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Accumulation and selection of somatic mutations in a Darwinian framework result in intra-tumor heterogeneity (ITH) that

poses significant challenges to the diagnosis and clinical therapy of cancer. Identification of the tumor cell populations

(clones) and reconstruction of their evolutionary relationship can elucidate this heterogeneity. Recently developed sin-

gle-cell DNA sequencing (SCS) technologies promise to resolve ITH to a single-cell level. However, technical errors in

SCS data sets, including false-positives (FP) and false-negatives (FN) due to allelic dropout, and cell doublets, significantly

complicate these tasks. Here, we propose a nonparametric Bayesian method that reconstructs the clonal populations as clus-

ters of single cells, genotypes of each clone, and the evolutionary relationship between the clones. It employs a tree-struc-

tured Chinese restaurant process as the prior on the number and composition of clonal populations. The evolution of the

clonal populations is modeled by a clonal phylogeny and a finite-site model of evolution to account for potential mutation

recurrence and losses. We probabilistically account for FP and FN errors, and cell doublets are modeled by employing a

Beta-binomial distribution. We develop a Gibbs sampling algorithm comprising partial reversible-jump and partial

Metropolis-Hastings updates to explore the joint posterior space of all parameters. The performance of our method on syn-

thetic and experimental data sets suggests that joint reconstruction of tumor clones and clonal phylogeny under a finite-site

model of evolution leads to more accurate inferences. Our method is the first to enable this joint reconstruction in a fully

Bayesian framework, thus providing measures of support of the inferences it makes.

[Supplemental material is available for this article.]

Acquisition of somatic mutations that confer selective growth ad-
vantage to the carrier cells drives initiation and progression of can-
cer (Vogelstein et al. 2013). From an evolutionary viewpoint,
tumor progression is a somatic evolutionary process that gives
rise to a composite mixture of genetically distinct subpopulations
(clones) of cells through rounds of accumulation of somatic alter-
ations, proliferation, and Darwinian selection in the tumor micro-
environment (Nowell 1976; Merlo et al. 2006; Pepper et al. 2009;
Yates and Campbell 2012). The genomic heterogeneity within a
tumor, also known as intra-tumor heterogeneity (ITH) not only
propels disease progression and metastasis (Turke et al. 2010; Wu
et al. 2012) but can also lead to therapeutic relapse and drug resis-
tance (Gillies et al. 2012; Burrell et al. 2013). High-throughput sec-
ond-generation sequencing technologies have provided large-
scale quantitative genomic data sets (Nik-Zainal et al. 2012;
Kandoth et al. 2013) for investigating ITH. Most studies typically
perform deep sequencing of bulk DNA retrieved from a single sam-
ple of the cancer tissue (Shah et al. 2012; Landau et al. 2015). Such
data sets provide variant allele frequencies (VAFs) of somaticmuta-
tions, an aggregate signal averaged over the existing distinct tumor
subclones as well as contaminating normal cells (Navin 2014), and
VAFs aremodeled asmixtures of subclones for their computational
inference (Roth et al. 2014; Deshwar et al. 2015; El-Kebir et al.
2016; Jiang et al. 2016). However, the noisy aggregate signal of
VAFs has limited resolution and thus restricts a comprehensive ex-
ploration of ITH (Navin 2014; Baslan andHicks 2017). Sequencing

multiple samples from different geographical regions of a tumor
can improve upon single-sample bulk sequencing (Gerlinger
et al. 2012, 2015; Yates et al. 2015) but cannot resolve spatially in-
termixed subpopulations (Navin 2015).

Ultimately, a single cell is the fundamental substrate of tumor
evolution and single-cell DNA sequencing (SCS) has emerged as a
powerful technique for resolving tumor evolution and ITH to a sin-
gle-cell level (Hou et al. 2012; Gawad et al. 2014;Wang et al. 2014;
Leung et al. 2017). Such technologies provide sequencing data per-
taining to single cells, thus allowing for direct measurement of ge-
notypes and prevalences of tumor subclones without requiring
deconvolution of aggregate signals (Zafar et al. 2018). At the
same time, they offer the possibility of reconstructing the clonal
lineage tree. However, these tasks are challenged by a high level
of experimental noise introduced in SCS data (Zafar et al. 2018)
during the sample preparation and whole genome amplification
(WGA) steps. WGA errors include false-positive (FP) and false-neg-
ative (FN) errors due to allelic dropout (ADO) (Navin 2014). FP er-
rors are caused by deamination of cytosine bases and infidelity of
polymerase enzymes. ADO affects the heterozygous loci as one of
the alleles is preferentially amplified. Unintended isolation and
processing of two cells together can result in cell doublets (charac-
terized by merged genotype) (Zafar et al. 2018). Another problem
with SCS data is missing entries due to coverage nonuniformity
(Zafar et al. 2018).
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Single-cell somatic point mutation profiles have been used to
infer clonal subpopulations. Early studies (Li et al. 2012; Wang
et al. 2014) used multidimensional scaling and hierarchical clus-
tering for reconstructing the tumor subclones, but such approach-
es fail to account for errors. Gawad et al. (2014) used a Bernoulli
mixture model (BMM) to infer clusters of cells and predict cluster
genotypes and performed model selection via a Bayesian informa-
tion criterion (BIC) score. This approach was extended in the SCG
method (Roth et al. 2016) to accommodate errors due to ADO and
doublets. However, such approaches neither utilize the evolution-
ary relationship between the clonal clusters nor infer any phylog-
eny that can convey the evolutionary history of the tumor cells.
Another direction with SCS data has been the reconstruction of
cell lineages to study tumor evolution. SCITE (Jahn et al. 2016)
andOncoNEM (Ross andMarkowetz 2016) probabilisticallymodel
WGA-specific errors for inferring tumor lineages from SCS data.
However, both SCITE and OncoNEM operate under the infinite
sites assumption (ISA), which posits that no genomic site mutates
more than once and mutations are never lost. This assumption
could get violated in tumor evolution due to events including con-
vergent evolution, chromosomal deletions, and loss of heterozy-
gosity (LOH) (Davis and Navin 2016; Kuipers et al. 2017). SiFit
(Zafar et al. 2017) employs a finite-sitemodel of evolution to allow
for mutation recurrence and losses and employs a maximum-like-
lihood-based approach for reconstructing tumor phylogeny.
Finally, PhISCS (Malikic et al. 2019) is a combinatorial approach
that employs integer linear programming for inferring phyloge-
netic trees that deviate slightly from the ISA from single-cell and
bulk-sequencing data. However, these phylogeny approaches
(other thanOncoNEM) do not provide straightforward reconstruc-
tion of the tumor subclones. At the same time, none of these phy-
logeny-based methods account for cell doublets as the merged
genotypes cannot be represented by a cell lineage tree model.

