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Abstract

Background

Depression is commonly comorbid with many other somatic diseases and symptoms. Identi-

fication of individuals in clusters with comorbid symptoms may reveal new pathophysiologi-

cal mechanisms and treatment targets. The aim of this research was to combine machine-

learning (ML) algorithms with traditional regression techniques by utilising self-reported

medical symptoms to identify and describe clusters of individuals with increased rates of

depression from a large cross-sectional community based population epidemiological

study.

Methods

A multi-staged methodology utilising ML and traditional statistical techniques was performed

using the community based population National Health and Nutrition Examination Study

(2009–2010) (N = 3,922). A Self-organised Mapping (SOM) ML algorithm, combined with

hierarchical clustering, was performed to create participant clusters based on 68 medical

symptoms. Binary logistic regression, controlling for sociodemographic confounders, was

used to then identify the key clusters of participants with higher levels of depression (PHQ-

9�10, n = 377). Finally, a Multiple Additive Regression Tree boosted ML algorithm was run

to identify the important medical symptoms for each key cluster within 17 broad categories:

heart, liver, thyroid, respiratory, diabetes, arthritis, fractures and osteoporosis, skeletal pain,
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blood pressure, blood transfusion, cholesterol, vision, hearing, psoriasis, weight, bowels

and urinary.

Results

Five clusters of participants, based on medical symptoms, were identified to have signifi-

cantly increased rates of depression compared to the cluster with the lowest rate: odds

ratios ranged from 2.24 (95% CI 1.56, 3.24) to 6.33 (95% CI 1.67, 24.02). The ML boosted

regression algorithm identified three key medical condition categories as being significantly

more common in these clusters: bowel, pain and urinary symptoms. Bowel-related symp-

toms was found to dominate the relative importance of symptoms within the five key

clusters.

Conclusion

This methodology shows promise for the identification of conditions in general populations

and supports the current focus on the potential importance of bowel symptoms and the gut

in mental health research.

Introduction

Depression is a debilitating illness that is estimated to affect 350 million people globally and is

frequently associated with somatic symptoms and other medical conditions [1,2]. The nature

and direction of these relationships are often complex, interrelated, and difficult to unravel.

Depression classically presents with many and diverse somatic symptoms. The comorbidity of

depression with a number of chronic medical conditions, such as Irritable Bowel Syndrome

(IBS) [3], ischemic heart disease [4], cancer [5], diabetes [6], osteoporosis [7], thyroid disease

[8], and obesity [9], has also been well established. However, these conditions often have bidi-

rectional relationships with depression such that this level of comorbidity and interrelatedness

can complicate treatment and stymie efforts to identify causal factors in depression. Thus, the

identification of individuals in clusters of comorbid symptoms in depression may reveal new

pathophysiological mechanisms and treatment targets.

Due to the complexity and heterogeneity of medical data, previous studies have primarily

investigated individual medical conditions linked to depression. The use of “big data” and

machine-learning (ML) techniques and algorithms has the ability to handle heterogeneous

data without strict constraints and have been demonstrated to unearth key patterns and inter-

actions in health data [10,11]. The mapping of multidimensional data onto two-dimensional

maps [12–14] with ML techniques allows the researcher to visualise and interpret the complex-

ity of the data and generate new hypotheses regarding depression.

ML is a vast and expanding field of artificial learning where algorithms improve perfor-

mance through experiential learning [15]. In the health arena, ML algorithms that learn by

training on subsets of data have been used to fit models using supervised ML (i.e. where the

objective of the exercise is to establish the main inputs to predict known values) [16], and to

find patterns in data using unsupervised ML (i.e. where the objective is to uncover previously

unknown patterns and clusters within the data set, without any a priori model defined) [17].

Blending of unsupervised and supervised ML techniques has been used to detect patterns and

relationships within large numbers of complex lifestyle-environ variables [18]. Notoriously
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complex in nature, medical symptom data are ideally suited to blended ML techniques. Utilis-

ing the learning properties of ML it is possible to detect, visualize and understand the composi-

tion of medical symptoms clusters for those with psychiatric disorders such as depression.

[19,20]

ML techniques have been used across a variety of disciplines to explore and model very

large quantities of data to discover patterns, unsuspected relationships and useful rules for a

specific purpose. Often novel unsuspected and novel interpretations of the data (serendipity)

are uncovered. Commercially, these techniques have been used successfully for businesses to

learn from their transaction data about the behaviour of their customers, improving their busi-

ness model by exploiting this knowledge [21]. However, it has only been over the last 10 years

that ML techniques have been used in medical research, primarily in neuroscience and bio-

medicine [22,23]. More recently ML techniques have been used in psychiatry [10], using pre-

dominantly very big data sets. Complex survey methodologies are often implemented with

population-based data (e.g. oversampling in underrepresented groups, stratification, cluster-

ing) and traditional statistical techniques are capable of dealing with this complexity [24].

However, big data techniques on their own do not adequately account for this type of sample.

Thus, a blend of both big data ML techniques with traditional statistical techniques has the

potential to uncover hidden patterns while accounting for the complex sampling.

