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Purpose. We developed the next stage of our computer assisted diagnosis (CAD) system to aid radiologists in evaluating CT images
for aortic disease by removing innocuous images and highlighting signs of aortic disease.Materials and Methods. Segmented data
of patient’s contrast-enhanced CT scan was analyzed for aortic dissection and penetrating aortic ulcer (PAU). Aortic dissection was
detected by checking for an abnormal shape of the aorta using edge oriented methods. PAU was recognized through abnormally
high intensities with interest point operators. Results. The aortic dissection detection process had a sensitivity of 0.8218 and a
specificity of 0.9907. The PAU detection process scored a sensitivity of 0.7587 and a specificity of 0.9700. Conclusion. The aortic
dissection detection process and the PAU detection process were successful in removing innocuous images, but additional methods
are necessary for improving recognition of images with aortic disease.

1. Introduction

Everyday quick and accurate decisions with inadequate infor-
mation about a patient must be made by attending physicians
at emergency departments. In 2007, in the United States,
almost 6 million patients listed chest pains as their reason for
visiting the emergency department [1]. Chest pain is a vague
symptom which requires hospital admission or prolonged
observation to determine the severity of a patient’s condition.
Negative results for inpatient cardiac evaluations cost around
6–8 billion dollars annually [2, 3]. Even with such precau-
tions, within 6months after a negative result, 2%–5% of these
patients will have a serious cardiac event [4].

Over the past few decades, research into diagnostic radi-
ology has provided more tools for handling symptoms of
cardiac disease [5]. Due to recent improvements in multislice
CT scanners, images taken in the cardiovascular region are
clearer with less noise and artifacts and can be inspected with
greater confidence [6, 7]. For diagnosing chest pain, several
studies have demonstrated that a contrast-enhanced CT scan
of thoracic cavity is an effective, accurate, and noninvasive
method with a high negative predictive value for cardiac
diseases [8–11]. One particular method is Triple Rule-Out

(TRO) protocol in which the coronary arteries, pulmonary
arteries, thoracic aorta, and other intrathoracic structures are
highlighted in the CT scan. By examining the scan for signs of
serious heart conditions, for instance coronary stenosis, pul-
monary embolism, and aortic dissection (AD), TRO images
can be used to determine if a patient should be released or
admitted for further evaluation. This method results in the
cutting of cost and time involved with diagnosing a patient.
In recent years, several hospitals have implemented the TRO
protocol along with other protocols of CT diagnosis as a part
of their procedure for managing patients with vague symp-
toms at emergency departments.

As these protocols become widely used in diagnosing
cardiac disease, the burden of a radiologist increases consid-
erably. These methods require the time and abilities of well-
trained radiologists to be utilized effectively. The number of
cardiac images per patient produced during a CT scan
depends on the thickness of each slice captured and can range
anywhere from the hundreds to the thousands. During the
diagnosis phase, actions may become repetitive due to the
large number of images andmany of the images have no signs
of diseases. Moreover, there are difficulties in locating candi-
dates of potential cardiac disease due to their small size or
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subtle appearance. In busy hospitals, evaluating these images
may be overwhelming and this could lead to crucial misses in
the diagnosis [12].

Therefore, we proposed and developed a computer aided
diagnosis (CAD) system that could ease this burden of radiol-
ogists during the diagnosis of contrast-enhanced CT images
of thoracic cavity. This would be accomplished by having
the system perform two actions. First, identify innocuous
images which would reduce the amount of time on repetitive
actions by radiologists. Second, highlight areas of imageswith
potential signs of cardiac disease which would reduce the
chance of radiologists overlooking them. A successful auto-
mated diagnosis system would improve the promptness and
accuracy of a radiologist’s diagnosis.

Within data of a patient’s CT scan is the possibility of
many kinds of cardiac diseases. To develop methods for
identifying all cardiac diseases in the CAD systemwould be a
large undertaking. Therefore, we concentrate on one branch
of cardiac disease, aortic diseases, where a CAD system could
assist. For instance, an aortic dissection in the ascending
aorta [13, 14] requires a careful observation to diagnose CT
images and could be fatal if not recognized soon.There is little
literature concerning CAD systems for aortic disease. There-
fore, the focal point of this paper was to develop a diagnosis
process for the CAD system to detect signs of aortic diseases
within images produced by contrast-enhanced cardiac image
scans.

