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A deterministic model for the transmission dynamics of a communicable disease is developed and rigorously analysed. The model,
consisting of five mutually exclusive compartments representing the human dynamics, has a globally asymptotically stable disease-
free equilibrium (DFE) whenever a certain epidemiological threshold, known as the basic reproduction number (Ry), is less than
unity; in such a case the endemic equilibrium does not exist. On the other hand, when the reproduction number is greater than
unity, it is shown, using nonlinear Lyapunov function of Goh-Volterra type, in conjunction with the LaSalle’s invariance principle,
that the unique endemic equilibrium of the model is globally asymptotically stable under certain conditions. Furthermore, the

disease is shown to be uniformly persistent whenever R, > 1.

1. Introduction

Mathematical models have been widely used to gain insight
into the spread and control of emerging and reemerging
disease. The dynamics of these models is usually determined
by a threshold quantity known as the basic reproduction
number (denoted by Ry), which is defined as the number of
secondary cases generated by an infected individual in a com-
pletely susceptible population [1-5]. Characteristically, when
Ry is less than unity, a small influx of infected individuals
will not generate large outbreaks, and the disease dies out in
time. On the other hand, when R, exceeds unity, the disease
will persist. A basic epidemic model supports at least two
equilibria (a disease-free equilibria and endemic equilibria);
R plays important role in the study of equilibria of a model.
Several models found in the literature [2, 4-15] have been
used to show that when R crosses the threshold, Ry = 1,
a transcritical bifurcation takes place. That is, asymptotic
local stability is transferred from the disease-free state to the
new (emerging) endemic (positive) equilibria. In some cases,
it can be shown that the transfer of asymptotic stability is
independent of initial conditions; that is, it is global; see,
for instance, [6, 8—12, 16]. Establishing global properties of

a dynamical system using Lyapunov function is generally a
nontrivial problem. This is owing to the fact that there are
no systematic methods for constructing Lyapunov function
for infectious disease models with standard incidence rate
[17]. The most successful approach to the problem is the
direct Lyapunov method which involves the use of quadratic
function of the form w(x1,xy,...,%,) = 21 (ci/2)(xi — x7°)
or by using nonlinear Lyapunov function of Goh-Volterra
type of the form w(xi,x2,...,%,) = >y (ci/2)(xi — xf —
x7 In(x;/x;")). However, other methods used in establishing
global properties of some epidemic models include Dulac’s
criterion to eliminate the existence of the periodic solution
and prove the global stability by the Poincaré Bendixson
theorem [18] and those reported in Kamgang and Sallet [19]
and Qiao et al. [20].

Let S(¢),I(t), and N(t) denote the number of susceptible
individuals, infectious individuals, and the total size of the
population at time ¢, respectively. Further, let S(N) be the
average number of contacts that is sufficient to transmit
infection (effective contact rate). Then, the force of infection,
given by B(N)I/N, represents the average number of contacts
a susceptible individual makes with infectious individuals
per unit time. If B(N) = BN (i.e., the contact rate depends



on the total population, N), then the incidence function
g(I) = BI is called mass action incidence. If f(N) = B
(a constant), then the incidence function g(I) = BI/N is
called standard incidence [4]. These two functions are widely
used in modeling the transmission dynamics of the human
diseases [1, 21]. Another widely used incidence function is
the Holling type II incidence function, given by g(I) =
BI/(1 + wI), with w > 0, [22-28].

The nonlinear incidence function of type gs(I) was first
introduced by Capasso and Serio [22], in their study of
cholera epidemic. The main justification for using such a
functional form of the incidence function stems from the
fact that the number of effective contacts between infective
individuals and susceptible individuals may saturate at high
infective levels due to crowding of infective individuals or
due to the preventive measures (and behavioral changes)
taken by the susceptible individuals in response to the
severity of the disease [23, 25-27].

A number of mathematical models have been developed
in the literature to gain insights into the transmission
dynamics of diseases with subpopulation (compartments)
[4, 6-14, 29-31]. The choice of which compartment to
include in a model depends on the characteristic of the par-
ticular disease being modelled and the purpose of the model
[4].

