is poorly understood. IL-36 can be solely
responsible for inflammatory disease and clearly has potent
immunological effects. Therefore, following fungal induction
of IL-36, the cytokines likely mediate important immunological
responses. In agreement with this, IL-36 is protective during
mucosal Candida disease. IL-36R deficient mice when challenged
with OPC displayed increased fungal burden and reduced
IL-23 expression (Verma et al., 2018). IL-36 also induces IL-23
in macrophages isolated from psoriasis patients, suggesting
a consistent link between the two cytokines (Bridgewood
et al., 2018). IL-23 drives the proliferation and survival of
Th17 cells vital for anti-Candida immunity. Mice deficient
in IL-23 (IL-23p19-/-) experienced severe OPC disease
associated with a lack of neutrophil recruitment and anti-
microbial peptides (Conti et al., 2009). It was thought IL-1
and IL-36 worked in tandem to enhance protective Th17
immunity (Verma et al., 2017); however, IL-36R deficient
mice had normal IL-17 gene expression suggesting a distinct,
unconnected role for each (Verma et al., 2018). As such, the
IL-36/IL-23 axis may complement the IL-1/Th17 response
through an uncoupled mechanism (Verma et al., 2018). This
contrasts with Aspergillus infection which showed blockade
of IL-36R with IL-36Ra reduced IL-17 and IFN-γ responses
(Gresnigt et al., 2013).

The role of IL-36 during Candida infection appears to be
tightly linked with candidalysin activity, which was required for
IL-36 induction (Verma et al., 2018). Commensal (yeast) Candida
does not produce candidalysin and subsequently does not initiate
inflammation. Instead, candidalysin is expressed when Candida
becomes invasive (through hypha formation) and results in
inflammation and the loss of barrier integrity (Moyes et al., 2016).
Here, IL-36 signaling may facilitate host discrimination between
commensal and pathogenic Candida. Furthermore, excessive

IL-36 signaling is damaging and leads to inflammatory disease.
Thus, Candida may induce IL-36 to promote inflammation,
disrupt barrier integrity and enhance disease. This may
potentially explain why psoriasis patients are particularly
susceptible to Candida infection (Pietrzak et al., 2018).

The function of IL-36 during Aspergillus infection has been
less well explored. IL-36γ is induced following A. fumigatus
infection in a Dectin-1 Syk dependent manner. In support of
this, Dectin-1 deficient mice produced defective Th17 immune
responses (LeibundGut-Landmann et al., 2007) and are highly
susceptible to Aspergillus lung infection (Werner et al., 2009).
Many systemic fungal infections are acquired across mucosal
surfaces where IL-36 induction has potent effects. Understanding
the function of IL-36 signaling and the balance of protective and
excessive responses may provide valuable therapeutic targets to
mediate barrier inflammation and integrity.

Therapeutic Potential of the IL-36
Subfamily
Modulating IL-36 signaling has been investigated with some
early success. Recently, a small molecule inhibitor of IL-36γ

successfully attenuated IL-36γ induced responses (Todorovic
et al., 2019). A phase 1 study in generalized pustular psoriasis
patients has been completed showing a monoclonal antibody
against IL-36R rapidly reduced patient pustules and psoriasis
severity score (Bachelez et al., 2019). Anti-IL-23 antibodies
have also been trialed with success in psoriasis patients (Reich
et al., 2011). While therapeutically inhibiting IL-36 signaling may
produce rapid disease improvement in autoimmune settings, IL-
36 has a protective role during infectious disease and a careful
balance of IL-36 signaling must be achieved.

DISCUSSION

The IL-1 family of cytokines are central to immunity and health.
It is no surprise that this family plays a crucial role during
fungal infection and in determining fungal disease outcomes.
Lacking IL-1 agonist activity during acute fungal disease is often
severely detrimental for the immunocompromised host, resulting
in fungal growth and dissemination. However, excessive IL-1
family agonist activity, either through over expression/activation
or through a lack of antagonist activity, can be equally
destructive. Excessive IL-1 family signaling is associated with
numerous inflammatory disorders and in the context of fungal
infection, can exacerbate chronic disease and lead to barrier
disruption and fungal dissemination. Therefore, potent IL-1
signaling must be carefully regulated through balancing levels
of protease activation and antagonist activity, to successfully
promote protection and immunity.

Understanding of the functional role, mechanism of induction
and downstream regulators of each IL-1 family member would
greatly improve our knowledge of anti-fungal immunity. Here,
we have reviewed the effects of different IL-1 family members that
provide action at various locations and in response to multiple
stimuli. We graphically summarize our current understanding of
this topic in Figure 2. It is also important that our investigations
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FIGURE 2 | A schematic representation of the role of IL-1 family cytokines in fungal immunity. Each ligand is separated into their appropriate IL-1 subfamily. The
icons for Candida, Aspergillus, Cryptococcus, and Paracoccidioides are labeled at the top of the figure. The presence of a fungal icon underneath a cytokine
indicates induction. Arrows and blocked lines represent the functional outcome of this cytokine following induction.

of IL-1 family members consider collaboration and redundancy
that occurs throughout the IL-1 family. Although individual
IL-1 family members appear to have clearly defined roles in
specific locations and disease settings, the interaction between
IL-1 family signaling likely contributes to the overall immune
response and disease outcome. While enhancing individual IL-1
family agonists or antagonists to promote disease resolution is
therapeutically effective, targeting multiple members at once may

provide the best outcome. Furthermore, while the exogenous
administration of IL-1 family members is being investigated with
some success, targeting the receptors or enzymes that drive IL-1
family induction and activation is another strategy that may
provide therapeutic benefit.

As fungal diseases become an increasingly severe worldwide
burden contributing to millions of deaths per year, the
extensive use of immune-modulating therapies also continues
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to increase. Current therapies are inadequate, toxic, highly drug
interactive, and frequently encounter resistance. In addition,
there is no current fungal vaccine available for use. Therefore,
immunotherapies that enhance anti-fungal immunity will be a
vital component of future anti-fungal therapies.
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