The aim of this research was to use data from a large cross-sectional community based pop-

ulation epidemiological study to combine unsupervised and supervised ML algorithms with

traditional regression techniques by utilising self-reported medical symptoms to identify and

describe clusters of individuals with increased rates of depression from a large cross-sectional

community based population epidemiological study.

Methods

Study design and participants

The 2009–2010 National Health and Nutrition Examination Survey (NHANES) (2009–2010)

[25] cross-sectional civilian noninstitutionalized population based data were utilised for this

study. This study included 18 to 80 year old non-institutionalised US civilians (N�10,000)

and applied a complex four-stage sampling methodology: counties; segments within counties;

households within segments; and, individuals within households. Data were collected from 15

locations across 50 US states, with oversampling of subgroups of the population of particular

public health interest, to increase the reliability and precision of population estimates [25]. Ques-

tionnaire data relating to medical symptoms and demographics were downloaded from the

NHANES website and integrated using the Data Integration Protocol In Ten Steps (DIPIT) [26].

Variables were initially selected based on the criterion of relevance to medical symptoms.

Analysis was performed to minimise the degree of missing data across the set of medical symp-

toms. The final set of 68 dichotomous medical symptom variables and an unweighted sample

size of 3,922 was used for clustering in this research study. There were 377 participants identi-

fied with depression, being representative of the total depressed sample for NHANES during

2009–2010 (i.e. 8% after adjustment for the complex survey sample structure). The imbalanced

nature of the data was addressed in this study by identifying clusters with high rates of depres-

sion (i.e. high risk clusters) rather than individual participants with depression. This meant

that within each high risk cluster the imbalance was much reduced. This was the primary ratio-

nale for undertaking the Self-organised Mapping (SOM) and clustering of individuals, thereby

allowing the identification of the key clusters significantly associated with depression using

binary logistic regression. Finally, the most important medical symptoms for identifying

depressed individuals were identified for each of these key clusters.
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NHANES received approval from the National Center for Health Statistics (NCHS)

research ethics review board and informed consent was obtained from all participants. Use of

data from the NHANES 2009–2010 database is approved by the National Center for Health

Statistics Research Ethics Review Board (Continuation of Protocol #2005–06).

Study Measurements

A self-reported Patient Health Questonnaire-9 (PHQ-9) [27] was used to assess depressive

symptoms (‘depression’). This questionnaire consisted of nine items that were summed to

form a total score. Those with a total score of 10 or more were considered moderately or

severely depressed [28]. The 68 medical symptom data were classified into 17 broad medical

categories: heart, liver, thyroid, respiratory, diabetes, arthritis, fractures and osteoporosis, pain

(i.e. neck, back, hip pain), blood pressure, cholesterol, vision, hearing, psoriasis, weight, bow-

els, urine, and if a blood transfusion was received. The self-report demographic and socio-eco-

nomic variables from the NHANES demographic and questionnaire data components were

also utilised [29].

Statistical Methodology

This research implemented two ML algorithms: an unsupervised algorithm, combined with

hierarchical clustering, to create the medical symptom clusters and a supervised algorithm to

identify and describe the key clusters with a significant relationship with depression. Due to

the complex sampling methodology of the NHANES data, traditional binary logistic regression

was implemented to identify these key clusters while controlling for potential socio-demo-

graphic confounders.

A summary of the statistical methodology, testing regime and results is outlined in Fig 1.

Medical symptom cluster identification

Self-organizing maps (SOMs) were introduced by Kohonen in 1995 [30] as a variant of artifi-

cial neural networking, inspired by biological neural networks, and have since been used in

many diverse applications across a variety of fields including bioinformatics, engineering,

financial analysis, experimental physics, and psychiatry [31,32]. SOMs provide a simple and

effective unsupervised ML algorithm for clustering individual participants and visualising high

dimensional data in a low dimensional map without any reliance on distributional

assumptions.

The SOM identifies clusters by effectively packing the dataset onto a q-dimensional plane

where data points “similar” to each other in the original multidimensional data space are then

mapped onto nearby areas of the q-dimensional output space. SOMs combine competitive

learning with dimensionality reduction by smoothing the clusters with respect to an apriori

grid. The SOM is called a topology-preserving map because multi-dimensional input data is

represented often by a two dimensional “map” of nodes where topological properties of the

input space are maintained.

The steps involved in the SOM competitive ML algorithm involve initially assigning ran-

dom vector weights to each node (or position on the grid), then randomly choosing data

points (participants) from the training data and presenting them to the SOM. The “Best

Matching Unit” (BMU) in the map is the node with a vector weight most similar to a data

point and nodes within the “neighbourhood” of each BMU are found. With each iteration, the

size of this neighbourhood decreases. The vector weights of nodes in the BMU neighbourhood

are adjusted closer to their associated data points. The size of these adjustments decrease with

each iteration and the magnitude of these adjustments is proportional to the proximity of the

Unravelling Medical Symptoms Associated with Depression
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Fig 1. Flowchart of Methods, Testing and Results.

doi:10.1371/journal.pone.0167055.g001
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node to the BMU. These steps are repeated for N iterations or until the vector weights for all

the nodes converge to their final values.