In our previous research [15], a segmentation process was
developed that finds and segments the pathway of an aortic
artery known as the lumen. The segmentation method took
into account all of these uncertainties properly, viewed the
information from the whole image while allowing adjust-
ments for local variations, and employed morphologic oper-
ators. The process provided our system with a clear blueprint
of the shape, size, and boundaries of a patient’s aortic lumen.

The data from the segmentation process provides the
input for the diagnostic stage. The diagnostic process cur-
rently detects two aortic diseases, aortic dissection and pene-
trating aortic ulcer (PAU), in contrast-enhanced CT images
of the aorta. Two criteria for signs of these diseases were
established for the system to be utilized in its decisionmaking
process:

(i) for aortic dissection, if the cross-section of the aorta
in an image is not circle-like;

(ii) for PAU, if the aorta contains objects with HU values
higher than normal along its wall.

In the case of an aortic dissection, blood flows into the
media layer of a deteriorated section of the aortic wall and
creates a new lumen. From the perspective of a CT image,
the lumen is separated into two pieces and the differences
in blood pressure between the two lumens cause distortions
in their shapes (Figure 1(a)). The functions of the diagnostic
process were designed based on edge oriented methods and
should be capable of recognizing a circle-like object in an
image. In the output, this process identifies aortic objects
with a circle-like shape as healthy and any aortic object that
does not meet that criterion as a possible candidate for aortic
disease.

(a) Aortic dissection (b) Penetrating aortic ulcer

Figure 1: Examples of aortic disease.

In the case of PAU, an ulceration of an atheroma-
tous plaque erodes the intima causing a hematoma in the
media of the aorta. In contrast-enhanced CT slices, a PAU
appears as a contrast-filled, pouch-like protrusion of the aorta
(Figure 1(b)) or as a thickened aortic wall in absence of an
intimal flap or a false lumen. The Hounsfield value (HU)
around the PAU can be higher than the normal lumen for two
reasons. First, contrast media become temporarily trapped
in these pouches and increase its concentration in this area.
Second, the calcified plaque that causes PAU has a high HU
value and lines the intima around the PAU.The functions for
the diagnostic process were created using interest point oper-
ators to locate these objects of higher than average intensity
within an aortic object. In the output every aortic object that
meets this criterion is labeled as a PAU object and sign of
a PAU. Otherwise, the aortic object as a whole is labeled as
healthy.

To summarize, we built an automated process that deter-
mines whether an aortic object in a slice is a candidate for
aortic dissection or PAU based on contrast-enhanced CT
data. We report technical details of this method for this
automatic identification and present preliminary results in
applying the process to 9 cases of CT data.

2. Materials and Methods

2.1. Patient Selection. Thepatient data used in this study were
obtained from Yokohama City University as a part of our
laboratories joint research. Patients were undergoing an
examination using the TROprotocol.They gave their permis-
sion for the use of their data in this study.

2.2. CT Technique. The basic procedure for TRO protocol
used for this project, as developed at Yokohama City Uni-
versity, consisted of three phases: a scanogram, a precontrast
scan, and a postcontrast scan.

All images were acquired with a 64-slice CT scanner.
Scans were between the diaphragm and the top of the aortic
arch.

The scanogramwas a quick preliminary scanwhich deter-
mined the regionwhere the precontrast andpostcontrast scan
will take place.
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Table 1: List of case data used in evaluation.

Case number Condition Number of slices
1 Healthy 62
2 Aortic dissection 25
3 PAU 129
4 Normal 186
5 PAU 189
6 PAU 182
7 Normal 202
8 PAU 112
9 Aortic dissection 125

The precontrast scan was a full CT scan of the cardiac
region with no injection of a contrast medium, a radioactive
dye.

