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Abstract

Colorectal cancer (CRC) is ranked the third most common cancer in human worldwide.

However, the exact mechanisms of CRC are not well established. Furthermore, there may

be differences between mechanisms of CRC in the Asian and in the Western populations. In

the present study, we utilized a liquid chromatography-mass spectrometry (LC-MS) metabo-

lomic approach supported by the 16S rRNA next-generation sequencing to investigate the

functional and taxonomical differences between paired tumor and unaffected (normal) surgi-

cal biopsy tissues from 17 Malaysian patients. Metabolomic differences associated with ste-

roid biosynthesis, terpenoid biosynthesis and bile metabolism could be attributed to

microbiome differences between normal and tumor sites. The relative abundances of Anae-

rotruncus, Intestinimonas and Oscillibacter displayed significant relationships with both ste-

roid biosynthesis and terpenoid and triterpenoid biosynthesis pathways. Metabolites

involved in serotonergic synapse/ tryptophan metabolism (Serotonin and 5-Hydroxy-3-

indoleacetic acid [5-HIAA]) were only detected in normal tissue samples. On the other hand,

S-Adenosyl-L-homocysteine (SAH), a metabolite involves in methionine metabolism and

methylation, was frequently increased in tumor relative to normal tissues. In conclusion, this

study suggests that local microbiome dysbiosis may contribute to functional changes at the

cancer sites. Results from the current study also contributed to the list of metabolites that

are found to differ between normal and tumor sites in CRC and supported our quest for

understanding the mechanisms of carcinogenesis.
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Introduction

Colorectal cancer (CRC) is the third most commonly occurring cancer in men and the second

most commonly occurring cancer in women worldwide; almost 55 percent of CRC cases occur

in more developed regions [1]. The estimated 2012 age-standardized incidence rates (per 100

000 population) in Southeast Asia region are 8.9 and 6.3 cases in men and women, respectively

[1]. The estimated 2012 age-standardized mortality rates (per 100 000 population) in the

region are 6.3 and 4.4 cases in men and women, respectively [1]. More than 90% of colorectal

carcinomas are adenocarcinomas originating from epithelial cells of the colorectal mucosa;

most colorectal adenocarcinomas (~70%) are diagnosed as moderately differentiated while

well and poorly differentiated carcinomas account for only 10% and 20%, respectively [2].

The right and left colons, which are developed distinctively from the embryological mid-

gut and hindgut, and are joined at the proximal 2/3 and distal 1/3 of the transverse colon.

Hence, anatomically, the blood supply, innervation, lymphatic drainage, and lumen environ-

ment are different between right (ascending, proximal through the hepatic flexure) and left

(descending, distal to the hepatic flexure) colons [3]. Primary CRCs are more frequent on the

left colon but a tendency for right-shift of the primary CRC site has been noted in recent years

[4]. Patients with right-sided CRC were older, mostly female, more frequently presenting with

advanced tumor stages with larger tumor sizes, more often poorly differentiated tumors, and

different molecular biological tumor patterns [5]. Drewes et al. confirmed in the Malaysian

cohort (designated as MAL2) that invasive biofilms, Bacteroides fragilis and several oral patho-

gens are enriched in CRC tissues [6].

A deeper understanding on colonic metabolism is needed to identify cancer-related bio-

markers to elucidate the cancerous cell progression in CRCs. In addition to genomics and pro-

teomics, which are eminent tools for cancer studies, metabolomics is emerging as a tool to

discover biomarkers and unravel pathological processes [7]. The metabolic fingerprints of spe-

cific cellular processes and/or low-weighted molecule profiles are prioritized in metabolomics.

Valuable scientific insight including in toxicity studies has occurred through metabolomic

data generated through nuclear magnetic resonance (NMR), gas chromatography-mass spec-

trometry (GC-MS), capillary electrophoresis-mass spectrometry (CE-MS), and more recently,

liquid chromatography-mass spectrometry (LC-MS) [8,9]. LC-MS is suited for the analysis of

chemically diverse low molecular weight compounds produced during human metabolic pro-

cesses [9]. For this current study, LC-Quadrupole Time-of-Flight (Q-TOF) MS was chosen to

explore potential metabolomic biomarkers distinguishing healthy from cancerous tissues in

the human colon. This technology has been proven to significantly improve mass accuracy

and resolution, besides displaying high sensitivity, good isotopic fidelity, reproducibility of

retention time, and optimization of data acquisition.

In this study, 17 paired surgical biopsy tissues that are subset of the MAL2 cohort [6] were

included. Biofilm quantification and 16S rRNA sequencing have been performed and 16S
rRNA data were analyzed using Resphera Insight, a clinical-grade proprietary analysis protocol

[6]. Thus, in the current study, metabolomic analysis of paired normal–tumor tissues from

patients with colorectal cancer to identify differences metabolomic profiles between cancerous

and adjacent non-cancerous tissues obtained from the colon. In addition, 16S rRNA data were

reanalyzed to discover possible association between metabolomic differences and microbiome

aberrations. A hallmark of cancer is metabolic reprogramming. However, the underlying

mechanism of metabolic reprogramming in cancer is complex and not well understood. Since

many lifestyle-related factors have been linked to CRC and limited studies of this nature have

been conducted in the Southeast Asian population, this study was expected to present a differ-

ent perspective on metabolomics and the microbiome of CRC in this population.
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Materials and Methods

Ethical statement

The University of Malaya Medical Centre (UMMC, Kuala Lumpur, Malaysia) Medical Ethics

Committee (Ref. No. 1066.38) and the Johns Hopkins Institutional Review Board approved

this study. All biopsy tissues were collected after obtaining informed and written consents

from the patients.