Here, we propose SiCloneFit, a unified statistical framework
and computational method that simultaneously addresses the
problems of subclonal reconstruction and phylogeny inference
from single-cell sequencing data. Our unified model simultane-
ously (1) estimates the number of tumor clones, (2) identifies the
tumor clones as clusters of single cells, (3) predicts the mutations
associated with each tumor clone (clonal genotype), and (4) under
a finite-site model of evolution places the tumor clones at the
leaves of a phylogenetic tree (clonal tree) that models their genea-
logical relationships.

Results

Overview of SiCloneFit

SiCloneFit integrates nonparametric Bayesian mixture modeling
based on a Chinese restaurant process with the finite-sites-
based phylogenetic approach introduced in SiFit (Zafar et al.
2017). Using single-cell somatic point mutation profiles as input,
SiCloneFit introduces a nonparametric Bayesian mixture model
based on a phylogeny-based Chinese restaurant process (clusters
reside at the leaves of a phylogeny) to identify clusters (clones)
of cells that share mutations and to resolve the clonal genotypes
(mutations associated with a clonal cluster). The evolution of the
clonal genotypes is modeled using a clonal phylogeny and a fi-
nite-site model of evolution that accounts for the effects of dele-
tion, LOH, and point mutations at the genomic sites. SiCloneFit
adopts the probabilistic error model of SiFit to account for FP
and FN errors in SCS. The doublet-aware model of SiCloneFit em-

ploys a Beta-binomial distribution to accommodate for the pres-
ence of cell doublets and augments the nonparametric Bayesian
mixture model with another finite mixture model to allow for
the placement of a potential doublet in two clonal clusters.
SiCloneFit employs a Gibbs sampling algorithm comprised of par-
tial reversible-jump and partial Metropolis-Hastings updates to ex-
plore the joint posterior space of all parameters. To the best of our
knowledge, SiCloneFit is the first Bayesian framework that jointly
reconstructs clonal populations and their evolutionary history
from SCS data sets under a finite-site model of evolution while ac-
counting for cell doublets along with other WGA artifacts.

Description of SiCloneFit model

We start with a brief description of the formulation of the joint in-
ference problem and the SiCloneFit model. Overview of the
SiCloneFit model is given in Figure 1A.

A tumor population (clone) refers to a set of cells that share a
common genotype as they descend from a common ancestor
(Merlo et al. 2006). In the context of single-cell sequencing, a clon-
al population refers to a maximal set of cells with identical geno-
type (with respect to the set of mutations under analysis) (Roth
et al. 2016). We model the lineage of the clonal populations using
a clonal phylogeny, a rooted directed binary tree, the root of which
represents normal (unmutated) genotype, and somatic mutations
are accumulated along the branches of the phylogeny. The sam-
pling of single cells from the tumor at any point in time is analo-
gous to horizontally slicing the clonal phylogeny to obtain
samples from the leaves. The leaves of the clonal phylogeny repre-
sent the clonal populations, and the sampled cells are individuals
sampled from each leaf. The DNA from each sampled cell goes
through the process of single-cell DNA sequencing and mutation
calling, which provides the observed genotype matrix D=Dn×m

for m single cells and n somatic mutation sites.
In SiCloneFit, we model this generative process using the

probabilistic graphical model shown in Figure 1B (also Supple-
mental Fig. S1). Here, we briefly describe the singlet model (all
sampled cells are assumed to be singlets) of SiCloneFit. The proba-
bilistic graphical model for the doublet-aware model is shown in
Supplemental Figure S2. The model variables, hyperparameters,
and associated indices are introduced in Supplemental Tables
S1–S3. For a detailed description of the singlet and doublet-aware
model of SiCloneFit, see Supplemental Methods.

We consider somatic single nucleotide variant (SNV) sites,
where the input data is represented by amatrix that records the ob-
served genotype for each cell for eachmutation site. The inputma-
trix can be binary, when the presence (denoted by 1) or absence
(denoted by 0) of a mutation is noted. For a ternary matrix, the
three possible genotype states, 0, 1, and 2 correspond to homozy-
gous reference, and heterozygous and homozygous nonreference
genotypes, respectively. We assume that there is a set of K clonal
populations from which a total of m single cells are sampled and
the clonal populations can be placed at the leaves of a clonal phy-
logeny, T . Each clonal population contains a set of cells that have
identical genotype and share a common ancestor. It is important
to note that K is unknown. To infer the number of clones and as-
sign the cells to clones, we introduce a tree-structured infinite
mixture model. In our model, we extend the tree-structured
Chinese restaurant process (CRP) prior from Meeds et al. (2008)
to define a nonparametric Bayesian prior over binary trees, leaves
of which represent the mixture components (clonal clusters).
The clonal phylogeny represents the genealogical relationship
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between the clonal populations. A tree-structured infinite mixture
model has been used for inferring tumor phylogeny from bulk-se-
quencing data (Deshwar et al. 2015). The genotype vector associat-
ed with a clone is called clonal genotype, and it records the
genotype values for all mutation sites for the corresponding clone.
To model the evolution of the clonal genotypes along the branch-
es of T , we employ a finite-site model of evolution, Ml, that ac-
counts for the effects of point mutations, deletion, and LOH on
the clonal genotypes. The model of evolution assigns transition
probabilities to different genotype transitions along the branches
of the clonal phylogeny. The true genotype of each cell is identical
to the clonal genotype of the clonal cluster where it is assigned.
However, observed genotypes of single cells can differ from their
true genotype due to amplification errors introduced during the
SCS work flow. The effect of amplification errors is modeled using
an errormodel distribution parameterized by FP error rate α and FN
error rate β. The generative process is described in detail in
Methods and the distributional assumptions of the model are
shown in Figure 1C.

SiCloneFit attempts to jointly reconstruct the tumor clones as
clusters of single cells, clonal genotypes, and the clonal phyloge-
ny. In doing so, it employs a likelihood function and a compound
prior to define the posterior distribution over these latent vari-
ables. SiCloneFit employs a Markov chain Monte Carlo (MCMC)
sampling procedure based on the Gibbs sampling algorithm com-
prised of partial reversible-jump and partial Metropolis-Hastings
updates to estimate the latent variables. The posterior distribution
and the inference algorithm are described in Methods and
Supplemental Methods.

Benchmarking on simulated data sets

We performed comprehensive simulations to evaluate the perfor-
mance of SiCloneFit in (1) clustering the cells into different clones,
(2) inferring the genotypes of the cells via clonal genotyping, and
(3) reconstructing the clonal lineage. To generate benchmarking
data sets, we first sampled observed clonal prevalences for a fixed
number of clones from a Dirichlet distribution, and the cells

B

A

C

Figure 1. Overview of SiCloneFit Model. (A) From an observed noisy genotype matrix of single cells, SiCloneFit infers the clonal clusters, clonal phylog-
eny, and clonal genotypes of single cells. (B) A probabilistic graphical model representing the singlet model of SiCloneFit. Shaded nodes represent the ob-
served values or fixed parameters; unshaded nodes are the latent variables that are of interest; a posterior distribution over the values of the unshaded nodes
is approximated using samples from the proposed Gibbs sampler. The variables and indices are described in Supplemental Methods. (C) Distributional
assumptions for the different variables in the SiCloneFit singlet model.
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were assigned to different clones using amultinomial distribution.
Then, we constructed linear and branching topologies for clonal
phylogeny using the Beta-splitting model (Sainudiin and Véber
2016). The clonal genotypes at the leaves of the phylogeny were
simulated in a similar fashion as described in Zafar et al. (2017).
Different SCS artifacts were then introduced on the cellular geno-
types to produce the noisy observed genotypes which were used as
the input data for inference. The simulation process is described in
detail in Supplemental Results.