The postcontrast scan was a full CT scan of the cardiac
region in which the patient was injected with contrast
medium to illuminate key areas in the cardiac region. In this
phase, the patient received 70mL of contrast medium into
the right arm to opacify the coronary arteries and the aorta
and, a minute later, another 30mL of contrast medium to
opacify the pulmonary arteries. Once the contrast medium
had reached a predetermined level in the blood stream, the
post contrast scan began. The scan took on average about 15
seconds.

The data was stored inDICOM format, and the resolution
for the images was 512 × 512 pixels.The diagnosis of the cases
in this study is represented in Table 1.

2.3. Principles of the Segmentation Process. The CAD system
for the aortic artery in this study is designed to work with the
data received from a CT scan, which is composed of three
inputs: (1) the DICOM data of a patient’s CT scan which
includes cardiac images from the top of the aortic arch to
the diaphragm, (2) the range of Hounsfield unit (HU) of
the contrast-enhanced aortic lumen detected during the CT
scan (average range 200HU–500HU), and (3) the starting
positions of the ascending aorta and descending aorta. The
two criteria for this process are as follows: (1) a cross-section
of the aortic artery is circle like in shape (Figures 2(c) and
2(d)); (2) the aortic arch creates 180-degree torus (Figures 2(a)
and 2(b)). From these inputs and criteria, the segmentation
process identifies objects in the CT scan which are the
aorta (Figure 3) and links them together and labels them as
ascending aorta, descending aorta, or aortic arch depending
on their location. Afterwards, the automatic segmentation
outputs image sets of the ascending aorta, the descending
aorta, and the aortic arch.

2.4. Principles of the Diagnostic Process for Aortic Dissection.
Utilizing the segmentation data, the CAD system initializes
the diagnostic process for aortic dissection by collecting
two pieces of information. First, Sobel operator provides the
diagnostic process with an approximation of the gradient
image of segmentation data. The gradient values represent
the degree of change of intensity in the 𝑥-and 𝑦-directions at

(a) 180-degree torus (b) Sagittal slice of the
aortic arch

(c) Cross-section of the aor-
tic arch

(d) Axial slice of the descending
aorta

Figure 2: Criteria for segmentation process.
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Figure 3: Results of segmentation.
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Figure 4: Convolution mask for the gradient.

Second, the centroid (𝐶
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) of an aortic object is deter-
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The Fast Circle Detection algorithm [16] examines the
boundary of an object and determines if this object is a circle
based on edge orientedmethods.The decision is based on the
number of unique boundary pixel pairs (𝑃

1
, 𝑃
2
) that satisfy

three conditions.

(1) The gradient (𝐺𝜃
1
) angle of 𝑃

1
is 180 degrees from the

gradient angle (𝐺𝜃
2
) of 𝑃
2
(Figure 5(a)):
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(Figure 5(b)):
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(3) The line ←−−→𝑃
1
, 𝑃
2
should pass through the centroid

(𝐶
𝑥
, 𝐶
𝑦
) of the object (Figure 5(c)).

The percentage of boundary pixels that meet these con-
ditions is calculated. If the percentage reaches the predeter-
mined threshold, the object is labeled circle like and possibly
healthy. If the percentage fails the threshold, the object is
labeled abnormal shape and a candidate for aortic dissection.

2.5. Principles of the Diagnostic Process for PAU. The PAU
detection process begins by analyzing the segmentation data
of contrast media enhanced CT images. During the segmen-
tation process, PAU and calcifications with strong intensi-
ties are removed from the image as their HU values are
much higher than the normal lumen’s intensity (Figure 6(a)).
After the segmentation process, these PAU and calcifications
appear as small ovals and ellipses around the edge of aorta
(Figure 6(b)).

The PAU detection process is a search for pixels that meet
these requirements:

(1) this pixel’s HU value is higher than the highest value
of the range of the lumen’s intensity;

condition

Pass Fail

𝐺𝜃1 𝐺𝜃1𝐺𝜃2

𝐺𝜃2

1st

(a) The gradient (𝐺𝜃
1
) angle is 180 degrees from the gradient (𝐺𝜃

2
)

angle

condition

𝐺𝜃1

𝐺𝜃1

𝑃1

𝑃1
𝑃2 𝑃2

2nd

(b) The gradient vector (𝐺𝜃
1
) is equal to the angle of←−−→𝑃

1
, 𝑃
2

condition

𝑃1
𝑃1

𝑃2

𝑃23rd

(𝐶𝑥 , 𝐶𝑦)
(𝐶𝑥 , 𝐶𝑦)

(c) The line←−−→𝑃
1
, 𝑃
2
should pass through the centroid (𝐶

𝑥
, 𝐶
𝑦
) of the object

Figure 5: Fast Circle-Detection algorithm conditions.