Sample collection

Samples were collected consecutively from 2013 to 2014. The details of colon tissues collection

method though a standard mechanical bowel preparation have been previously described

[6,10]. Exclusion criteria include those individuals who have received pre-operative radiation,

chemotherapy treatment or had a past history of CRC or inflammatory bowel disease. Stan-

dard pre-operative intravenous antibiotics (cefotetan, clindamycin/ gentamicin or cefopera-

zone/ metronidazole) were administered in all cases and none of the patients received any pre-

operative oral antibiotics. Tissue from the proximal colon through the hepatic flexure is con-

sidered as right (ascending) colon, whereas distal to the hepatic flexure as left (descending)

colon. During surgery, excess colon tumor (adenomas and cancers) and paired tumor-free

(herein referred to as “normal”) tissues were collected for analysis. Detailed demography and

characteristics of the colonic tissue of the study patients are as summarized in Table 1. Statisti-

cal significance of age, racial and gender distributions between patients presenting with left

and right colorectal tumors were assessed using one-way ANOVA (IBM SPSS Statistics version

22.0) with p-value < 0.05 considered significant.

Metabolite extraction

The tissue, disposable pestle and 1.5 ml-centrifuge tube in liquid nitrogen were chilled in liquid

nitrogen. The tissue was pulverized in the presence of liquid nitrogen to fine powder. Metabo-

lites were extracted from tissue samples by the Bligh and Dyer extraction method [11]. Briefly,

100 μl of chloroform (HPLC grade; Friendemann Schmidt Chemical, Australia) and 200 μl of

methanol (HPLC grade; Friendemann Schmidt Chemical, Australia) were added to the fine

powder and resuspended by vigorous vortexing. The mixture was stored at room temperature

for 30 min. Subsequently, 100 μl of chloroform and 100 μl of water were added and mixed.

The tube was centrifuged at 12,000 xg for 10 min. The biphasic solutions were separated into

two separate tubes without disturbing the protein precipitate at the interface. The samples

were vacuum concentrated to dryness in a Refrigerated CentriVap concentrator (Labconco,

USA) at 4˚C. The samples were reconstituted with 20 μl of mobile phase (95% water:5%

ACN), vortexed and centrifuged at 12,000 xg for 10 minutes at 4˚C.

Untargeted metabolomics by LC/MS

The samples were analyzed on an Agilent 1260 Infinity-6540 UHD Accurate-Mass Quadru-

pole-Time-of-Flight (Q-TOF) LC/MS system coupled with Dual Agilent Jet Stream Electro-

spray Ionization source (Agilent Technologies, USA). The injection volume was 3 μl of sample

and separation was using a Zorbax Eclipse plus C-18 Rapid Resolution High Throughput

(RRHT) 2.1x 100mm 1.8 μm column (Agilent Technologies, USA). The separation was per-

formed at a flow rate of 0.45 mL/min with linear gradient program. Mobile phase A composed

of 0.1% formic acid in Milli-Q water and mobile phase B composed of 0.1% formic acid in ace-

tonitrile (HPLC grade; Friendemann Schmidt Chemical, Australia) The gradient program was

set as follows: t = 0 min, 5% B; t = 2 min, 5% B; t = 15 min, 98% B; t = 18min, 98%; t = 20 min,
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5% B and the final stop time, t = 25 min, 5% B. For positive ionization mode, two reference

masses of (i) 121.0509 m/z and (ii) 922.0098 m/z were measured continuously while for nega-

tive ionization mode, the reference masses were (i) 112.9855 and (ii) 1033.9881. Reference

mass correction was enabled. The gas temperature was maintained at 300˚C, drying gas flow

was set at the rate of 8 L/min, sheath gas temperature and sheath gas flow at 350˚C and 11 L/

min respectively. The capillary voltage was 3500 V. The nebulizer pressure was set at 35 psi.

The MassHunter Workstation software B.05.01 (Agilent Technologies, USA) was applied for

instrument control and data acquisition. The data was analyzed using the Mass Profiler Profes-

sional software version 12.6.1 (Agilent Technologies, USA and Strand Life Sciences, USA). We

compared the relative abundances between paired tumor and adjacent normal tissue samples

using the non-parametric two-sided Wilcoxon signed rank test. Differences were considered

significant with p-value < 0.05. The procedure has been deposited at protocols.io: http://dx.

doi.org/10.17504/protocols.io.u4ceysw.

Table 1. Demographic information and characteristics of colonic tissues.