For this study a hexagonal map topology was used, with five SOM grids tested (10x10,

15x15, 20x20, 25x25, 30x30) to establish a map with suitable nodes. The final solution utilised

a 15x15 grid with a learning rate for weight adjustment declining linearly from 5% to 1% over

100 iterations. The unconstrained nature of the SOM technique meant that clusters of nodes

form naturally from the medical symptom data on the grid without the influence of the partici-

pant’s depressive symptom status. Hierarchical clustering, using the complete linkage method

[33], was then utilised to group SOM nodes with similar final weights, identifying the final

clusters. Three to 12 cluster solutions were considered and the cluster solution with the most

differentiation in terms of depression was chosen for further investigation. The clusters were

numbered in order of their rates of depression (i.e. frequency and average total PHQ-9 score).

Identification of key clusters with higher depression rates

Quantitative and qualitative investigation, using exploratory statistics of the resultant clusters

was used to establish variation with respect to depression rates and demographics.

Demographic factors were included in a binary logistic regression model to identify the key

participant clusters with a significant positive relationship with depression, accounting for the

complex survey design of NHANES. This model controlled for potential confounders and

quantified the probability of depression within each cluster. The cluster with the lowest depres-

sion rate was chosen as the reference group. This stage of the analysis was used to identify par-

ticipant clusters with significant rates of depression in order to identify the important medical

symptoms from the ML boosted regression. Only these key clusters were used in the next stage

of supervised ML boosted regression. No further investigation was performed on those clusters

with non-significant odds ratios for depression.

Medical symptoms most prominent within key clusters

Supervised ML boosted regression [34], translated to a binary logistic regression analysis [35],

was implemented for each of the key clusters to identify the most prominent medical symp-

toms associated with depression within these clusters. This technique has been previously used

to identify biomarkers associated with depression [36] and to describe lifestyle clusters associ-

ated with depression [18] using data from the NHANES study. Depression was considered as a

binary outcome and run for each key cluster using Friedman’s Multiple Additive Regression

Trees (MART) boosted algorithm [37,38]. Consistent with previous research using this ML

algorithm on the 2009 to 2010 NHANES data [36], validation was performed using a random

split of each data set into 60% training and 40% validation, a regularization shrinkage parame-

ter of 0.001, with 50% of the residuals used to fit each successive tree (50% bagging) [37]. The

maximum number of boosting interactions (i.e. number of terminal nodes plus 1) allowed was

six, being marginally higher than the default (i.e. five) and within the recommended range

[35]. Whilst this technique has been used for predictive purposes [16], it also has the ability to

be used as a variable selection method [36]. This method was used as a variable selection tech-

nique to identify the prominent medical symptoms associated with depression within the key

clusters [37]. A relative importance (or contribution) of each medical symptom variable for

each of the key significant clusters was produced from the ML boosted regression. Higher val-

ues of relative importance for a medical symptom within a particular key cluster indicates a

stronger relationships with depression in this cluster. This technique for variable reduction has

been recognised as effective [39] and previously used to delineate lifestyle clusters associated

with depression [18].

Unravelling Medical Symptoms Associated with Depression
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Those medical symptoms explaining at least 80% of the total log likelihood variation across

clusters were used to identify the most important medical symptoms for explaining differences

across clusters. Resultant medical symptoms were then grouped into the 17 broad medical

categories.

The SOMs and hierarchical clustering were performed in R with the SOM using the Koho-

nen package [13]. The boosted regression and binary logistic regression statistical procedures

were performed using Stata V14 software (StataCorp., 2014), with a Stata plugin for the

boosted regression component of the analysis [38].

Results

A summary of the results from the testing is presented in Fig 1.

SOM Clusters

The distance from each node’s weights to the sample of people represented by that node was

reduced to a minimum plateau as the SOM training iterations progressed, indicating that no

more iterations were required (Fig 2). Taking into account the heterogeneous nature of the

Fig 2. Training progress and SOM plots. Note: The “Training progress” graph indicates as the SOM training iterations distance from each

node’s weights to the samples represented by that node reduces and plateaus to indicate no more iterations were required. The “Counts plots”

indicates reasonable samples were mapped to each node on the map. The “Neighbour distance plot” or U-Matrix indicates the distance between

each node and its neighbours.

doi:10.1371/journal.pone.0167055.g002

Fig 3. Hierarchical Cluster Options for SOM. Note: Clusters 3 to 12 solutions mapped onto the SOM grid. Colours indicate

different clusters. The final 10 cluster solution selected for further analysis has been highlighted with a red border.

doi:10.1371/journal.pone.0167055.g003
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self-reported medical symptom data, the counts plot indicated a reasonable distribution of

people numbers across the map. The neighbour distance plot indicated the distances between

each node and its neighbours were mostly similar with only a few dissimilar nodes, later identi-

fied as outlying clusters (Fig 2).

Three to 12 cluster solutions were considered (Fig 3) and the 10 cluster solution was

selected for further investigation because of clear cluster differences in terms of depression

rates. There were some isolated nodes in this cluster solution, later confirmed as outliers.

The final 10 cluster solution contained two dominant clusters (Table 1). One cluster was

dropped from further analysis due to very low frequency (n = 8), leaving 9 of the 10 clusters

for further analysis.