Original image (a) Normal lumen
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(grey)
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Figure 6: Detection of PAU.

(2) this pixel is contained inside the boundary of an aortic
object.

Through connected-component labeling, these pixels are
grouped in PAU objects. These objects are highlighted in the
image and output as a candidate for PAU.

2.6. Evaluation of Diagnostic Processes. The processes for
detecting healthy aortas and candidates for diseased aorta
were evaluated in two parts with 9 cases where the aortic
region has been enhanced with contrast media in a CT scan.
For this experiment, the system only examined the slices
of the ascending aorta and descending aorta because their
cross-section is readily viewable in the CT images without
reconstruction. A cross-section of the aortic arch requires
multiplanar reconstruction of the CT images which was not
available at the time of testing.
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The first part examined whether the Fast Circle Detection
algorithm could correctly identify healthy and aortic dissec-
tion images in 5 cases which included 3 healthy and 2 aortic
dissections.The system returned a decision of whether a slice
of the aorta was healthy or a candidate for aortic dissection.
The threshold for the Fast Circle Detection algorithm was set
at 60% for the percentage of boundary pixels with a unique
gradient pair out of the total number of boundary pixel in
an object. The results were compared to the actual number of
healthy aortic slices and candidate slices.

A true positive is defined as an aortic object that contains
an aortic dissection and was labeled by the CAD system as a
candidate for aortic dissection. A false positive is defined as
an aortic object that is healthy but was labeled by the CAD
system as a candidate for aortic dissection. A true negative is
defined as an aortic object that is healthy and was labeled by
the CAD system as healthy. A false negative is defined as an
aortic object that contains an aortic dissection butwas labeled
by the CAD system as healthy.

The second part reviewed the process for detecting signs
of PAU in the aorta with the 4 cases of PAUs. The system
returned objects in a slice whichwere labeled as possible signs
of PAU. The results were compared to the actual number of
PAUs in set of test data. A true positive is defined as an aortic
object that contains a PAU, and a candidate for PAU was
detected by the CAD system. A false positive is defined as an
aortic object that has no PAU, but a candidate for PAU was
detected by the CAD system. A true negative is defined as an
aortic object that has no PAU, and no candidate for PAU was
detected by the CAD system. A false negative is defined as
aortic object that contains a PAU, but no candidate for PAU
was detected by the CAD system.

The system examined the images on a computer with Intel
Core 2 Extreme CPU Q6850 3.00GHz 2.99GHz and 8Gb of
Ram. The total time of the process was also recorded.

3. Results

3.1. Results of the Diagnostic Process for Aortic Dissection. Of
the 479 images from 5 cases, 161 slices contained the ascend-
ing aorta and 479 slices contained the descending aorta. The
results are represented in Table 2.

Regarding the descending aorta, 83 were correctly iden-
tified as candidates for aortic dissection (true positive) and 0
were incorrectly identified as candidates for aortic dissection
(false positive), 378 slices were correctly identified as healthy
(true negative), and 18 were incorrectly identified as healthy
(false negative). The false negative slices occurred when the
aortic dissection only caused a change in the size of aorta but
not the shape.

Concerning the ascending aorta, there was no occurrence
of aortic dissection. 156 slices were correctly identified as
healthy, and 5 slices were incorrectly identified as a candidate
for aortic dissection. The false positive slices occurred where
the ascending aorta was transitioning to the aortic arch.

3.2. Results of the Diagnostic Process for PAU. Of the 461 slices
in the 4 cases with PAU, 213 slices contained the ascending
aorta and 461 slices contained the descending aorta. 26 of the

Table 2: Results of the diagnostic process for aortic dissection.