Patient

ID

Gender Race Age (During

surgery)

Type Location Anatomic Stage

(TNM)

Biofilm

(Normal)

Biofilm

(CRC)

S035 Male Indian 74 Moderately Differentiated

Adenocarcinoma

Left IIIB No No

S036 Female Chinese 49 Moderately Differentiated

Adenocarcinoma

Left IVB No No

S037 Female Chinese 57 Moderately Differentiated

Adenocarcinoma

Left IIIA Yes Yes

S038 Male Malay 49 Moderately Differentiated

Adenocarcinoma

Left IIIB Yes Yes

S039 Female Chinese 75 Poorly Differentiated Adenocarcinoma Right IIA No Yes

S040 Female Chinese 84 Moderately Differentiated

Adenocarcinoma

Left I Yes Yes

S043 Female Malay 52 Moderately Differentiated

Adenocarcinoma

Left IIA No No

S044 Male Indian 41 Well Differentiated Adenocarcinoma Right IVB No Yes

S045 Female Chinese 50 Adenocarcinoma Right I Yes Yes

S046 Female Chinese 52 Adenocarcinoma (Mucinous) Left IIA Yes Yes

S048 Female Malay 74 Moderately Differentiated

Adenocarcinoma

Left IVA No No

S051 Female Indian 63 Moderately Differentiated

Adenocarcinoma

Right IIA Yes Yes

S053 Male Chinese 54 Moderately Differentiated

Adenocarcinoma

Left I No No

S056 Male Indian 76 Moderately Differentiated

Adenocarcinoma

Right IV Yes Yes

S057 Male Chinese 73 Moderately Differentiated

Adenocarcinoma

Left IIIB No No

S058 Female Chinese 67 Moderately Differentiated

Adenocarcinoma

Left IIA No No

S060 Male Chinese 72 Moderately Differentiated

Adenocarcinoma

Right IIA Yes Yes

Samples in this Table are from the MAL2 cohort first reported in Drewes et al [5]. Raw sequences from the MAL2 cohort have been deposited in the NCBI SRA

repository (BioProject accession no. PRJNA325650). Primary sequencing data are available upon request.

https://doi.org/10.1371/journal.pone.0208584.t001
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DNA extraction

Genomic DNA was isolated using the MasterPure DNA Purification Kit (Epicentre/Illumina).

The primers, S-D-Bact-0341-b-S-17 forward (50-NNNNCCTACGGGNGGCWGCAG-30) and

S-D-Bact-0785-a-A-21 reverse (50-GACTACHVGGGTATCTAATCC-30), including Illumina-

compatible adapters, were used to amplify the V3-V4 region of the 16S rRNA gene [6].

Analysis of 16S rRNA amplicon sequence data

The 16S sequencing data were quality-trimmed using Sickle (github.com/najoshi/sickle) using

the following parameters: -q 20 –l 200. Merging of overlapping paired-end sequences was per-

formed using MeFit with default parameters [12]. Filtering of chimeric sequences, de novo

clustering of 16S rRNA sequences into Operational Taxonomic Units (OTUs) at 97% similarity

threshold and removal of singleton OTUs were conducted using Micca (version 1.7.0) [13].

Taxonomic assignment of the representative OTUs was performed using the Bayesian LCA-

based taxonomic classification method with a 1e-100 cut-off e-value and 100 bootstrap replica-

tions, against NCBI 16S microbial database [14,15]. Taxonomic assignment at each level was

accepted only with a minimum confidence score of 80. Multiple sequence alignment of the

OTU representative sequences was performed using PASTA [16]. A phylogenetic tree was

constructed using FastTree (version 2.1.8) under the GTR+CAT model [17].

The rarefaction depth value was set at 72290 and subsequent computation of alpha and beta

diversities was performed using QIIME (version 1.9.1) [18]. Briefly, alpha diversity was evalu-

ated based on the following metrics: observed species and Shannon diversity index. Non-

parametric two-sample t-test was used to compare the alpha diversity metrics between the nor-

mal and tumor samples (i.e. using Monte Carlo permutations to calculate the p-value). Princi-

ple coordinates analysis (PCoA) using unweighted UniFrac distance metric was performed to

visualize separation of samples. Non-parametric statistical analysis of the distance metric was

performed using ANOSIM with 1000 permutations. Graphs were generated using both phylo-

seq R package and PhyloToAST software [19,20].

Functional profiling based on KEGG pathways was conducted using Piphillin [21]. To gen-

erate the microbial community correlation networks, the Kendall’s tau correlation coefficients

between rarefied abundances of different bacterial genera were calculated using the SparCC

software [22]. The statistical significance of each pairwise comparison was examined by boot-

strapping with 500 iterations. Only negative and positive correlations of values� -0.7

and� 0.7, respectively, and with pseudo p-values of less than 0.01, were considered. The net-

works were visualized using Cytoscape software 3.6.1 [23].

Pearson’s correlation analysis of bacterial genera against KEGG pathways, and bacterial

genera against metabolites, was performed on rarefied abundance data using microbiomeSeq

R package (https://github.com/umerijaz/microbiomeSeq.git). Correlations with p-

values< 0.01 were considered significant.

Genus-level OTUs, KEGG functional pathways and metabolomics compounds with a mini-

mum relative abundance of 0.001% and a detection frequency of at least 25% in all samples,

were compared between matched normal and tumor samples by using two-sided Wilcoxon

signed rank test. Data with p-values < 0.01 were considered significant.

Results

Among the 17 patients, 11 had left-sided CRC and 6 had right-sided CRC (Table 1). The mean

age of patients with left-sided CRC at time of surgery was 60.9 (95% CI: 54.2–67.6) years old

while the mean age of patients with right-sided CRC was 62.8 (95% CI: 47.6–78.1) years old.