To compare the results of SiCloneFit against the ground truth,
we summarized the posterior samples from the Gibbs sampler of
SiCloneFit. The clustering samples were summarized by the maxi-
mum posterior expected adjusted Rand (MPEAR) method (Fritsch
and Ickstadt 2009). To summarize the clonal phylogeny samples,
we constructed a maximum clade credibility topology (MCCT)
from the posterior samples using DendroPy (Sukumaran and
Holder 2010). From the posterior samples, we computed the poste-
rior probability of the genotype of each cell at each mutation
site, and the genotype with the highest posterior probability was
assigned as the inferred genotype. When using the doublet-
aware model of SiCloneFit, the doublets were inferred based on
the posterior probability and were filtered out for subsequent anal-
ysis. The summarization methods are described in detail in
Supplemental Results.

We compared SiCloneFit’s performance against SCG (Roth
et al. 2016), OncoNEM (Ross and Markowetz 2016), SiFit (Zafar
et al. 2017), and SCITE (Jahn et al. 2016). SCG was used to infer
clonal genotypes and clonal structures from the single cell somatic
SNV profiles. The clonal phylogeny was obtained by running a
maximum parsimony algorithm (Schliep 2011) on the clonal ge-
notypes as suggested in the original study (Roth et al. 2016).
OncoNEM was used to infer a clonal tree from the single cell
somatic SNV profiles. Clonal genotypeswere obtained by inferring
the occurrence of the mutation on the branches of the clonal tree.
SiFit inferred a cell lineage tree, the leaves of which represent the
single cells. Mutations were inferred on the branches of this phy-
logeny using SiFit’s mutation placement algorithm, which also re-
sulted in inferring the genotype vector for each cell. The cells were
clustered into a number of clones that resulted in the highest sil-
houette score for k-medoids clustering of the cells based on a dis-
tance matrix obtained from the inferred cell lineage tree. SCITE
was used to infer a mutation tree from the noisy single-cell muta-
tion profiles. The attachments of the cells on the nodes of the mu-
tation tree also helped in inferring the genotype of each cell. We
inferred the clonal populations by clustering the cells using a sil-
houette score-based k-medoids clustering based on a distance ma-
trix obtained from the mutation tree. Details of how results were
extracted for each method are described in Supplemental Results.

The clustering accuracy of each method was measured using
the Adjusted Rand Index (ARI) and B-cubed F-score (Amigó et al.
2009) for data sets without and with doublets, respectively. For
evaluating the genotyping performance of each method, we com-
puted the genotyping error defined by the average Hamming dis-
tance (number of entries differing) per cell per site between the
true and inferred genotypes of the cells. For an assessment of the
phylogeny inference, we used the tree reconstruction error com-
puted as the pairwise cell shortest-path distance (Ross and
Markowetz 2016) between the true and inferred clonal phylogeny.
The performance metrics are described in detail in Supplemental
Results.

SiCloneFit employs a finite-site model of evolution along the
branches of the clonal phylogeny to account for the effects of pos-

sible mutation losses and recurrence on the clonal genotypes. To
analyze how well this finite-site model performs in conjunction
with the tree-structured infinite mixture model in recovering the
clonal genotypes of the single cells under varying rates ofmutation
recurrence and losses, we conducted three sets of experiments. For
the three sets, varying probabilities for deletion (d), loss of hetero-
zygosity (ω), and recurrent mutation (r) were used for simulation,
respectively. An extreme setting (d=0, ω=0, r=0) of these param-
eters also generated data sets under the infinite-sites model. The
first two parameters resulted in loss of mutations; the third one in-
troduced parallel recurrent mutations. For these experiments, we
compared SiCloneFit’s result against that of SiFit (the only other
method employing a finite-sitemodel) to testwhether SiCloneFit’s
additional ability to cluster the cells results in improved perfor-
mance. Details of these experiments have been described in
Supplemental Results. For different values of deletion probability,
SiCloneFit performed superiorly over SiFit based on all three met-
rics (Supplemental Fig. S3). Specifically, SiCloneFit achievedmajor
improvement over SiFit in reducing the genotyping error and
tree reconstruction error. Similarly, for different values of the
probability of LOH, SiCloneFit achieved better or similar clustering
accuracy (Supplemental Fig. S4A) and reasonably reduced tree
reconstruction error (Supplemental Fig. S4B) and genotyping
error (Supplemental Fig. S4C) compared to SiFit. For the data sets
generated under the infinite-sites model (d=0, ω=0, r=0), both
SiCloneFit and SiFit achieved high clustering accuracy, but
SiCloneFit outperformed SiFit in reconstructing the clonal geno-
types and the phylogeny (Supplemental Fig. S5). For different val-
ues of recurrent mutation probability (r), SiCloneFit performed
better than SiFit in inferring the clonal phylogeny and the geno-
types (Supplemental Fig. S5).

To evaluate SiCloneFit’s singlet model, we first conducted
simulations excluding doublets. For a fixed number of clones, we
simulated data sets with varying number of cells and varying num-
ber of sites. For these data sets, we compared against SCG,
OncoNEM, SiFit, and SCITE. However, for larger sized data sets
(m=500), OncoNEM failed to run. Clustering accuracy (Fig. 2A;
Supplemental Fig. S6) and phylogeny inference accuracy (Fig.
2C; Supplemental Fig. S8) of eachmethod improved as the number
of sites increased. Genotyping error (Fig. 2B; Supplemental Fig. S7)
of each method reduced with an increase in the number of sites.
For each experimental setting, SiCloneFit performed the best in
terms of all performance metrics. For larger sized data sets, it
achieved perfect clustering for almost all data sets. In the presence
of a higher number of clonal populations, sampling the same
number of cells leads to a more difficult inference problem. Even
for such situations, SiCloneFit performed the best based on all
three metrics (Supplemental Fig. S9), and it was robust against
the increase in number of clones as evidenced by its low rate of re-
duction in clustering accuracy. SiCloneFit’s performance was also
robust against increasing error rate. With an increase in the FN
rate, performance of each method degraded, but SiCloneFit had
the lowest amount of reduction in performance, and it also outper-
formed all other methods for all values of FN rate (Supplemental
Fig. S10). The same trend was observed when false positive rate
was elevated (Supplemental Fig. S11). SiCloneFit’s performance
was robust to an increase in FP rate, and it performed superiorly
over all other methods based on all three metrics. In this setting,
for some data sets, SCG’s genotyping failed to converge and result-
ed in a large number of false predictions. For larger data sets, we
also tested the effect of missing data on inference accuracy. For
these experiments, we compared SiCloneFit’s results to that of
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only SCG as SCG was overall the second best performer (matched
or outperformed by SiFit for some settings) in all our previous ex-
periments. Even in the presence of a high amount of missing data,
SiCloneFit performed well in clustering the cells into clones and
inferring the clonal phylogeny. It consistently performed better
than SCG (Supplemental Figs. S12–S14) in terms of all metrics.
Only in one setting (n=100, 30% missing data) did SCG achieve
lower genotyping error than SiCloneFit.