The classical SIR or SIRS model assumed that the disease
incubation is negligible so that each susceptible individual
(in the S class) once infected becomes infectious (and move
to I class) and later recovers (to move to R class) where they
acquire permanent or temporary immunity [32]. However,
more general models than SIR or SIRS models assumed that
susceptible individuals, once infected, first go through the
latent period (in the E class) before becoming infectious;
the resulting models are of SEIR or SEIRS type, depending
on whether recovered individuals acquired permanent or
temporary immunity [33, 34].

The model considered in this study is based on SEIR
(S: susceptible, E: exposed, I: infected, R: recovered) where
recovered individuals acquire permanent immunity, so that
they will not become infected again. This is owing to the
fact that for many viral diseases such as measles, smallpox,
rubella, HIV/AIDS, and influenza recovered individuals
confer lifelong immunity (29, 33]. Huang and Takeuchi [29]
study the classical SIR, SIS, SEIR, and SEI models with time
delay and a general incidence function. Safi et. al. [13] con-
sider the effect of periodic fluctuations on the transmission
dynamics of a communicable disease using SEIRS model,
subject to quarantine and isolation; the authors show that
adding periodicity to the autonomous model does not alter
the threshold dynamics of the model with respect to the
control of the disease in the population. Zhang and Ma
[35] considered the global dynamics of an SEIR model with
saturating contact rate. Korobeinikov [36] established global
asymptotic dynamics of SEIR and SIR models with several
parallel infectious stages. Li et al. [33] analyzed the global
dynamics of an SEIR model with vertical transmission and
bilinear incidence. Li and Jin [34] consider global stability
of an SEIR epidemic model with infectious force in latent,
infected, and immune period. It should be stated, however,
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that the aforementioned three studies [33, 34, 36] considered
mass action (bilinear) incidence to model the infection.
This study focuses on the mathematical modeling of the
transmission dynamics of an arbitrary disease with educated
(counsel) and uneducated infectious stages.

This study has three important differences from those
reported in [33, 34, 36]. The first is established essential
qualitative features of an SEIR model with Holling type
IT incidence function. The second is that a public health
education and counselling are offered to infected individuals
(I,;). Recent studies further reinforced the widely held belief
that one key strategy for preventing and controlling the
spread of communicable disease such as HIV (especially
in resource-poor nations) is to provide HIV-related public
health education and counselling (such as sexual education
and awareness of the risk and life-threatening consequences
of HIV/AIDS) which would, hopefully, lead to reduction
in risky sexual behavior and safer lifestyle within the
community [7]. In addition to the above extensions, rigorous
qualitative analysis will be provided for the resulting SEIR
model. In particular, the paper gives special emphasis on
the global asymptotic stability of the disease-free equilibrium
and endemic equilibrium.

The paper is organized as follows. The model is for-
mulated and analysed for its basic dynamical features in
Section 2. The stability analysis of the model is presented in
Sections 3 and 4.

2. Model Formulation

The total population at time ¢, denoted by N(¢), is subdivided
into five compartments of susceptible (S(¢)), exposed (those
who have been infected but are not yet infectious) (E(t)),
uneducated infected individuals (I,(t)), educated infected
individuals (I,(¢)), and recovered (R(t)) individuals, so that

N(t) = S(¢t) + E(t) + L,(t) + L.(¢) + R(t). (1)

The susceptible population is increased by the recruit-
ment of individuals into the population (assumed suscepti-
ble), at a rate II. Susceptible individuals may acquire infec-
tion, following effective contact with infected individuals (in
the I, or I, class) at a rate A(t), where

AU)zﬁ( L e ).

1+ a1, * 1+ a1,

In (2), B is the effective contact rate (contact capable
of leading to infection), while the modification parameter
0 < 5 < 1 accounts for the assumed reduction in disease
transmission by educated infected individuals in comparison
to uneducated infected individuals in the I, class. The
population of susceptible individuals is further decreased by
natural death (at a rate y). Thus, the rate of change of the
susceptible population is given by

as _

dt

The population of exposed individuals is generated by
the infection of susceptible individuals (at the rate A(¢)). This

(2)