The difference between ages of patients at time of surgery was not statistically significant (one-
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way ANOVA, p-value� 0.05). In the group of left-sided CRC patients, 4 were male and 7 were

female. The right-sided group comprised of 3 male and 3 female patients. Racial distribution

within the left-sided CRC group was 7 Chinese (64%), 3 Malay (27%) and 1 Indian (9%). On

the other hand, right-sided CRC group comprised of 3 Chinese (50%) and 3 Indian (50%). The

difference between racial distributions of the two groups was also not statistically significant

(one-way ANOVA, p-value� 0.05). It is noted that 4 out of 11 left-sided tumors were biofilm

positive (36.4%), whereas the six right-sided tumors were biofilm positive (100%). However, 6/

8 subjects with biofilm at the site of tumor also had biofilm at adjacent unaffected site (75%).

Metabolomics

In total, 708 compounds present in more than one sample were annotated (S1 Table). Among

these, only 158 compounds had minimum relative abundance of 0.001% and detection fre-

quency of at least 25% in all samples. Table 2 shows 36 compounds found in Kyoto Encyclope-

dia of Genes and Genomes (KEGG)/ LIPID MAPS Proteome (LMP)/ NIH Human

Microbiome Project (HMP) databases and were detected in normal tissues only. In addition,

14 compounds were significantly more frequently found to be higher in normal mucosa than

paired tumor tissues (Table 3). Diketospirilloxanthin, which is involve in carotenoid biosyn-

thesis, was detected only in normal tissues (2-tailed Fisher’s exact test, p-value = 0.007).

5-hydroxyindoleacetic acid (5-HIAA) and serotonin, which are involved in tryptophan metab-

olism and serotonergic synapses, were also found only in normal tissues (Fisher’s exact test, p-

value = 0.044). Serotonin, together with glycocholic acid and cortolone-3-glucuronide, found

in normal tissues only (Fisher’s exact test, p-value = 0.044), are involved in bile secretion. Fur-

thermore, the level of spermidine, which also plays a role in bile secretion, was significantly

more frequently increased in normal mucosa compared to paired tumor tissues (Wilcoxon

signed rank test, p-value = 0.021) (Table 3). Other metabolites that were present in normal tis-

sues only include PE-Cer(d14:1(4E)/23:0) (Fisher’s exact test, p-value = 0.018), 26-O-beta-D-

glucopyranosyl-3beta,26-dihydroxy-25(R)-furosta-5,20(22)-dien-3-O-alpha-L-rhamnopyra-

nosyl(1–2)-beta-D-glucopyranoside (p-value = 0.018), ganglioside GA1 (d18:1/9Z-18:1) (p-

value = 0.044) and Pro Arg Ile (p-value = 0.044). Phenanthrene-4,5-dicarboylate and m-cou-

maric acid have roles in aromatic compound degradation. Notably, many of these compounds

are listed in the KEGG database to be implicated in diverse metabolic functions.

Table 4 shows 16 compounds that were detected in cancerous tissues only. Among these, 7

compounds were involved in biosynthesis of antibiotics (Macrolides/ Type II polyketide)

(Fisher’s exact test, p-value = 0.044). In addition, Amphotericin B, a Type I polyketide antifun-

gal agent, was also found in tumor but not normal tissues. Cinnamyl benzoate was also

detected only in tumor tissues (Fisher’s exact test, p-value = 0.044). Similarly, only 3 out of 14

compounds found to be differentially present in paired normal-tumor tissues were signifi-

cantly more frequently elevated in tumor tissues (Table 3). Among these was S-adenosyl-L-

homocysteine (SAH) that is involved in cysteine and methionine biosynthesis.

Pre- and post-processing 16S data and microbiota composition at phylum

level

A total of 5,372,109 reads were generated for 17 pairs of normal-tumor samples. Following

quality trimming and merging of overlapping paired-end reads, 5,120,010 sequences were

retained, ranging from 82,879 to 245,890 per sample with an average read length of 457.6 ± 3.3

bp (S2 Table). Of 1144 OTUs acquired by de novo clustering of the merged overlapping paired-

end sequences, 662 were taxonomically assigned down to genus level with an 80% confidence

threshold.
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Table 2. Metabolites detected only in normal adjacent mucosa. N, normal adjacent mucosal tissue; L, left-sided colon; R, right-sided colon.

Compound Frequency

(n = 17)

KEGG

ID

LMP ID Description

Dolichyl beta-D-glucosyl phosphate 2 C01246 LMPR03080014 Metabolic pathways; N-Glycan biosynthesis

Diketospirilloxanthin/ 2,2’-Diketospirilloxanthin 7 C15885 LMPR01070154 Metabolic pathways; Carotenoid biosynthesis

Glycocholic acid 1 C01921 LMST05030001 Metabolic pathways, Bile secretion; Cholesterol

metabolism, Secondary bile acid biosynthesis,

Primary bile acid biosynthesis

Cortolone-3-glucuronide 2 C03033 - Metabolic pathways, Bile secretion; Pentose and

glucuronate interconversions

Coproporphyrin 1 C03263 - Metabolic pathways, Biosynthesis of secondary

metabolites, Porphyrin and chlorophyll

metabolism

Pyropheophorbide a 1 C18064 - Biosynthesis of secondary metabolites, Porphyrin

and chlorophyll metabolism

5-HIAA / 5-Hydroxy-3-indoleacetic acid 2 C05635 - Metabolic pathways, Tryptophan metabolism,