While most human tumors show evidence of at least weak se-
lection leading to the prevalence of clonal subpopulations that
harbor driver mutations (Greaves and Maley 2012), some tumors
might undergo neutral evolution as shown in Ling et al. (2015)
and Williams et al. (2016). To analyze SiCloneFit’s performance
under neutral evolution that can lead to an absence of clonal struc-
ture, we conducted simulation experiments under the neutral evo-
lution model proposed in Williams et al. (2016). The neutral
evolution model in Williams et al. (2016) posits that the number
of subclonal mutations should follow the 1/f power law distribu-
tion ( f being the allelic frequency of a mutation), and the cumula-
tive distributionM( f ) of subclonal mutations should have a linear
relationship with 1/f. We simulated data sets satisfying these con-

ditions (Supplemental Fig. S15) and compared SiCloneFit’s results
to that of SCG, SiFit, and SCITE (Supplemental Fig. S16). For these
data sets, SiCloneFit performed either similarly or better than the
other methods based on the different metrics (see Supplemental
Results for details).

We further evaluated SiCloneFit’s ability to estimate the
error rates from the data sets. SiCloneFit performed very well for
estimating both FP rate α and FN rate β (Supplemental Fig. S17).
For data sets generated under a wide range of error rate values,
SiCloneFit’s estimated error rates were highly correlated (0.998
for α and 0.992 for β) to the original error rates used for generating
the data sets. In order to evaluate SiCloneFit’s ability to infer the
correct number of clusters, we generated data sets under varying
levels of sampling distortion. Higher sampling distortion leads to
the sampled cells deviating from the true prevalences of the clonal
clusters,making itmore difficult to infer the actual number of clus-
ters. SiCloneFit’s performance in inferring the actual number of
clusters improved as the amount of sampling distortion reduced
from high to moderate to low (Supplemental Fig. S18). Even in
the presence of high sampling distortion, it inferred the actual
number of clusters for some data sets and only missed rare clusters

BA

C

Figure 2. Performance comparison on simulated data sets containing 100 cells. SiCloneFit’s performance is compared against that of SCG, OncoNEM,
SiFit, and SCITE on simulated data sets containing 100 cells for varying numbers of sites. On the x-axis, we have results corresponding to n=50 and n=100.
The cells were sampled from K=10 clonal populations. Each box plot summarizes results for 10 simulated data sets with varying clonal phylogeny and
varying size of clonal clusters. (A) Comparison of clustering accuracy measured in terms of Adjusted Rand Index that compares the inferred clustering
against the ground truth. (B) Comparison based on the genotyping error measured in terms of Hamming distance per cell per site between the true ge-
notype matrix and inferred genotype matrix. (C) Comparison based on the tree reconstruction error measured in terms of pairwise cell shortest-path dis-
tance between the true clonal phylogeny and inferred clonal phylogeny.
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(consisting of one cell). SiCloneFit also performedwell for data sets
containing a large number of cells (Supplemental Fig. S19) and
large number of sites (Supplemental Fig. S20).

Next, we performed simulations including 10% doublets to
evaluate SiCloneFit’s doubletmodel. SCG is the only othermethod
that accounts for the presence of doublets. As a consequence, for
these data sets, we only compared SiCloneFit’s results against
that of SCG. For a fixed number of clones, we simulated data sets
with varying number of cells and varying number of sites.
SiCloneFit achieved higher clustering accuracy (Supplemental
Fig. S21) and genotyping accuracy (Supplemental Fig. S22) com-
pared to SCG. It also achieved lower tree reconstruction error
(Supplemental Fig. S23) in all settings except for m=500 and n=
100. For some data sets, SCG failed to converge and resulted in
very low clustering accuracy and high genotyping error. In the
presence of a higher number of clonal populations, SiCloneFit sig-
nificantly outperformed SCG (Supplemental Fig. S24). Finally, we
evaluated how inference is affected when missing data and dou-
blets are simultaneously present. Even in the presence of a high
amount of missing data (15%, 30%), both methods performed
well in clustering (Supplemental Fig. S25) the cells to clones, with
SiCloneFit performing better than SCG in all settings. For all set-
tings, SiCloneFit’s genotyping performance (Supplemental Fig.
S26) was better than that of SCG’s. For some data sets, SCG failed
to converge and resulted in low clustering accuracy and high gen-
otyping error. SiCloneFit’s tree reconstruction error (Supplemental
Fig. S27) was also smaller in all but one setting (n =100 and 15%
missing data).

Inference of clonal clusters, genotypes, and phylogeny from

experimental SCS data

We applied SiCloneFit to two experimental single-cell DNA se-
quencing data sets from two metastatic colon cancer patients, ob-
tained from the study of Leung et al. (2017). These data sets were
generated using a highly multiplexed single-cell DNA sequencing
method (Leung et al. 2016) and a 1000-cancer gene panel was used
as the target region for sequencing. These are two of the most re-
cent SCS data sets and contain a large number of cells and a small
number of mutation sites, making the inference difficult.

The first data set consisted of 178 cells (Leung et al. 2017) ob-
tained from both primary colon tumor and liver metastasis. The
original study reported 16 somatic SNVs after variant calling.
The reported genotypes were binary values, representing the pres-
ence or absence of a mutation at the SNV sites. In the original
study, SCITE (Jahn et al. 2016) was used for performing phyloge-
netic analysis of this tumor. However, SCITE operates under the in-
finite sites assumption and only infers the mutation tree. We ran
the four-gamete test on this data set, which identified 104 (out
of 120) pairs of SNV sites violating the four-gamete test, indicating
potential violation of the infinite sites assumption. Multiple po-
tential events including mutation recurrence and loss, FP and FN
error could have caused such a high number of violations of the
four-gamete test (Zafar et al. 2017). After running SiCloneFit on
this data set, we collected the samples from the posterior and com-
puted a maximum clade credibility tree based on the posterior
samples, as shown in Figure 3A. Five different clusters were identi-
fied from the SiCloneFit posterior samples. The largest cluster (N)
consisted of normal cells without any somatic mutation. The pri-
mary tumor cells were clustered into two subclones (P1 and P2).
Metastatic aneuploid tumor cells were clustered into one subclone
(M). Therewas another cluster (D) consisting of diploid cells (most-