Cluster validation

Initial investigation into the relationship between the remaining nine participant clusters and the

depression measures revealed that the clusters exhibited an order with respect to both the percent-

age of participants depressed within each cluster and the average depression score (Fig 4).

An initial inspection of the socio-demographics for the nine clusters (Table 2) showed clear

differences. Due to the small frequencies for many of the clusters, only a qualitative investiga-

tion of socio-demographic differences was performed. Cluster 1 (n = 3,108) exhibited socio-

demographics closest to the total across all cluster participants. Cluster 2 (n = 34) consisted of

mostly male, non-Hispanic white with a high family income poverty ratio [40,41] and who

were less likely to have never married. Cluster 3 (n = 57) consisted mostly of male, non-His-

panic white, older, married / with a partner, a household size of around two people, and a low

family income poverty ratio. Cluster 4 (n = 446) members were more likely to be female, non-

Hispanic white, middle aged, with a low family income poverty ratio, and less likely to have

never been married. Cluster 5 (n = 50) were more likely to be older, non-Hispanic black, with

a low family income poverty ratio, and less likely to never have been married. Cluster 6

(n = 83) members were more likely to be male, older, less than three members in the house-

hold, non-Hispanic white, and of low to mid family income poverty ratio, and less likely to

have never been married. Cluster 7 (n = 55) were more likely to be middle aged, Mexican /

Hispanic, with a low family income poverty ratio and less likely to have never been married.

Cluster 8 (n = 52) were more likely to be female, older, non-Hispanic white, around two mem-

bers in the household, with low family income poverty ratio and less likely to have been

Table 1. Frequency Distribution of Initial Depression Ordered SOM Cluster Solution.

Cluster Frequency Percent

1 3,108 79.25

2 34 0.87

3 57 1.45

4 446 11.37

5 50 1.27

6 83 2.12

7 55 1.4

8 52 1.33

9 29 0.74

10 (Dropped) 8 0.2

Total 3,922 100

Note: Dominant clusters in bold. Cluster shaded dropped due to very small base (n = 8).

doi:10.1371/journal.pone.0167055.t001

Unravelling Medical Symptoms Associated with Depression

PLOS ONE | DOI:10.1371/journal.pone.0167055 December 9, 2016 8 / 19



married. Cluster 9 (n = 29) were more likely to be young Mexican / Hispanic, with a large

household and low family income poverty ratio.

Identification of key clusters with higher depression rates

The final binary logistic regression with depression as the outcome took into account the com-

plex survey data of NHANES, as well as non-linearity, interactions and potential confounders

(Table 3). The test for goodness of fit were not significant for the model indicating a good fit to

the data (F(9,8) = 1.77, p = 0.216) [42]. Clusters 4 and 6 to 9 had significantly higher rates of

depression than cluster 1 after controlling for the potential socio-demographic confounders.

These five clusters were considered the key clusters for further analysis. Since the odds ratios

for depression for clusters 2, 3 did not significantly differ from cluster 1 these clusters were

excluded from future analysis. A significant interaction was found between the cluster with the

highest rate of depression (cluster 9) and the family income poverty ratio (p = 0.036) (Fig 5).

Thus, the relationship between the probability of depression and cluster 9 varied depending

upon the rate of the family poverty income ratio.

Fig 4. Mean depression scores and percent depression across final depression clusters. Note: “Mean Depression Score” is the average total PHQ-

9 score which ranged from 0 to 27. “Percent Depressed” based on a total PHQ-9� 10.

doi:10.1371/journal.pone.0167055.g004
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Medical symptoms most prominent within key clusters

ML boosted regression was used to establish which medical symptoms were associated with

depression for each of the five key significant clusters. The top medical symptom variables

explaining approximately 80% of the total log likelihood for each cluster were selected for cate-

gorisation and further investigation. Bowel symptoms (e.g. bowel movements per week, stool

type) dominated the relative importance percentage across all the five key clusters (Fig 6). Fur-

ther investigation into the top 3 to 10 ranked medical categories from the ML boosted regres-

sion found that bowel, pain and urine symptoms consistently exhibiting a relatively high

importance percentage for each of the key clusters.

The top 10 key medical symptom categories for the five key significant clusters indicated

that each cluster exhibited different medical symptoms (Fig 7). However, bowel symptoms

were consistently included in the highest ranked medical symptoms across all five significant

depressive key clusters. In addition, the bowel symptoms dominated for cluster 7 and cluster 9,

and had relatively high importance (i.e. >5%) for four of the five key clusters. Pain symptoms

had the highest relative importance in cluster 4 and urine symptoms had relatively high impor-

tance (i.e. <10%) for two of the five key clusters. Whilst hearing symptoms were important in

all five of the key clusters, they only dominated in cluster 8.

Table 2. Demographic Profile Across SOM Clusters.