Serotonergic synapse

Serotonin 4 C00780 - Alkaloids; Metabolic pathways, Bile secretion,

Tryptophan metabolism, Serotonergic synapse;

Taste transduction, Synaptic vesicle cycle,

Neuroactive ligand-receptor interaction, Gap

junction, cAMP signaling pathway,

Inflammatory mediator regulation of TRP

channels

Tetrahydrofolic acid 1 C00101 - Metabolic pathways, Microbial metabolism in

diverse environments; Aminoacyl-tRNA

biosynthesis, One carbon pool by folate,

Antifolate resistance, Methane metabolism,

Carbon fixation pathways in prokaryotes, Folate

biosynthesis, Carbon metabolism, Glycine, serine

and threonine metabolism

Phenanthrene-4,5-dicarboxylate 2 C18252 - Microbial metabolism in diverse environments;

Polycyclic aromatic hydrocarbon degradation

trans,trans-Farnesol 4 C01126 LMPR0103010001 Terpenoids/Sesquiterpenoids (C15); Biosynthesis

of secondary metabolites; Insect hormone

biosynthesis, Sesquiterpenoid and triterpenoid

biosynthesis, Terpenoid backbone biosynthesis,

Biosynthesis of antibiotics

Adrenosterone 1 C05285 - Steroid hormone biosynthesis

2-Methoxyestrone 3-sulfate 3 C08358 LMST05020006 Steroid hormone biosynthesis

2-Methoxyestrone 3-glucuronide 1 C11132 LMST05010010 Steroid hormone biosynthesis

Veratridine 1 C06544 - Alkaloids

Cardiopetalidine 1 C08667 - Alkaloids

makisterone B 1 C08829 LMST01031017 Terpenoids/Steroids

Convallamaroside 1 C08892 - Terpenoids/Steroids

Quassin 1 C08778 LMPR0106110002 Terpenoids/Triterpenoids (C30)

Cucurbitacin A 1 C08793 LMST01010103 Terpenoids/Triterpenoids (C30)

Cucurbitacin B 1 C08794 LMST01010104 Terpenoids/Triterpenoids (C30)

Cucurbitacin L 1 C08802 LMST01010112 Terpenoids/Triterpenoids (C30)

26-O-beta-D-glucopyranosyl-3beta,26-dihydroxy-25(R)-furosta-

5,20(22)-dien-3-O-alpha-L-rhamnopyranosyl(1–2)-beta-D-

glucopyranoside

6 - LMST01070008 -

PE-Cer(d14:1(4E)/23:0) 6 - LMSP03020010 -

CDP-DG(12:0/12:0) 3 C13891 LMGP13010001 -

Pro Arg Ile 5 - - -

PIP2(16:0/20:3(5Z,8Z,11Z)) 3 C00626 - -

(Continued)

Metabolomics and 16S rRNA sequencing in colorectal cancers

PLOS ONE | https://doi.org/10.1371/journal.pone.0208584 December 21, 2018 7 / 20

https://doi.org/10.1371/journal.pone.0208584


In both tumor and normal tissues, Firmicutes, Bacteroidetes and Proteobacteria constituted

the three most predominant phyla, at 36%, 30.7% and 19.5% of relative abundances, respec-

tively, in the former samples, whilst the latter showed 33.3%, 31.5% and 19.7% of abundances

(S3 Table). In the tumor samples, several bacterial phyla were shown to be nearly or completely

absent including Calditrichaeota, Chlamydiae, Chloroflexi, Elusimicrobia and Planctomycetes

(Fig 1).

Table 2. (Continued)

Compound Frequency

(n = 17)

KEGG

ID

LMP ID Description

Deoxy-5-methylcytidylate 4 C03495 - -

Ganglioside GA1 (d18:1/9Z-18:1) 5 C06136 - -

Losartan 2 C07072 - -

Probucol 2 C07373 - -

Oxyphencyclimine 2 C07851 - -

Lauryl hydrogen sulfate 3 C11166 - -

Telithromycin 3 C12009 - -

Leucomycin A3 2 C12662 - -

9alpha-Fluoro-11beta,16alpha,17alpha,21-tetrahydroxypregn-

4-ene-3,20-dione

2 C14638 - -

https://doi.org/10.1371/journal.pone.0208584.t002

Table 3. Metabolites found to be significantly different in paired normal and tumor tissues by Wilcoxon signed rank test.