Data type True
positive

False
positive

True
negative

False
negative

All aorta data 83 5 534 18
Ascending data 0 5 156 0
Descending data 83 0 378 18
Sensitivity 0.8218 Specificity 0.9907

Table 3: Results of the diagnostic process for PAU.

Data type True
positive

False
positive

True
negative

False
negative

All aorta data 239 10 323 76
Ascending data 48 5 116 18
Descending data 191 5 207 58
Sensitivity 0.7587 Specificity 0.9700

213 slices containing ascending aorta were removed because
of an error with the segmentation process, making the final
total of slices of the ascending aorta 187. The results are
represented in Table 3.

In the ascending aorta, 48 slices were correctly identified
with PAU (true positive), 5 slices were incorrectly identified
with PAU (false positive), 116 slices were correctly identified
with no PAU (true negative), and 18 slices were incorrectly
identified with no PAU (false negative).

In the descending aorta, 191 slices were correctly identi-
fied with PAU, 5 slices were incorrectly identified with PAU,
207 slices were correctly identified with no PAU, and 58 slices
were incorrectly identified with no PAU.

False positives occurred when the contrast media were
slightly above the intensity range of the lumen, most likely
due to an artifact in the CT image. False negatives generally
happened when the PAU’s intensity was similar to the normal
lumen’s intensity.

3.3. Runtimes of the CAD System. The runtimes for the CAD
system to segment and perform the diagnostic process
explained in this paper are represented in Table 4.

4. Conclusion

With the purpose of designing a CAD system for aortic
diseases to assist radiologists, we developed two automated
diagnostic processes for determiningwhether an aortic object
in a contrast-enhancedCT image contains candidates for aor-
tic dissection or PAU.The results of our study have brought us
the following conclusions about the feasibility of this system.

The aortic dissection detection process had a sensitivity
of 0.8218 and a specificity of 0.9907. This indicates that this
process is capable of identifying a healthy aorta shape but not
fully able to recognize all types created by an aorta dissection.
The most common error occurred when the aorta dissection
caused the aorta to shrink but still maintained a circle-like
shape. Additional methods must be utilized by aortic dissec-
tion process to collect relevant data, such as reduction in size
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Table 4: Runtimes of the CAD system.

Case number Images used Time (min:sec)
1 62 2:24
2 25 0:55
3 129 5:08
4 186 10:32
5 189 10:58
6 182 10:06
7 202 12:20
8 112 4:45
9 125 5:17

and the appearance of an intimal flap in the aortic object, to
reduce the false negatives.

The PAU detection process scored a sensitivity of 0.7587
and a specificity of 0.9700.This processmostly avoided incor-
rect identification of PAU. This is likely due to the success of
this segmentation process with removing artifacts and noise.
Regarding the sensitivity, this process was able to distinguish
a majority of the PAU. When it overlooked a PAU, this was
because the PAU had an intensity that was similar to the
lumen. A supplementary method for recognizing the shape
of PAU on the boundary of an aorta should be implemented
to reduce the false negatives.

This researchwill serve as a base for future studies of CAD
system for aortic disease and expand on various methods
for automated diagnosis. There were some limitations that
should be addressed in the next study. The current study
has examined two methods for identifying aorta dissection
and PAU. More methods must be included to enhance the
accuracy and precision of this CAD system. Moreover, the
experimental data was relatively small. A larger set of test data
is necessary for more definitive results.

In the future, concerning the aortic disease diagnosis
process, more algorithms that address issues of image pro-
cessing will be designed to analyze the aorta and to search for
signs of aortic diseases such as aortic dissection, intramural
hematoma, and penetrating atherosclerotic ulcer [13, 14]. Cri-
teria still unaddressed for identifying aortic diseases include
(1) significant changes in the size (increasing or decreasing)
of aorta, (2) appearance of intimal flaps which are dark lines
contained within the lumen, and (3) detection of PAU on the
boundary based on shape.

In summary, the aortic dissection detection process and
the PAU detection process were successful in removing
innocuous images, but additional methods are necessary for
improving recognition of images with aortic disease. These
methods can be used for the next step in building a CAD
system for detecting aortic diseases.
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