ly metastatic). The clonal genotype of each cluster was inferred
based on the posterior samples. The inferred genotypes are shown
in Supplemental Figure S28. Based on the clonal genotypes, we in-
ferred the ancestral sequences at the internal nodes, and this en-
abled us to find the maximum-likelihood solution for placing
the mutations on the branches of the clonal phylogeny. First, a
heterozygous nonsense mutation was acquired in APC along
withmutations in the KRAS oncogene and TP53 tumor suppressor
gene, and these initiated the tumor mass. The subclone (D) con-
sisting of diploid cells acquired another mutation in GATA1 and
branched out from the primary tumor mass. The primary tumor
subclones developed by acquiring six more somatic mutations, in-
cluding amutation in theCCNE1 oncogene. Thesemutationswere
subsequently inherited in the metastatic tumor subclone (M). The
accumulation of mutations in EYS, GATA1, RBFOX1, TRRAP, and
ZNF521 marked the point of metastatic divergence. The two pri-
mary tumor subcloneswere distinguished by the presence/absence
of TPM4mutation. It was specific to the second primary subclone
(P2) and was not identified in any of the metastatic tumor cells,
suggesting that the first primary subclone (P1) disseminated and
established the metastatic tumor mass. The clonal phylogeny dis-
played recurrence of the GATA1 mutation that was not identified
in the original study. This finding was further supported by a mix-
ture-model Bayesian binomial test (Leung et al. 2017) based on the
read counts of the GATA1 mutation (see Supplemental Results for
details).We ranMACHINA (El-Kebir et al. 2018) on the clonal phy-
logeny inferred by SiCloneFit for reconstructing themigration his-
tory of the tumor clones for this patient. The inferred migration
graph (Fig. 3B) had two migrations with comigration number= 1.
Since two anatomical sites were sequenced, the inference of amin-
imumpossible comigration number indicates a single-source seed-
ing pattern with colon being the source. The presence of a
multiedge in the migration graph also indicates polyclonal seed-
ing, where liver was seeded by two different clones that originated
in colon. However, the first seeding did not result in the clonal ex-
pansion; metastatic tumor mass formed after the second seeding
that was associated with the mutations in EYS, GATA1, RBFOX1,
TRRAP, and ZNF521. None of the cells were inferred as doublets
by the doublet-awaremodel of SiCloneFit. This findingwas further
supported by the doublet detection by SCG, which also did not
find any doublet. This is expected, as the cells in this data set
were isolated using FACS Aria II (Leung et al. 2017), which includ-
ed a protocol for removing doublets.

For comparison, we ran SCG on this data set. SCG reported
four clonal clusters, and the inferred clonal genotypes are shown
in Supplemental Figure S29. SCG could not distinguish the prima-
ry tumor cells on the basis of the presence/absence of the TPM4
mutation and genotyped all of them to contain TPM4. Thus, it
did not report two primary tumor subclones that were detected
by SiCloneFit and instead only one primary tumor subclone (all
primary tumor cells were assigned to this cluster) was inferred.

The second data set consisted of 182 cells (Leung et al. 2017)
obtained from both primary colon tumor and liver metastasis.
The original study reported 36 somatic SNVs after variant calling.
The reported genotypes were binary values, representing the pres-
ence or absence of a mutation at the SNV sites. After running the
four-gamete test on this data set, we identified 347 (out of 630)
pairs of SNV sites violating the four-gamete test, indicating poten-
tial violation of the infinite sites assumption. After running
SiCloneFit on this data set, we collected the samples from the pos-
terior and computed a maximum clade credibility tree based on
the posterior samples, as shown in Figure 4A. Six different clusters
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were identified in theMPEAR solution based on the posterior sam-
ples. The largest cluster (N) consisted of normal cells that did not
harbor any somatic mutation. There were two clusters consisting
of primary aneuploid tumor cells (P1 and P2) and two clusters con-
sisting ofmetastatic aneuploid tumor cells (M1 andM2). Therewas
one more cluster (I) comprised of diploid cells that harbored
somatic mutations that were completely different from the prima-
ry or metastatic clusters, representing an independent clonal line-
age consistent with the findings reported by Leung et al. (2017).
The clonal genotype of each cluster was inferred based on the pos-
terior samples. The inferred genotypes are shown in Supplemental
Figure S30. Based on the clonal genotypes, we inferred the ances-

tral sequences at the internal nodes, and this enabled us to find
the maximum-likelihood solution for placing the mutations on
the branches of the clonal phylogeny. The first primary tumor
clone (P1) evolved from the normal cells by acquiring eight muta-
tions, including mutations in APC, NRAS, CDK4, and TP53. After
that, four additional mutations (CHN1, APC, LINGO2, IL21R)
were acquired before the first metastatic cluster (M1) diverged.
After dissemination into liver, the first metatstatic subclone (M1)
continued to evolve and acquired a number of metastasis-specific
mutations (e.g., SPEN, IL7R, PIK3CG, F8, LINGO2). Before the
divergence of the secondmetastatic subclone (M2), two more mu-
tations (FHIT, ATP7B) were acquired that were also present in the

BA

Figure 3. Inference of tumor clones and clonal phylogeny using SiCloneFit for metastatic colorectal cancer patient CRC1. (A) Maximum clade credibility
tree reconstructed from the posterior samples obtained using SiCloneFit. Each tumor clone is a cluster of single cells, and their genotypes are also inferred.
The temporal order of the mutations is reconstructed, and mutations are annotated on the branches of the clonal tree. The cancer genes and tumor-sup-
pressor genes are marked in purple. The colors of the shades represent the organ/anatomical site of the origin of the cells. (B) Parsimonious migration his-
tory of the tumor clones inferred usingMACHINA (El-Kebir et al. 2018) with the SiCloneFit inferred clonal tree as input. The top figure shows the clonal tree
where the leaves are annotated by the anatomical sites and the anatomical sites annotation of the internal nodes and root are inferred by MACHINA. The
bottom figure shows the migration graph of the cells with migration number 2 and comigration number 1. This indicates polyclonal single-source seeding
from colon to liver.
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second primary tumor subclone P2. The second primary tumor
clone (P2) acquired two additional mutations in LRP1B and
LINGO2 that were not present in either metastatic clone. The sec-
ond metastatic clone disseminated after acquiring the ATP7B mu-
tation and further expanded the liver tumor mass by acquiring
seven additional mutations (e.g., PTPRD, NR4A3, HELZ, TSHZ3).
In the original study, SCITE identified two different lineages for
metastatic cells and inferred four mutations (FHIT, ATP7B, APC,
and CHN1) between the two metastatic divergence events. These
were called as “bridge mutations.” In contrast, SiCloneFit identi-

fied two mutations (FHIT and ATP7B) as “bridge mutations,” and
the other two putative bridge mutations (APC, and CHN1) were
identified as nonbridge and placed before the divergence of the
first metastatic subclone. To evaluate these results, we performed
the mixture-model Bayesian binomial test proposed in Leung
et al. (2017) based on the read counts for these four mutations,
which further indicated that SiCloneFit’s placement of these mu-
tations in the tumor phylogeny is more plausible than that of
SCITE (see Supplemental Results; Supplemental Figs. S31, S32 for
details). Other than the precursor mutations shared with the