Compound Frequency

(increased in

normal mucosa)

(n = 17)

Frequency

(increased in

tumor) (n = 17)

KEGG

ID

LMP ID z-

score

p-

value

Description

m-Coumaric acid 14 3 C12621 - -3.107 0.002 Microbial metabolism in diverse environments,

Degradation of aromatic compounds,

Phenylalanine metabolism

N(alpha)-t-

Butoxycarbonyl-L-leucine

12 2 C04301 - -3.053 0.002 -

PA(18:4(6Z,9Z,12Z,15Z)/

20:4(5Z,8Z,11Z,14Z))

2 11 - LMGP10010446 -2.760 0.006 -

Formylmethionyl-leucyl-

phenylalanine methyl

ester

10 1 C11221 - -2.756 0.006 -

Arg Arg Met 2 11 - - -2.691 0.007 -

Acetyl-maltose 13 4 C02130 - -2.380 0.017 -

Spermidine 11 6 C00315 - -2.312 0.021 Metabolic pathways, ABC transporters, Bile

secretion, Arginine and proline metabolism, beta-

Alanine metabolism, Glutathione metabolism,

Phenylpropanoid biosynthesis

Trp Pro Cys 11 5 - - -2.291 0.022 -

Indoleacrylic acid 13 4 - - -2.249 0.025 -

SAH / S-Adenosyl-L-

homocysteine

2 12 C00021 - -2.222 0.026 Metabolic pathways, Biosynthesis of amino acids,

Cysteine and methionine metabolism

Ranitidine 8 3 C07233 - -2.197 0.028 -

Arg Glu Leu 8 3 - - -2.172 0.030 -

3-Amino-3-

(4-hydroxyphenyl)

propanoate

6 1 C04368 - -2.059 0.040 Tyrosine metabolism

Pirbuterol 7 1 C07807 - -2.059 0.040 -

https://doi.org/10.1371/journal.pone.0208584.t003
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Alpha and beta diversity

To estimate and compare the alpha diversity of the colorectal microbial community derived

from both tumor samples and normal tissue counterparts, we employed observed species and

Shannon diversity indexes. The tumor samples had significantly reduced species richness and

microbial diversity than the matched normal samples (observed species, p-value = 0.001; Shan-

non diversity, p-value = 0.046) (Fig 2A). To assess the overall difference of bacterial commu-

nity between tumor and normal samples, PCoA based on unweighted UniFrac distance was

performed. Two significantly distinct clusters were revealed (p-value = 0.003, R = 0.18) (Fig

2B). Eight normal samples were confined in one cluster and only two of these samples had

been reported previously to have biofilm. Another cluster, interestingly, contained all tumor

samples and the remaining normal samples [6]. The unweighted UniFrac distance PCoA indi-

cates that histological condition of the samples has a more significant impact on the clustering

than biofilm status. These normal samples that shared similar bacterial composition with the

tumor samples could be a possible early indication of carcinogenesis, which merits further

investigation.

Taxonomic differences between tumor and paired normal tissue samples

To identify bacterial genera that were significantly different between tumor and normal sam-

ples, genus-level OTUs that were present in at least 25% of total samples and with a minimum

relative abundance of 0.001% were evaluated using Wilcoxon signed rank test. Of 358 OTUs

Table 4. Metabolites detected only in colorectal tumor. T, colorectal tumor; L, left-sided colon; R, right-sided colon.

Compound Frequency

(n = 17)

KEGG

ID

LMP ID Description

FAD / Flavin adenine dinucleotide 1 C00016 - Metabolic pathways, Biosynthesis of secondary metabolites; Vitamin digestion

and absorption, Riboflavin metabolism

PE(18:3(6Z,9Z,12Z)/22:6

(4Z,7Z,10Z,13Z,16Z,19Z))

1 C00350 - Metabolic pathways, Biosynthesis of secondary metabolites;

Glycosylphosphatidylinositol (GPI)-anchor biosynthesis, Autophagy,

Glycerophospholipid metabolism, Pathogenic Escherichia coli infection,

Retrograde endocannabinoid signaling, Kaposi’s sarcoma-associated

herpesvirus infection

Presqualene diphosphate 1 C03428 LMPR0106010003 Biosynthesis of antibiotics, Metabolic pathways, Biosynthesis of secondary

metabolites; Sesquiterpenoid and triterpenoid biosynthesis, Carotenoid

biosynthesis, Steroid biosynthesis

6,8a-Seco-6,8a-deoxy-

5-oxoavermectin ’’2b’’ aglycone

1 C11953 - Biosynthesis of 12-, 14- and 16-membered macrolides

Avermectin A1b monosaccharide 1 C11966 - Biosynthesis of antibiotics, Biosynthesis of 12-, 14- and 16-membered

macrolides

5-O-beta-D-Mycaminosyltylonolide 1 C12002 - Biosynthesis of antibiotics, Biosynthesis of 12-, 14- and 16-membered

macrolides

Tetracenomycin B3 1 C12369 - Biosynthesis of antibiotics, Biosynthesis of type II polyketide products

Stealthin C 2 C12392 - Biosynthesis of antibiotics, Biosynthesis of type II polyketide products

antioside 2 C08848 LMST01120016 Terpenoids/Steroids

Sarsaparilloside 2 C08911 - Terpenoids/Steroids

Glaucarubin 2 C08760 - Terpenoids/Triterpenoids (C30)

Amphotericin B 3 C06573 LMPK06000002 Type I polyketide structures

Cinnamyl benzoate 5 - - -

Verapamil 2 C07188 - -

Enalkiren 2 C07466 - -

Xamoterol 4 C11775 - -

https://doi.org/10.1371/journal.pone.0208584.t004
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Fig 1. Bacterial phyla composition in normal and tumor samples.