CLUSTER Total 1 2 3 4 5 6 7 8 9

Sample (n)* 3,914 3,108 34 57 446 50 83 55 52 29

Demographics

Gender:

Male 49.6% 50.8% 60.4% 60.2% 38.9% 43.1% 63.9% 41.2% 31.2% 57.4%

Female 50.4% 49.2% 39.6% 39.8% 61.1% 56.9% 36.1% 58.8% 68.8% 42.6%

Mean age (years) 42.44 42.08 48.17 53.05 46.09 51.60 56.24 44.30 55.93 38.67

Marital status:

Never 19.3% 20.4% 15.0% 11.6% 15.8% 14.6% 7.8% 14.7% 7.6% 19.6%

Married/Partner 65.3% 65.5% 66.4% 76.6% 64.7% 65.2% 63.9% 66.8% 48.9% 63.6%

Widowed/Divorced/Separated 15.4% 14.1% 18.6% 11.8% 19.6% 20.3% 28.4% 18.6% 43.5% 16.8%

Mean household size 3.22 3.23 3.19 2.23 3.07 2.95 2.64 3.26 2.55 3.94

Mean family size 3.02 3.03 3.07 2.94 2.91 2.75 2.49 2.94 2.39 3.88

Race:

Mexican/Hispanic 14.3% 14.4% 6.0% 17.3% 15.3% 13.3% 5.6% 27.0% 2.6% 45.5%

Non-Hispanic white 67.5% 67.6% 78.4% 66.3% 67.3% 54.0% 74.2% 55.4% 81.3% 26.0%

Non-Hispanic black 11.4% 10.9% 15.6% 5.9% 12.8% 27.0% 17.4% 14.6% 10.1% 16.5%

Other 6.7% 7.1% 0.0% 10.4% 4.6% 5.7% 2.8% 2.9% 6.1% 12.0%

Family income poverty ratio**:

Low 31.0% 29.2% 29.9% 39.8% 35.7% 42.6% 32.7% 64.9% 58.9% 68.8%

Middle 24.0% 24.5% 10.5% 19.0% 22.9% 23.4% 31.3% 15.9% 21.5% 11.2%

High 45.0% 46.4% 59.6% 41.2% 41.5% 33.9% 36.0% 19.2% 19.6% 20.0%

Mean family income poverty ratio:

(Note: 1 = poverty line) 3.03 3.16 3.39 2.80 2.89 2.68 2.91 1.82 2.09 1.68

Note: Figures quoted take account of the survey design of NHANES with 15 strata, 31Primary Sampling Units (PSU).

*Total sample size varies per demographic as base includes all those with a depression score and valid answer given for demographic.

**Family income poverty ratio represents the ratio of family or unrelated individual income to their appropriate poverty threshold where groupings are based

on eligibility for Special Supplemental Nutrition Program for Women, Infants, and Children (WIC): Low = 0.00–1.85 family income poverty ratio, Middle =

>1.85–3.50 family income poverty ratio, and High = >3.50 and above family income poverty ratio.

doi:10.1371/journal.pone.0167055.t002
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The individual clusters showed clear delineation with respect to medical conditions. The

top three medical symptoms for cluster 4 related to the skeletal symptoms of pain, fractures

and osetoporosis, and bowel symptoms. Cluster 6 was dominated by urinary medical symp-

toms. Cluster 7 was clearly dominated by bowel medical symptoms. Cluster 8 was a generally

Table 3. Binary Logistic Regression Model Odds Ratios with 95% Confidence Intervals.

Depression OR p-value 95% CI Low 95% CI High

Cluster 1 (reference) 1.00

Cluster 2 1.67 0.341 0.55 5.04

Cluster 3 1.98 0.151 0.76 5.20

Cluster 4 2.24 <0.001 1.56 3.24

Cluster 5 2.10 0.180 0.68 6.43

Cluster 6 3.78 <0.001 2.17 6.57

Cluster 7 4.61 <0.001 2.21 9.63

Cluster 8 7.80 0.001 2.86 21.33

Cluster 9 6.33 0.010 1.67 24.02

Cluster 9 X Family income poverty ratio 2.00 0.036 1.05 3.81

Gender

Male (reference) 1.00

Female 1.86 0.002 1.31 2.64

Age group

18–24 years (reference) 1.00

25–34 1.37 0.326 0.71 2.63

35–44 1.61 0.177 0.79 3.29

45–54 1.92 0.023 1.11 3.34

55+ 1.22 0.545 0.62 2.39

Marital status

Never married (reference) 1.00

Married/living with partner 0.54 0.007 0.35 0.82

Widowed/Divorced/Separated 0.79 0.172 0.55 1.12

Gender

Race

Non-Hispanic white (reference) 1.00

Mexican American / Hispanic 0.88 0.368 0.67 1.17

Non-Hispanic Black 1.17 0.436 0.77 1.76

Other 0.77 0.391 0.42 1.43

Education

Grades 11 and below (reference) 1.00

High School / GED Equivalent 0.43 0.039 0.20 0.95

Some College / AA / College or Above 0.59 0.008 0.40 0.85

Family income poverty ratio 0.60 0.002 0.45 0.80

Education X Family income poverty ratio

Grades 11 and below (reference) 1.00

High School / GED Equivalent 1.43 0.073 0.96 2.11

Some College / AA / College or Above 1.24 0.089 0.96 1.58

Constant 0.16 <0.001 0.08 0.34

Note: OR = Odds Ratio, CI = Confidence Interval. Multivariate logistic model taking account of complex

survey methodology (N = 3,584, 15 Strata, 32 PSUs). Bold p-values indicate significant p<0�05. Cluster 9