BA

Figure 4. Inference of tumor clones and clonal phylogeny using SiCloneFit for metastatic colorectal cancer patient CRC2. (A) Maximum clade credibility
tree reconstructed from the posterior samples obtained using SiCloneFit. Each tumor clone is a cluster of single cells, and their genotypes are also inferred.
The temporal order of the mutations is reconstructed, and mutations are annotated on the branches of the clonal tree. The cancer genes and tumor-sup-
pressor genes are marked in purple. The colors of the shades represent the organ/anatomical site of the origin of the cells. (B) Parsimonious migration his-
tory of the tumor clones inferred usingMACHINA (El-Kebir et al. 2018) with the SiCloneFit inferred clonal tree as input. The top figure shows the clonal tree
where the leaves are annotated by the anatomical sites and the anatomical sites annotation of the internal nodes and root are inferred by MACHINA. The
bottom figure shows the migration graph of the cells with migration number 2 and comigration number 1. This indicates polyclonal single-source seeding
from colon to liver.
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primary tumor clones, themetastatic tumor clones had threemore
mutations in common (PTPRD, FUS, and LINGO2). This is evi-
dence for a potential convergent evolution. To evaluate the accu-
racy of this, we performed the mixture-model Bayesian binomial
test (Leung et al. 2017), which provided strong evidence of recur-
rence for two of these mutations (FUS and LINGO2) (see Supple-
mental Fig. S33; Supplemental Results for details). Apart from
the primary andmetastatic tumor clones, therewas another cluster
(I) consisting of seven primary diploid cells that had completely
independent somatic mutations. These cells acquired mutations
in SPEN,ALK, ATR,NR3C2, and EPHB6 but did not share any other
mutationswith the primary ormetastatic tumor cells, representing
an entirely different tumor lineage that did not expand sig-
nificantly. We reconstructed the migration history of the tumor
clones by runningMACHINA (El-Kebir et al. 2018) on the SiClone-
Fit inferred clonal phylogeny, whose leaves (clonal clusters) were
annotated by the anatomical site of origin of the associated cells.
The inferred migration graph (Fig. 4B) had two migrations with
comigration number= 1 (also the minimum possible comigration
number for two anatomical sites), indicating polyclonal single-
source seeding from colon to liver. Here, both the seeding events
led to expansion of tumor mass in liver and resulted in two differ-
ent metastatic subclones. For this data set also, none of the cells
were inferred as a doublet by SiCloneFit’s doublet-aware model.
Similarly, SCG did not detect any doublet in this data set.

SCG reported five clonal clusters from this data set (Sup-
plemental Fig. S34). Clustering and genotyping results of SCG
mostly agreed with that of SiCloneFit. However, SCG failed to
detect two primary tumor subclones and instead clustered them
together into one subclone, resulting in incorrect genotyping for
those cells.

To validate SiCloneFit’s doublet detection from experimental
SCS data, we applied SiCloneFit on a high-grade serous ovarian
cancer data set introduced in McPherson et al. (2016) consisting
of 370 cells and 43 somatic mutations. Since, ground truth dou-
blets were not known for this data set, we compared the results
of the doublet-aware models of SiCloneFit and SCG on this data
set. Seventeen cells were reported as doublets by both of these
methods. SCG reported 11 additional doublets, 10 of which had
similar posterior probabilities (computed by SCG) of being a dou-
blet or a singlet (see Supplemental Fig. S35; Supplemental Results
for details).

Discussion

Inference of tumor subclones and their evolutionary history is of
paramount importance given their contribution to drug resistance
and therapeutic relapse. While this problem has been investigated
in depth in the context of bulk-sequencing data, methods are lack-
ing for SCS data, the most promising and high-resolution data for
studying tumor heterogeneity. Here, we reported on SiCloneFit, a
novel probabilistic framework for inferring the number and struc-
ture of tumor clones, their genotypes, and evolutionary history
from noisy somatic SNV profiles of single cells. Our unified frame-
work jointly reconstructs the tumor clones as clusters of single cells
as well as their genealogical relationship in the form of a clonal
phylogeny. In this process, SiCloneFit accounts for the effects of
mutational events (point mutations, LOH, deletion) in the evolu-
tionary history of the tumor via a finite-site model of evolution
and denoises the effects of technical artifacts such as allelic drop-
out, false-positive errors, missing entries, and cell-doublets to infer
the clonal genotypes. SiCloneFit employs a Gibbs sampling algo-

rithm consisting of partial reversible-jump MCMC and partial
Gibbs updates for estimating the latent variables by sampling
from the posterior distribution. A major distinguishing feature of
SiCloneFit is that it jointly solves the subclonal reconstruction
and tumor phylogeny inference problems from SCS data sets,
whereas existing methods either cluster the cells into subclones
or infer a tumor phylogeny. The phylogeny inference methods
(except SiFit) also rely on infinite sites assumption to restrict the
search space. On the contrary, SiCloneFit employs a finite-site
model of evolution to account for mutation recurrence and losses.
At the same time, SiCloneFit accounts for cell doublets, an impor-
tant technical artifact that is not dealt with by existing single-cell
phylogeny inference methods.

We assessed SiCloneFit’s performance through a comprehen-
sive set of simulation studies aimed at creating experimental set-
tings corresponding to different aspects of modern SCS data
sets. Data sets were generated with varying rates of mutation
losses and recurrences, a varying number of cells, genomic sites,
and tumor subclones, a wide range of error rates, and varying
amounts of missing data and cell doublets. In simulated bench-
marks, SiCloneFit outperformed the state-of-the-art methods
based on different metrics for evaluating its performance in infer-
ring the clonal clusters, clonal genotypes, and the clonal evolu-
tionary history. SiCloneFit also performed well in estimating the
error rates in SCS data. We also applied SiCloneFit on two targeted
SCS data sets from two metastatic colon cancer patients for study-
ing the intra-tumor heterogeneity. For these tumors, SiCloneFit in-
ferred the primary and metastatic subclones as clusters of single
cells, inferred their genotypes, reconstructed the genealogy of
these subclones, and inferred the temporal order of the mutations
in their evolutionary history, revealing mutations that potentially
played an important role in metastatic divergence.