https://doi.org/10.1371/journal.pone.0208584.g001
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Fig 2. (A) Comparison of alpha diversity between normal and tumor samples based on species richness and Shannon

diversity indexes. (B) PCoA plot of unweighted UniFrac distance of normal and tumor samples. Statistical testing using

ANOSIM method revealed significant separation between normal and tumor samples (p-value = 0.003, R = 0.18).

https://doi.org/10.1371/journal.pone.0208584.g002
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tested, 24 were significantly enriched in normal tissue samples in comparison to their respec-

tive tumor counterparts (Table 5). These 24 OTUs represented 21 bacterial genera, in which

Alistipes (median, 1.894 versus 0.024), Oscillibacter (median, 1.234 versus 0.009), Bacteroides
(median, 0.847 versus 0.097), Pseudoflavonifractor (median, 0.012 versus 0) and Succinivibrio
(median, 0.23 versus 0) being identified as the top five most differentially abundant genera. In

addition, Christensenella, Dialister and Pseudomonas were assigned to two different OTUs,

respectively. To examine if bacterial genera significantly affected by tissue status would deliver

an impact on microbial interactions, we performed a co-occurrence network analysis based on

Kendall’s tau correlation coefficient. As depicted in Fig 3, the density of interactions between

different bacterial genera was profoundly less in the tumor samples as compared with the

microbial interactions observed in the normal tissue counterparts. This is consistent with the

abundances of several bacterial genera that were significantly decreased in the tumor samples

such as Succinivibrio, Bacteroides, Christensenella, Pseudomonas, Bifidobacterium, Dialister,
Prevotella and Actinomyces.

Comparative functional differences of colorectal bacterial communities in

tumor and paired normal tissue samples

We next employed Piphillin for the functional prediction of colorectal microbial communities

between tumor and normal tissue samples, revealing 286 KEGG pathways. Eight KEGG path-

ways exhibited significant differences between both groups by Wilcoxon signed rank testing

(p-value< 0.01, Table 6). The microbial communities of tumor samples had significant

Table 5. List of genus-level OTUs that significantly differed between tumor samples and paired normal tissues by Wilcoxon signed rank testing.

OTU Genus Mean normal (%) Mean tumor (%) Median normal (%) Median tumor (%) p-value

DENOVO80 Actinomyces 0.341 0.066 0 0 0.009

DENOVO7 Alistipes 3.141 0.396 1.894 0.024 0.001

DENOVO105 Anaerotruncus 0.272 0.1 0.004 0 0.007

DENOVO9 Bacteroides 2.733 0.343 0.847 0.097 0.002

DENOVO468 Bifidobacterium 0.014 0 0.001 0 0.005

DENOVO171 Christensenella 0.056 0.028 0.015 0 0.004

DENOVO74 Christensenella 0.344 0.156 0.151 0 0.006

DENOVO23 Collinsella 1.282 0.644 1.108 0.307 0.007

DENOVO73 Desulfovibrio 0.414 0.204 0.256 0 0.003

DENOVO244 Dialister 0.029 0 0.007 0 0.005

DENOVO48 Dialister 0.743 0.35 0.037 0 0.008

DENOVO200 Intestinimonas 0.061 0.03 0.026 0 0.006

DENOVO25 Megasphaera 1.401 0.432 0.216 0 0.003

DENOVO153 Mitsuokella 0.094 0.026 0.001 0 0.008

DENOVO85 Morganella 0.315 0.033 0.116 0 0.008

DENOVO352 Negativibacillus 0.041 0.029 0.021 0 0.008

DENOVO14 Oscillibacter 2.085 1.027 1.234 0.09 0.001

DENOVO732 Parabacteroides 0.012 0.001 0.003 0 0.004

DENOVO5 Prevotella 5.036 2.734 1.285 0.066 0.009

DENOVO611 Pseudoflavonifractor 0.018 0.007 0.012 0 0.002

DENOVO404 Pseudomonas 0.082 4.07 × 10−4 0.022 0 0.004

DENOVO20 Pseudomonas 1.352 0.025 0.112 0.003 0.006

DENOVO113 Rhodococcus 0.132 0.001 0.004 0 0.006

DENOVO31 Succinivibrio 1.447 0.699 0.23 0 0.002

https://doi.org/10.1371/journal.pone.0208584.t005
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enrichments in both fatty acid biosynthesis and glycerolipid metabolism, while the normal

microbial subsets were significantly enriched for pathways associated with citrate cycle, steroid

biosynthesis, C5-branched dibasic acid metabolism, pantothenate and CoA biosynthesis, and

sesquiterpenoid and triterpenoid biosynthesis.

Pearson’s correlation analysis of bacterial genera and KEGG pathways that significantly dif-

fered between the tumor and normal tissue samples revealed several significant associations.

Fig 3. Co-occurrence network analysis of genus-level OTUs. Nodes corresponds to bacterial genera while edges represent positive correlations of at least 0.7 and with

p-values less than 0.05. No negative correlations could be identified in this network analysis.

https://doi.org/10.1371/journal.pone.0208584.g003
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The abundances of Anaerotruncus, Intestinimonas and Oscillibacter exhibited significant rela-

tionships with both steroid biosynthesis and sesquiterpenoid and triterpenoid biosynthesis

pathways in both tumor and normal tissue samples with Anaerotruncus showing the most sig-

nificant associations (p-values < 0.0001) (Fig 4; S4 Table). Oscillibacter was also significantly

associated with pantothenate and CoA biosynthesis (p-value< 0.01, normal group; p-

Table 6. List of KEGG pathways that significantly differed between tumor samples and paired normal tissues by Wilcoxon signed rank testing.