I — [+ A(D)]S(). (3)
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population is decreased by development of disease symptoms
(at a rate x) and natural death (at a rate y), so that

dE

= MDSE) - (k+ p) E(2). (4)
The population of uneducated infected individuals is

generated at the rate k. It is decreased by natural recovery

(at a rate y,), education (at a rate o), natural death (at the

rate u), and disease-induced death (at a rate &, ). This gives

% =kE(t) — (o +y1 +p+ 61)L,(2). (5)
The population of educated infected individuals is gen-
erated by the education of infected individuals (at the rate
0). This population is decreased by recovery (at a rate y,),
natural death (at the rate y), and disease-induced death (at a
rate §; < 1). [tis assumed that the disease-induced mortality
rate of educated infected individuals is low in comparison
with uneducated infected individuals. Hence, the rate of
change of this population is given by

dl,

g = ol - (y2 +p+ &) L(1). (6)
Finally, the population of recovered individuals is gen-

erated by the recovery of uneducated and educated infected

individuals (at the rates y; and y,, resp.). It is decreased by

natural death (at the rate y), so that

R L(0) + yaL(8) — R, )

dit
Thus, the model for the transmission dynamics of an
infectious disease in the presence of educated (counsel)
infected individuals is given by the following nonlinear
system of differential equations:

% — 1 [+ ME)]S(8),

9B _ 0t~ [+ K]EO),

% = kE(t) — [+ 0+ + 8 |L(1), (8)
L 01(0) L+ 72+ B1L)

% = Y11u(6) + yaL(£) — uR(D),

The model (8) extends some SEIR models in the literature
such as those in [33, 34, 36] by

(i) replacing the mass action incidence function with
Holling type II incidence function,

(ii) splitting the compartment of infected individuals
into educated (counsel) and uneducated (noncoun-
sel) infected individuals thereby allowing time-vary-
ing infection rate. The epidemiological implication of

this assumption is that educated infected individuals
transmit the disease at a reduced rate (0 < n < 1)
in comparison to the uneducated infected individuals
(due to behavioral changes). For instance, In Zambia,
the decline in HIV incidence since early 1990s is
attributed to behavioral changes [37]. Public health
education campaigns have also been successfully
implemented in numerous countries and communi-
ties, such as Uganda, Thailand, Zambia, and the US
gay community [38, 39]. Between 1991 and 1998,
HIV prevalence dramatically declined in Uganda
from 21 to 9.8% (with a corresponding reduction
in nonregular sexual partners by 65% coupled with
greater levels of awareness about HIV/AIDS [38]. The
Ugandan programme fostered community mobi-
lization towards change in risky behavior, without
increasing stigma [40].

Further, unlike in the aforementioned modelling studies,
detailed rigorous mathematical analysis of the model (8) will
be provided.

2.1. Basic Properties. Since the model (8) monitors human
populations, all its associated parameters are nonnegative.
Further, the following nonnegativity result holds.

Theorem 1. The variables of the model (8) are nonnegative for
all the time. In other words, solutions of the model system (8)
with positive initial data will remain positive for all time t > 0.

Proof. Lett; = sup{t>0:S>0,E >0,I, >0,I, >0,R>0 €
[0,¢]}. Thus, £; > 0. It follows from the first equation of the
system (8) that

% =T1—Mt)S(t) —uS(t) =TT — (A+u)S(1), (9)

which can be rewritten as
t t
jt[su) exp{yt+J A(T)dTH > Hexp{yt+J )L(T)dr}.
0 0
(10)
Hence,

S(t) exp{yfl n L:/l('r)d'r} ~ 5(0)
(11)

t

y
> Hexp{yy T J A(T)df}dy,
0 0

so that

S(t) = S(0) exp{—ytl - Ot A(T)dr}

X [exp{—ytl - " /\(T)dr}] (12)
0

t

y
X Hexp{/,ty + J /\(T)d‘r}dy > 0.
0 0

Similarly, it can be shown that E > 0,1, > 0,1, > 0and R > 0,
for all time ¢ > 0. O



The previous result can also be established using the
method in of [41, Appendix A].
We claim the following result.