OR = 12.67 (95% CI: 1.75, 91.56) taking into account the interaction.

doi:10.1371/journal.pone.0167055.t003

Unravelling Medical Symptoms Associated with Depression

PLOS ONE | DOI:10.1371/journal.pone.0167055 December 9, 2016 11 / 19



Fig 5. Predicted probability of depression across age and family income poverty ratio for each cluster.

doi:10.1371/journal.pone.0167055.g005

Fig 6. Importance of medical categories that make up the key significant clusters. Note: Based on total boosted relative importance

percentage across all clusters. Summed percentage from boosted regression across all five key significant clusters, thus total >100%.

doi:10.1371/journal.pone.0167055.g006
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unwell cluster with the top five medical symptoms related to hearing, pain, bowels, respiratory

and heart. Finally the top two medical symptoms for cluster 9 related to bowels and urine.

Discussion

Irrespective of country, research has consistently found a high level of comorbidity between

specific (e.g. sleep, appetite) and nonspecific symptoms and depression [43,44] but it has been

difficult to identify the key somatic symptoms most prominent in this condition. This study

utilized two machine learning techniques, complemented by traditional binary logistic regres-

sion analyses, to detect complex interactions between large numbers of medical symptoms in

order to identify those most strongly linked to depression in an atheoretical manner. ML tech-

niques have been used in the area of big data informatics in mental health. For example, text

analysis [45] and regression models [46] have been used to predict the risk of suicide from

clinical notes, but these techniques have not previously been used to investigate the relation-

ship between depression and medical symptoms using epidemiological community based pop-

ulation data. The visual simplification of complex medical symptom data into clusters, using

SOM, allows the researcher to easily identify the strength of the similarities across the map.

The ML SOM’s intention to mimic an artificial network that learns, without supervision, has

proven effective in creating nodes, subsequently grouped into clusters identified by a standard

hierarchical clustering. Nine clusters of participants based on medical symptoms were found

using the unsupervised graphical SOM ML technique. Traditional binary logistic regression

showed that five of the nine clusters were characterised by higher rates of depression after con-

trolling for potential confounders and taking account of the complex survey methodology of

the population data.

A boosted regression ML algorithm was used to provide a relative importance percentage

for each medical symptom for each of the five key significant clusters, allowing the easy group-

ing of symptoms into medical categories. The ML boosted regression algorithm was able to

Fig 7. Total percentage importance of medical conditions for each key significant cluster. Note: Clusters presented in order of percent

depressed. Note: Percentage sum does not take account of direction of relationship.

doi:10.1371/journal.pone.0167055.g007
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untangle the array of medical symptoms and detect three key medical condition categories as

being particularly related to depression: bowel, pain and urinary symptoms. Of these catego-

ries, bowel symptoms dominated, validating previous research regarding the high comorbidity

between gut symptoms and IBS with common mental disorders, including depression [3,47].

Gut disorders in particular share links with depression. Irritable bowel syndrome (IBS) [3]

has been found to be closely associated with mental health conditions. IBS is not only comor-

bid with psychiatric conditions, but also comorbid with non-gastrointestinal somatic disorders

[48]. Crohn’s disease [49] and gastro-oesophageal reflux disease (GORD) [50] are similarly

associated with higher rates of mood disorders than would be expected by chance. All these

interrelationships impact on the quality of life, treatment compliance, length of stay in hospi-

tals, costs of health care, morbidity and possibly mortality of individuals affected.

Medical symptoms relating to stool type and frequency and constipation were included in

the bowel categorisation for this study, and these indicators have all been related to mood [51].

Recently, ML boosted regression has identified an association between the gastrointestinal bio-

marker of bilirubin with depression [36] and bilirubin has been linked to varying stool type

based on the speed at which the intestinal contents travel through the bowel [52].

There is an increasing focus in medical research on the role of symbiotic gut microbiota in

health and disease, including mental health. Indeed, the human gut microbiota, and what is

termed the ‘gut-brain axis’, are now increasingly regarded as potentially critical drivers of

mood and behaviour, with much of the biological dysregulation associated with depressive

symptoms and the diagnosis of clinical depression influenced by the gut microbiota [53]. Such

microbiota-influenced dysregulation involves inflammatory, metabolic, oxidative stress, HPA

axis, neurotransmitter/neuropeptide, brain plasticity and other systems [54]. Moreover, the

normal intestinal barrier function is compromised in depression [55]. This ‘leaky gut’ allows

intestinal-microbe-derived lipopolysaccharide (LPS), an endotoxin, to gain access to the

periphery. Even very low levels of LPS can provoke much of the aforementioned biological

dysregulation noted in depression.