SiCloneFit’s inference of clonal populations and clonal geno-
types could potentially be improved by accounting for copy
number alterations (CNAs) along with SNVs. The current model
of SiCloneFit accounts for only LOH and deletion that can give
rise to CNAs altering the genotype of a point mutation site.
Similarly, copy number gain can also result in changing the geno-
type of a point mutation site. Copy number information for the
mutation sites will be very helpful in a more accurate understand-
ing of the genotype states of point mutations. While it is possible
to approximate any copy number information via the ternary ge-
notype states (e.g., for copy number 3, ternary genotype states
will be 0 = {aaa}, 1 = {aaa, abb}, 2 = {bbb}; ‘a’: reference allele and
‘b’: variant allele) of our current model, the exact copy number in-
formation will help in more precise inference of the genotypes.
Our finite-site model is flexible, and it can be easily extended by
adding copy number gain and loss parameters to account for the
possible genotype states emerged due to simultaneous occurrence
of CNAs and SNVs. The inclusion of CNAs along with SNVs can
also improve the inference of the mutational history of the tumor,
as the placement of CNAs on the branches of the clonal phylogeny
can help in understanding their role in subclonal expansion.
However, owing to the difference of the whole genome amplifica-
tion methods required for CNA and SNV detection, modern SCS
data sets are generated with an aim to uncover either the CNAs
or the SNVs. Most studies resort to targeted sequencing for SNV
detection, and because of the uneven coverage of the targeted se-
quencing, inference of copy numbers from such data sets becomes
extremely difficult. When technologies become available for pro-
ducing SCS data sets enabling the measurement of both CNAs
and SNVs from the same cell, SiCloneFit’s finite-site model can
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be extended to account for more complex genotype states result-
ing from CNAs. If copy number information becomes available,
SiCloneFit’s error model can be further improved, as the mutated
alleles present in multiple copies will be less prone to be affected
by allelic dropout. SiCloneFit’s error model can be further extend-
ed to utilize reference and variant read counts at eachmutation site
in each cell as the input data instead of presence/absence of muta-
tion inferred by a variant caller.

In closing, SiCloneFit advances the understanding of intra-tu-
mor heterogeneity and clonal evolution through improved com-
putational analysis of SCS data. As SCS becomes more high-
throughput, generating somatic SNV profiles for thousands of
cells, SiCloneFit will be very helpful in reconstructing the tumor
clones and clonal phylogeny from such large data sets. Being capa-
ble of handling doublets, SiCloneFit will find important applica-
tions in removing doublets, as their percentage can be high in
more high-throughput data sets. Methods like SiCloneFit will
have important translational applications for improving cancer
diagnosis, treatment, and therapy in clinical applications.

Methods

Model description

We assume that we have measurements from m single cells. For
each cell, n somatic single nucleotide variant sites have been mea-
sured. The data can be represented by a matrix Dn×m= (Dij) of ob-
served genotypes, where Dij is the observed genotype at the ith

site of cell j. Let gt be the set of possible true genotype values for
the SNVs, and go be the set of observable values for the SNVs. For
binary measurements for SNVs, gt= {0, 1}, whereas go= {0, 1, X},
where 0, 1, andX denote the absence ofmutation, presence ofmu-
tation, and missing value, respectively. If ternary measurements
are available for SNVs, gt= {0, 1, 2}and go= {0, 1, 2, X}, where 0 de-
notes homozygous reference genotype, and 1 and 2 denote hetero-
zygous, and homozygous nonreference genotypes, respectively,
and X denotes missing data.

We assume that there is a set of K clonal populations from
which m single cells are sampled and the clonal populations can
be placed at the leaves of a clonal phylogeny, T . Each clonal pop-
ulation consists of a set of cells that have an identical genotype
(with respect to the set of mutations in consideration) and a com-
mon ancestor. The genotype vector associated with a clone c is
called clonal genotype (denoted by Gc, Gc∈ {0, 1, 2}n), and it re-
cords the genotype values for all n sites for the corresponding
clone. The true genotype vector of each cell is identical to the
clonal genotype of the clonal population to which it belongs.
The clonal genotypematrix,GK×n, represents the clonal genotypes
of K clones. It is important to note that, K, the number of clones is
unknown. To automatically infer the number of clones and assign
the cells to clones, we introduce a tree-structured infinite mixture
model. Meeds et al. (2008) describes a nonparametric Bayesian pri-
or over trees similar to mixture models using a Chinese restaurant
process (Pitman 2006) prior. For this tree-structured CRP, each
node of the tree represents a cluster. In our model, we extend
this idea to define a nonparametric Bayesian prior over binary
trees, leaves of which represent the mixture components (clonal
clusters). A Chinese restaurant process defines a distribution for
partitioning customers into different tables. In our problem, single
cells are analogous to customers and clonal clusters are analogous
to tables. Let cj denote the cluster assignment for cell j and assume
that cells 1:j−1 have already been assigned to clonal clusters
{1,…, |c1:j−1|}, where |c1:j−1| denotes the number of clusters induced
by the cluster indicators of j−1 cells. The cluster assignment of cell

j, cj is based on the distribution defined by a Chinese restaurant
process and is given by

p(cj = c|c1:( j−1), a0) = nc

j− 1+ a0

p(cj = ck∀k , j|c1:( j−1), a0) = a0

j− 1+ a0

(1)

where nc denotes the number of cells already assigned (excluding
cell j) to cluster c. α0 is the concentration parameter for the CRP
model.

The clonal phylogeny, T , is a rooted directed binary tree
whose number of leaves is equal to the number of clonal clusters,
K= |c| defined by the assignment of m cells to different clusters by
the CRP. The root of T represents normal (unmutated) genotype,
and somatic mutations are accumulated along the branches of
the phylogeny. Each leaf in the clonal phylogeny corresponds to
a clonal cluster, c∈ {1, …, K}, and is associated with a clonal geno-
type Gc that records the set of mutations accumulated along the
branches from the root. Tomodel the evolution of the clonal geno-
types, we employ a finite-site model of evolution, Ml, that ac-
counts for the effects of point mutations, deletion, and loss of
heterozygosity on the clonal genotypes. The model of evolution
assigns transition probabilities to different genotype transitions
along the branches of the clonal phylogeny. The true genotype
of each cell is identical to the clonal genotype of the clonal cluster
where it is assigned. However, observed genotypes of single cells
differ from their true genotype due to amplification errors intro-
duced during the single-cell sequencing work flow. The effect of
amplification errors is modeled using an error model distribution
parameterized by FP error rate, α and FN error rate, β. The genera-
tive process can be described as follows:

1. Draw a0 � Gamma(a, b), a � Beta(aa, ba), b � Beta(ab, bb).
2. For j∈ {1, 2, …, m}, draw cj � CRP(a0).

From this, derive K= |c|, the total number of clusters (or clones)
implicitly defined by c.

3. Draw T � Tprior(K).
4. For l [ Ml, draw l � Beta(aMl

, bMl
).

5. For k∈ {1, 2, …, K}, draw Gk � F(Gk|T , Ml).
6. For j∈ {1, 2,…,m} and i∈ {1, 2,…, n}, drawDij � E(Dij|Gcji, a, b).

c denotes the clonal assignments of all cells. Tprior is the prior
distribution on phylogenetic trees for a fixed number of leaves.Ml

denotes the set of parameters in the finite-site model of evolution.
F denotes a distribution on the genotypes at the leaves of a phylo-
genetic tree and can be computed using Felsenstein’s pruning algo-
rithm (Felsenstein 1981) given the phylogeny and a finite-site
model of evolution. E is the error model distribution that relates
the observed genotype at locus i for cell j, Dij to clonal genotype
Gcji. a, b, aa, ba, ab, bb, aM , bM denote different hyperparameters
used in this model.