Lemma 2. The closed set

D= {(S,E,Iu,le,R) ERI:S+E+I,+I,+R< E}

(13)
is positively invariant.
Proof. Adding all the equations of the model (8) gives,
%g=n—ﬂw—w@+&u. (14)

Since dN/dt < II — uN, it follows that dN/dt < 0 if
N = II/u. Thus, a standard comparison theorem [42] can
be used to show that N < N(0)e # + (I/u)(1 — e #). In
particular, N(t) < Il/p if N(0) < II/u. Thus, the region O
is positively invariant. Further, if N(0) > II/p, then either
the solution enters O infinite time or N(t) approaches IT/u
asymptotically. Hence, the region D attracts all solutions in
R3. O

Since the region D is positively invariant, it is sufficient to
consider the dynamics of the flow generated by the model (8)
in D, where the usual existence, uniqueness, continuation
results hold for the system [10].

3. Local Stability of Disease-Free
Equilibrium (DFE)

The DFE of the model (8) is given by
% ok TH T¥ px I
& = (S*,E*, I}, 1},R*) = (y,0,0,0,0). (15)

The local stability of & will be explored using the next
generation operator method [43, 44]. Using the notation in
[44], the nonnegative matrix, F, of the new infection terms
and the M-matrix, V, of the transition terms associated with
the model (8) are given, respectively, by

o PIL npll
_ U U
F= 0 0 (O ¢
0 0 0 (16)
ptx 0 0
V=| -k pu+to+y +6 0 .
0 -0 Uty +06;

It follows that the control reproduction number 4, 21], denot-
ed by Ry = p(FV 1), where p is the spectral radius, is given
by

_ BIx(ks + o)

R
0 ﬂklkaS

(17)
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where

ki=u+x, ky=p+o+y+6, ki=pu+ty,+6.

(18)
Using in [44, Theorem 2], the following result is established.

Lemma 3. The DFE of the model (8), given by (15), is locally
asymptotically stable (LAS) if Ro < 1 and unstable if Ry > 1.

The quantity Ry measures the average number of new
infections generated by a single infected individual in a pop-
ulation. Lemma 3 implies that the disease can be eliminated
from the community (when Ry < 1) if the initial sizes
of the subpopulations of the model are in the basin of
attraction of the DFE (&y). To ensure that disease elimination
is independent of the initial sizes of sub-populations, it is
necessary to show that the DFE is globally asymptotically
stable (GAS) if Ry < 1. This is explored below.

3.1. Global Stability of DFE

Theorem 4. The DFE of the model (8), given by (15), is GAS
in O whenever Ry < 1.

Proof. Consider the following Lyapunov function:

F = (K(k3 +'70))E+ (k3+’70)1u+13, (19)
1’]k1k2 ﬂkz

with Lyapunov derivative (where a dot represents differenti-
ation with respect to time) given by

. K(k3+710')> . <k3+r10>. .
F= (BB, I, +1,
< nkik; nka
([ x(ks + 7o) [ ( I, nl, ) B ]
h < 1’]k1k2 /38 1+ a1, * 1+ a1, klE

+ (k3 * '70) [KE — koL,] + o1, — ks,
1k,

(5o

+ <W> (KE — kol] + o1, — ks,
nk2

Bk (ks + yo) ( ks + 110)
= Iu + Ie + - Iu - k Ie
Hﬂklkz ( }1 ) o ’7 3

= %(e(RO - 1)(Iu + 7716)-
(20)

Since all the parameters and variables of the model (8) are
nonnegative (Theorem 1), it follows that ¥ < 0 for Ry < 1
with & = 0 ifand only if E = I, = I, = 0. Hence, F is a
Lyapunov function on . Therefore, the largest compact
invariant subset of the set where £ = 0 is the singleton
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{(E,I,,I,) = (0,0,0)}. Thus, it follows, by the LaSalle’s
invariance principle [18, 45], that
(E,I,I.) — (0,0,0) as t — oo. (21)

Since limsup,_ I, = 0 and limsup,_ I, = 0 (from
(21)), it follows that, for sufficiently small @* > 0, there exist
constants M; > 0 and M, > 0 such that limsup, _ I, < @*
forall t > M; and limsup, . ,I. < @* for all t > M,. Hence,

it follows from the last equation of the model (8) that, for
t > max{M;, M,},

R < y1@* + y2,0* — uR. (22)

Thus, by comparison theorem [42],

O* + 0%
R® = limsupR < 1 "12¢ (23)
t—oo u
so that, by letting @* — 0,
R* = limsupR < 0. (24)

t—

Similarly (by using liminf;_ I, = 0 and liminf,_ I, = 0),
it can be shown that

R = h{rlloglfR > 0. (25)

Thus, it follows from (24) and (25) that

R, =0 = R". (26)
Hence,
fimR =0. (27)

Similarly, it can be shown that
. II
limS(t) = —. (28)
t— oo !,[

Thus, by combining (21), (27), and (28), it follows that
every solution of the equations of the model (8), with initial
conditions in D, approaches &y ast — oo (for Ry < 1). O

The previous result shows that the disease can be elim-
inated from the community if the associated reproduction
number of the model is less than unity.