Importantly, many of the lifestyle and environmental factors connected to depression have

a detrimental influence on the composition of the normal human microbiota. As just one

example, unhealthy dietary patterns that increase the risk for depression [56] also diminish

microbial diversity [57]. Long-term, habitual diets are one of the strongest influences on gut

microbial composition, determining an individual “enterotype” [58], however dietary change

can prompt change in gut microbiota composition within 24 hours [59]. The consumption of

complex carbohydrates, plant-based foods/fruits and vegetables [58,60] positively influences

microbial composition, synthesis of anti-inflammatory short chain fatty acids, and host health.

Conversely, high fat diets trigger microbial dysbiosis, intestinal permeability (‘leaky gut’) and

inflammation [61]. We have previously demonstrated that healthy dietary patterns are associ-

ated with a reduced likelihood of depressive symptoms in adults participating in the NHANES

[62]. This suggests that unhealthy dietary behaviors may be a key factor negatively influencing

both gut health and depression, with bowel symptoms signifying poor gut health.

Strengths and Limitations

The strengths of this study lie in the benefits of using both unsupervised and supervised ML

techniques to identify patterns in data, using a large number of heterogeneous self-reported

medical symptoms to form five clusters of individuals with relatively high rates of depression,

most likely to have remained hidden using traditional statistical techniques. The largest cluster

of participants (cluster 4, n = 446) comprised 7% moderately and 7% severely depressed partic-

ipants; this compares to rates of 5% and 3% respectively in the general 2009 to 2010 US
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population in NHANES. The remaining key clusters (6 to 9) consisted of smaller groups of

participants, with 15% moderately and 14% severely depressed participants overall. A main

limitation with this study is the cross-sectional nature of the NHANES data that restricts the

ability to infer causality. However, the use of this community population based survey data has

the advantage of being representative of the large US population sampled during 2009 to 2010.

The large number of participants included in this study, with its rigorous complex survey sam-

pling methodology, ensures the data possess a good description of the relative characteristics

of the civilian noninstitutionalised US population. As compared to other methods of data gath-

ering, surveys are able to extract data that closely mirror attributes of the larger population.

It is acknowledged that the PHQ-9 instrument relates to depressive symptoms, and does

not represent a clinical diagnosis of depression. Thus, this self-report instrument may have

missed less severe cases of depression [27,28] exaggerating the imbalance in the data. Further-

more, the depression symptoms picked up by the PHQ-9 instrument for this study, such as

fatigue, psychomotor problems, or insomnia are symptoms very common in medical condi-

tions. Thus, it was not surprising that the results from this study confirmed prior research

identifying depressive symptoms being often elevated in people with medical symptoms [63].

The relationship between medical symptoms and depression is complex and often bidirec-

tional. However, the identification of the dominant medical symptoms, such as those of the

bowel cluster in this study, may be used to improve screening tools for depression in medically

ill patients and to shed light on possible pathogenic processes. It is acknowledged that individ-

uals with depression are more likely to report somatic conditions, and IBS has been found to

be a disorder with a psychosomatic aspect [47]. However, the NHANES study is considered

representative of the US noninstitutionalised civilian population and has been used to produce

health statistics for the US and in many studies investigating depression (e.g. to examine the

prevalence, treatment and control of depressive symptoms [64]).

We addressed the limitation of the imbalance in the data of having only approximately 8%

of the sample classified with depression by including only those clusters with high depression

rates, hence reducing the impact of this imbalance on our analysis.

There are potential limitations in using the proposed ML techniques. The SOM can become

conceptually expensive as the number of variables and the grid size increases, causing the

number of distances the algorithm needs to compute to increase exponentially. In addition,

the SOM requires a value for each variable for each participant in order to generate a map, so

missing data poses issues for map generation with SOMs. Alternative less computer intensive

traditional statistical techniques, such as k-means clustering or latent class analysis, could have

been used. However, the SOM algorithm has been found to provide better results than either

of these methods in the case of large data sets [65–67] such as used in this study.

The ML boosted regression has the advantage of automatically incorporating interaction

effects when evaluating variable importance which is not possible with traditional statistical

regression modelling [37]. Also, variable selection processes, such as stepwise or regularized

regression make variable selection difficult when there are highly correlated predictors as is

the case with medical symptoms. The boosted regression overcomes this problem by reducing

the number of selected variables at each iteration thereby being able to deal with highly corre-

lated variables. However, ML boosted regression can fail to perform well with small data sets

[68]. In addition, the training process can be computationally memory intensive due to the

fact that trees are built sequentially, requiring advanced computing capability such as parallel

processing. In addition, the regularization implemented to reduce the effects of overfitting can

mean the optimal number of iterations for a suitable shrinkage parameter can be considerably

large [69].
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Whilst this study performed validation using a random split of data into 60% training and

40% validation at the ML boosted regression stage, no validation of the methodology was per-

formed on a separate data set using self-reported medical symptom data. However, this meth-

odology has been successfully implemented to identify lifestyle clusters associated with

depression [70].

Conclusion

This study implemented two ML algorithms and a standard binary logistic regression to iden-

tify and describe clusters of individuals with higher rates of depression based on self-reported

medical symptoms in a large, cross-sectional epidemiological community based population

study. Bowel symptoms, covering bowel frequency and stool type, were identified as the pre-

dominant concurrent symptom category for the key clusters with a significant positive rela-

tionship with depression across 17 varied medical symptom categories. This study encourages

the future use of machine learning techniques to compliment traditional statistical approaches

in the analysis of epidemiological studies to assist clinicians detect potential latent associations

that can be further refined and clarified. This study also supports a research focus on the

potential importance of the bowel symptoms, the gut and its resident microbiota in mental

health research.