Doublet-aware model description

The singlet model of SiCloneFit is extended to handle cases where
some data points result from measuring two cells (doublets). The
expected genotype for a doublet due to merging of two cells is de-
fined by the⊕ operator as shown in Supplemental Table S6 and the
logical or operator for ternary and binary data type, respectively.
The doublet-aware model of SiCloneFit incorporates all the vari-
ables in the singlet model. In addition, for each single cell j, it em-
ploys a Bernoulli variable Yj for indicating whether the cell is a
singlet or a doublet. A Beta distributed variable, δ, represents the
probability of sampling a doublet. For each cell, two cluster indica-
tors are used. c1j is the primary cluster indicator for cell j with a
Chinese restaurant process prior based on hyperparameter α0,
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whereas c2j is a secondary cluster indicator for cell j that can uni-
formly take values in the range {1, …, |c1|}. If Yj= 1, c2j denotes
the clone of origin of the cell that forms a doublet by merging
with cell j from clone c1j . These additional variables are described
in Supplemental Table S7. The generative process for the dou-
blet-aware model is described in detail in Supplemental Methods.

Model of evolution and error model

To capture the effect of pointmutations, LOH, and deletion on the
clonal genotypes along the branches of clonal phylogeny, we em-
ploy a finite-site model of evolution similar to the one introduced
in SiFit (Zafar et al. 2017). Point mutations can result in the geno-
type transition 0→1, whereas LOH and deletion can result in the
genotype transitions 1→0 or 1→2. The finite-site model of evolu-
tion, Ml, is modeled using a continuous-time Markov chain that
assigns a probability with each possible transition of genotypes.
The transition rate matrix of the continuous-time Markov chain
for binary and ternary genotypes can be defined based on branch
length, t, and parameters λr and λl, accounting for the effects of re-
current mutation and mutation loss, respectively. These are de-
scribed in detail in Supplemental Methods.

To account for FP and FN errors in SCS data, we introduce an
error model distribution, E(Dij|Gcji, a, b), which gives the probabil-
ity of observing genotypeDij for locus i in cell j, given the true clon-
al genotype Gcji. The error model distributions for ternary and
binary data are shown in Supplemental Tables S4 and S5,
respectively.

Posterior distribution

The posterior distribution P over the latent variables of the
SiCloneFit model is given by

P(V|D, H)/ P(D|V)× P(V|H). (2)

where V denotes the set of latent variables in the model,
V = {c, G, T , Ml, a, b, a0}. c is a vector containing cluster assign-
ment for all cells, and it implicitly defines the number of clones
K. H is the set of fixed hyperparameters of the model,
H = {aa, ba, ab, bb, aM , bM , a, b}. In Equation 2, the term P(D|V)
denotes the likelihood of the model, and the term P(V|H) denotes
the product of prior probabilities. The posterior distribution for the
doublet-aware model is described in Supplemental Methods.

Likelihood function

The likelihood function employed by SiCloneFit is given by

P(D|V, H) = E(D|c, G, a, b) =
∏n

i=1

∏m

j=1

E(Dij|Gcji, a, b). (3)

In Equation 3, E(Dij|Gcji, a, b) is given by the error model
distribution of observing genotype Dij for site i in cell j, given the
true clonal genotype Gcji and is parameterized by α and β. This
error model is based on the error model of SiFit (Zafar et al.
2017). The likelihood of the doublet-aware model is described in
Supplemental Methods.

Prior distributions

The SiCloneFit model incorporates a compound prior given by

P(V|H) = P(c, G, T , Ml, a, b, a0|H)

= F(G|T , Ml)P(c|a0)P(T )P(a, b, Ml, a0|H)
(4)

where

P(a, b, Ml, a0|H) = P(a|aa, ba)P(b|ab, bb)P(Ml|aM , bM )P(a0|a, b).
F(G|T , Ml) denotes the prior distribution on the clonal ge-

notype matrix given a clonal phylogeny T and parameters of the
model of evolution Ml, and it can be efficiently calculated using
Felsenstein’s pruning algorithm (Felsenstein 1981), assuming sites
are independent and identically distributed. P(c|α0) denotes the
prior probability of partitioningm single cells into K (K is the num-
ber of clusters defined by c) clusters under a CRP with concentra-
tion parameter α0. P(T ) denotes the prior probability on the
clonal phylogeny. This is a product of the prior on topology and
the prior on branch length. We consider uniform distribution
for the prior on topology and exponential distribution for the prior
on branch lengths. As the values of the error rate parameters α, β
and the parameters of the model of evolution Ml lie between 0
and 1, we use Beta distribution as their prior. For the concentration
parameter α0, we assume a Gamma prior as suggested in Escobar
and West (1995). We set the value of hyperparameters for the
Gamma distribution to a=1 and b=1 for all the analyses per-
formed, but these are user-specified parameters in the software.
All the prior distributions are described in detail in Supplemental
Methods. The doublet-aware model of SiCloneFit contains addi-
tional parameters for indicating whether a cell is a singlet or a dou-
blet; doublet rate and assigning a cell to two clonal clusters and the
associated prior distributions are described in Supplemental
Methods.

Inference

We designed a Markov chain Monte Carlo sampling procedure
based on the Gibbs sampling algorithm to estimate the latent var-
iables according to Equation 2. Our algorithm is inspired by a par-
tial Metropolis-Hastings, partial Gibbs sampling algorithm
described in Neal (2000). In each iteration, the sampler first sam-
ples new cluster indicators, c∗, for all the cells using partial
Metropolis-Hastings, partial Gibbs updates. During this, the di-
mensionality of the sample may change due to addition of a
new cluster (resulting in addition of new edges in the clonal phy-
logeny) or removal of an existing singleton cluster (resulting in re-
moval of existing edges from the clonal phylogeny). In case the
dimensionality changes, the absolute value of the determinant
of the Jacobian matrix is also taken into account, which results
in partial reversible-jump MCMC (Green 1995) updates. When
such dimension changing moves are accepted, the corresponding
new clonal phylogeny T ∗ and new clonal genotype matrix G∗ are
also accepted. The sampler next samples a new clonal phylogeny
and new parameters of the model of evolution with the help of a
Metropolis-Hastings MCMC sampler. After that, new clonal geno-
type for each clonal cluster is sampled from the conditional poste-
rior distribution. To sample new values of the error rate parameters
from their corresponding conditional posterior distributions, our
sampler employs rejection sampling. Finally, the concentration
parameter α0 is sampled based on the method described in
Escobar and West (1995). The sampling algorithms for both the
singlet and doublet models of SiCloneFit are described in detail
in Supplemental Methods.

Software availability

SiCloneFit has been implemented in Java and is freely available at
https://bitbucket.org/hamimzafar/siclonefit, released under the
MIT license. The binary file of SiCloneFit is also included in
Supplemental Code.
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