4. Existence and Stability for
Endemic Equilibrium Point

In this section, the possible existence and stability of endemic
(positive) equilibria of the model (8) (i.e., equilibria where
at least one of the infected components of the model is
nonzero) will be explored.

4.1. Existence of Endemic Equilibrium Point (EEP). First of
all, the persistence of the disease in the population will be
investigated below. The model system (8) is said to be uni-
formly persistent if there exists a constant ¢ such that any
solution (S(t), E(t), I,(t), I.(¢), R(t)) satisfies ([31, 46])

li}l}infS(t) > ¢, liginfE(t) > ¢, liginflu(t) > ¢,

li%ninfle(t) > ¢, 1i)1fninfR(t) > ¢,
(29)

provided that (S(0), E(0),I,(0),1.(0),R(0)) € D° (the

interior of the region D).

Theorem 5. System (8) is uniformly persistent in D° if and
only if Ro > 1.

Proof. The theorem can be proved by using the approach
used to prove Proposition 3.3 of [32], by applying a uniform
persistence result in [46] and noting that the DFE of the
model (8) is unstable whenever Ry > 1 (Lemma 3). O

When R > 1, it follows (from Theorem (3)) that model
(8) is uniformly persistent; by using in [47, Theorem 2.8.6]
and in [42, Theorem D.3] it follows that the model (8) has
at least one endemic equilibrium in O°. Thus the following
result is established.

Lemma 6. The model (2) has at least one endemic equilibrium,
given by & = (S§**, E**, [}*, I}*, R**), whenever Ry > 1.

The uniqueness of the endemic equilibrium will be
investigated at the end of the next subsection.

4.2. Global Stability of Endemic Equilibrium for Special Case.
Here, the global asymptotic stability property of the endemic
equilibrium of the model (8) is given for a special case when
educated (counsel) infected individuals do not transmit
infection (7 = 0). The model (8), with # = 0, then reduces
to:

ds
7 == [+ Bf(L)]S(),
dE
I = PFLIS(E) - [+ x]E(1),
dl,
O KE(t) — [u+ 0+ y1 + 61 ]L,(¢), (30)
dl,
o ol (t) — [u+y2+8:]L()
dR
= 1@+ pale(t) — uR(D),
where
Iy
L) = i (31)
The reproduction number of the model (30) is given by
B _ Plx
Ror = Roly=0 = rklkz' (32)

We claim the following result.



Theorem 7. The endemic equilibrium of the reduced model,
given by (30), is GAS in D° if Ror > 1. Thus it is unique.

Proof. Consider the reduced model, given by (30). Let R, >
1, so that the associated endemic equilibrium exists. Further,
consider the following nonlinear Lyapunov function:

S E
S)aropeopem( L)

ky I,
+ K[Iu — I —I;f*m(I&k*ﬂ

with Lyapunov derivative

e o S*F. . EFfL k1<. Ij*.)
F =S8 SS+E EE+KI” IuI“’

=T1—BSf(L,) — uS - %(H = BSf (L) = uS)

E**

+BSf ) = kiE = == (BSf (L) — ki E)

$’=S—S**—S**ln(

(33)

ky I;*
+ ; [KE — kzlu — T(KE - k2Iu):| (34)

u

S** S**
_H(l_ S >_”S<l_ s)

Exk I,
+ g5 fa - Kk, ETPA )
K E
+kEF - kiI*E . klkzlj*.
I, K

It can be shown from (30) that, at endemic steady state,

= [u+Bf(IF)]S,
L Bf (Ix%)S**
1 Exx ’ (35)