Acknowledgments

MB is supported by a NHMRC Senior Principal Research Fellowship 1059660.

LJW is supported by a NHMRC Career Development Fellowship (GNT1064272).

FNJ is supported by an NHMRC Career Development Fellowship 1108125.

The funders had no role in study design, data collection and analysis, decision to publish,

or preparation of the manuscript.

The authors would like to thank the referees of this issue for their valuable comments and

suggestions that have improved this paper.

Author Contributions

Conceptualization: JFD.

Formal analysis: JFD.

Methodology: JFD DM.

Software: JFD.

Visualization: JFD.

Writing – original draft: JFD.

Writing – review & editing: JFD JAP MB LJW SD FNJ DM.

References

1. Sanna L, Stuart AL, Pasco JA, Kotowicz MA, Berk M, et al. (2013) Physical comorbidities in men with

mood and anxiety disorders: a population-based study. BMC Med 11: 1.

2. Sanna L, Stuart AL, Pasco JA, Jacka FN, Berk M, et al. (2014) Atopic disorders and depression: find-

ings from a large, population-based study. J Affect Disord 155: 261–265. doi: 10.1016/j.jad.2013.11.

009 PMID: 24308896

3. Fond G, Loundou A, Hamdani N, Boukouaci W, Dargel A, et al. (2014) Anxiety and depression comor-

bidities in irritable bowel syndrome (IBS): a systematic review and meta-analysis. Eur Arch Psychiatry

Clin Neurosci 264: 651–660. doi: 10.1007/s00406-014-0502-z PMID: 24705634

Unravelling Medical Symptoms Associated with Depression

PLOS ONE | DOI:10.1371/journal.pone.0167055 December 9, 2016 16 / 19

http://dx.doi.org/10.1016/j.jad.2013.11.009
http://dx.doi.org/10.1016/j.jad.2013.11.009
http://www.ncbi.nlm.nih.gov/pubmed/24308896
http://dx.doi.org/10.1007/s00406-014-0502-z
http://www.ncbi.nlm.nih.gov/pubmed/24705634


4. Kronish IM, Carson AP, Davidson KW, Muntner P, Safford MM (2012) Depressive symptoms and car-

diovascular health by the american heart association’s definition in the reasons for geographic and

racial differences in stroke (REGARDS) study. PLoS One 7: e52771. doi: 10.1371/journal.pone.

0052771 PMID: 23300767

5. Massie MJ (2004) Prevalence of depression in patients with cancer. Monographs-National Cancer Insti-

tute 32: 57–71.

6. Mezuk B, Eaton WW, Albrecht S, Golden SH (2008) Depression and type 2 diabetes over the lifespan a

meta-analysis. Diabetes Care 31: 2383–2390. doi: 10.2337/dc08-0985 PMID: 19033418

7. Fernandes BS, Hodge JM, Pasco JA, Berk M, Williams LJ (2016) Effects of depression and serotoner-

gic antidepressants on bone: mechanisms and implications for the treatment of depression. Drugs

Aging 33: 21–25. doi: 10.1007/s40266-015-0323-4 PMID: 26547857

8. Harris B, Othman S, Davies J, Weppner G, Richards C, et al. (1992) Association between postpartum

thyroid dysfunction and thyroid antibodies and depression. Bmj 305: 152–156. PMID: 1515829

9. Luppino FS, de Wit LM, Bouvy PF, Stijnen T, Cuijpers P, et al. (2010) Overweight, obesity, and depres-

sion: a systematic review and meta-analysis of longitudinal studies. Arch Gen Psychiatry 67: 220–229.

doi: 10.1001/archgenpsychiatry.2010.2 PMID: 20194822

10. Passos IC, Mwangi B, Kapczinski F (2016) Big data analytics and machine learning: 2015 and beyond.

The Lancet Psychiatry 3: 13–15. doi: 10.1016/S2215-0366(15)00549-0 PMID: 26772057

11. Monteith S, Glenn T, Geddes J, Bauer M (2015) Big data are coming to psychiatry: a general introduc-

tion. International journal of bipolar disorders 3: 1–11.

12. Kohenen T (1997) Self-Organizing Maps, Vol. 30 of Lecture Notes in Information Sciences. Springer.

13. Wehrens R, Buydens LM (2007) Self-and super-organizing maps in R: the Kohonen package. J Stat

Softw 21: 1–19.

14. Kohonen T (1982) Self-organized formation of topologically correct feature maps. Biol Cybern 43: 59–

69.

15. Mitchell TM (1997) Machine learning. 1997. Burr Ridge, IL: McGraw Hill 45.

16. Chekroud AM, Zotti RJ, Shehzad Z, Gueorguieva R, Johnson MK, et al. (2016) Cross-trial prediction of

treatment outcome in depression: a machine learning approach. The Lancet Psychiatry.
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