KE**

Kk
I

ky =

Using the relations (35) in (34) gives

gE* _i) - (S**)zf(lj*)
S Nk S
BS** f (L) 1L

kK
Iu

¥ = yS**(Z—

+ RS f (L) + BST (L) —
(36)

+ ST (1)

BS™ I f(11)E

e R N A (o)

EMBSf(I,)
E
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Adding and subtracting BS** f(I;*) and BS** f2(I;*)1,/

fL)LF*  in (36) gives
- * % _ S** _ S * ok * %
F-usm (2= 50 - o) HBST L)
Ly ST BTSSP LB [
S ES**f(I[f*) I,E** f(Iu)I;k*
v s - B TUEM ooy

JA@)IF*
(37)

Rewriting the last four terms of (37) in terms of IT — uS**
(by using the relations in (35)) gives

. §** S
F-ustt (2 5 - g ) +AST )
(8BTS IPE UL
S ES**f(IF*) LE**  f(L)I}*
(H - #S**)f(lu) (H - .“S**)Iu *x
fa o g e
=S (1)L,
f@)Lr*
§* S
:.“S**(z_ S _S**)—i—ﬁs**f(lj*)
(ST BTSSP LE [
S ES**f(IF*) LE**  f(IL)IF*
_ * ok f(I”) _ I“ _ f(I:*)I”:|
+(I-pS )[f(lj*) A TTH e
§* S
= s (2= 5 - ) s
(S EUSIU)IE UL
S ES**f(IF*) ILE**  f(IL)IF*
wsr Lo | @) fIFF)
- )f(zu)[ Lo I ]
f(1,)
: [f(z::*) - 1}'

(38)

Since f(I,) is an increasing function and $** < I1/y, it fol-
lows that

(IT — uS*™)

I, [f(lu)_f(lu**)“ f1) _1}0
FE0) AP R | TP I R
(39)
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finally, since the arithmetic mean exceeds the geometric
mean, then

S** S
(2— S _S*i*> <0, (40)
LS EUSAL) LUEFUELY
S TESf(I;Y)  LE* fILr) T
(41)
O

Further, since all the model parameters are nonnegative,
it follows that ¥ < 0 for R, > 1 with & = 0 if and
only if S = S§**, E = E** I, = I[**. Hence, ¥ is a
Lyapunov function on D°. Therefore, the largest compact
invariant subset of the set where ¥ = 0 is the singleton
{(S,E, I,) = (§**, E**, [;**)}. Thus, it follows, by the laSalle’s
invariance Principle [18, 45], that S(¢) — S**,E(t) — E**
and ,(t) — If* ast — oo. Since limsup,_ I, = I}F*, it
follows that, for sufficiently small € > 0, there exist constants
Ty > 0 such that limsup,_ I, < I}* + € forallt > T). It
follows from the fourth equation of (30) that, for t > T},

I.(t) < o(I}* +€) — k3. (42)

Thus, by comparison theorem [42],

. Ii* +e
I =limsup < M. (43)
t—co k3
Hence, by letting € — 0, we have
I**
I7 =limsup < Tu (44)
t— o0 k3

Similarly, by using liminf, . I, (t) = L}*, it can be shown
that

I**
oo = liminf > “k“ . (45)
i s

Thus, it follows from (44) and (45) that

I**
Uk—“a > I (46)

oo >

Hence, lim; . o I.(t) = olf*/ks = L}*. In a similar way, it
can be shown that lim, . . R(¢) = R**. Thus, every solution
to the equations of the reduced model, with initial condition
in O°, approaches the endemic equilibrium of the reduced
system (30) as t — oo for Ry, > 1. This shows that the
endemic equilibrium is unique.

5. Conclusions

In this paper, an SEIR epidemic model with a nonlinear
(Holling type II) incidence rate is designed and analysed.
Some of the theoretical and epidemiological findings of the
study are as follows.

(i) The model (8) has a locally stable disease-free equi-
librium whenever the associated reproduction number
is less than unity.

(ii) The DFE of the model (8) is shown to be globally
asymptotically stable when R < 1.

(iii) The model (8) is uniformly persistent in D° if and
only if Ry > 1.

(iv) The endemic equilibrium of the reduced model (8),
with # = 0, is shown to be globally asymptotically
stable, when it exists.
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