KO identifier Pathway description Mean normal (%) Mean tumor (%) Median normal (%) Median tumor (%) p-value

ko00020 Citrate cycle (TCA cycle) 0.627 0.571 0.619 0.592 0.009

ko00061 Fatty acid biosynthesis 0.447 0.477 0.456 0.485 0.002

ko00100 Steroid biosynthesis 0.004 0.002 0.002 9.77 × 10−5 0.002

ko00561 Glycerolipid metabolism 0.257 0.279 0.258 0.273 0.004

ko00660 C5-Branched dibasic acid metabolism 0.267 0.254 0.27 0.255 0.009

ko00770 Pantothenate and CoA biosynthesis 0.539 0.519 0.536 0.504 0.005

ko00909 Sesquiterpenoid and triterpenoid biosynthesis 0.009 0.005 0.005 3.02 × 10−4 0.001

Ko04976 Bile secretion <0.001 <0.001 <0.001 <0.001 0.008

ko05131 Shigellosis 0.001 4.79 × 10−4 0.001 4.73 × 10−5 0.002

https://doi.org/10.1371/journal.pone.0208584.t006

Fig 4. Pearson’s correlation between bacterial genera and KEGG pathways with significant differences. ko00020: Citrate cycle (TCA cycle); ko00061: Fatty acid

biosynthesis; ko00100: Steroid biosynthesis; ko00561: Glycerolipid metabolism; ko00660: C5-Branched dibasic acid metabolism; ko00770: Pantothenate and CoA

biosynthesis; ko00909: Sesquiterpenoid and triterpenoid biosynthesis; ko05131: Shigellosis.

https://doi.org/10.1371/journal.pone.0208584.g004
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value < 0.001, tumor group). The C5-branched dibasic acid metabolism pathway in the nor-

mal group was positively associated with Christensenella and inversely correlated to Parabac-
teroides, with p-values< 0.01 and< 0.001, respectively. The shigellosis pathway that

significantly differed between both tumor and normal samples was strongly correlated to the

abundance of Desulfovibrio bacteria in each group, respectively (p-values < 0.0001).

Pearson’s correlation analysis of metabolites and bacterial genera that significantly differed

between the tumor and normal tissue samples also revealed several significant associations. In

the tumor group, PE(P-16:0/0:0) exhibited significant relationships with Anaerotruncus (p-

value < 0.0001) and Intestinimonas (p-value < 0.01) (Fig 5; S5 Table). Pseudomona correlated

significantly with 6-methoxyquinoline (p-value< 0.0001) and N(alpha)-t-butoxycarbonyl-L-

leucine (p-value < 0.001), which also correlated significantly with Morganella (p-

value < 0.01). Parabacteroides and Prevotella correlated significantly with Antillatoxin B (p-

value < 0.001) and Arg Arg Met (p-value < 0.01) respectively. On the other hand, in the nor-

mal samples, Alistipes and Bacteroides showed significantly association with both creatine (p-

value < 0.001; 0.01) and PA(18:4(6Z,9Z,12Z,15Z)/20:4(5Z,8Z,11Z,14Z)) (p-value< 0.01).

Dialister was also found to be significantly associated with formylmethionyl-leucyl-phenylala-

nine methyl ester (p-value < 0.01).

Fig 5. Pearson’s correlation between bacterial genera and metabolites with significant differences. COM137, 5α-Androstan-3β-ol-17-one sulfate; COM150:

6-Methoxyquinoline; COM190: Antillatoxin B; COM193: Arg Arg Met; COM261: Creatine; COM330: Formylmethionyl-leucyl-phenylalanine methyl ester;

COM465: m-Coumaric acid; COM507: N(alpha)-t-Butoxycarbonyl-L-leucine; COM530: PA(18:4(6Z,9Z,12Z,15Z)/20:4(5Z,8Z,11Z,14Z)); COM548: PE(P-16:0/

0:0); COM732: Val Arg Phe.

https://doi.org/10.1371/journal.pone.0208584.g005
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Discussion

Metabolomics enables a large-scale, qualitative, and quantitative study of metabolites in a sys-

tem biological approach. Unlike mRNAs and proteins, biosynthesis of metabolites is complex

and requires advanced instrumentations such as MS, NMR spectroscopy, and laser-stimulated

fluorescence (LSF) spectroscopy. Notably, each of these instruments has their unique strengths

and limitations. Although NMR is highly selective and non-destructive and is the gold stan-

dard in metabolite structural elucidation, it has relatively lower sensitivity compared to other

technologies [24]. In contrast, LSF is one of the most sensitive techniques, but it is not chemi-

cally selectivity and this limits its usefulness in structural identification of metabolites in com-

plex biological systems [24]. On the other hand, MS, which provides good balance of

sensitivity and selectivity, is frequently used in metabolomic analyses of complex biological

samples [24]. Coupling chromatography to MS provides a great resolution for metabolomics

identification and quantification. Currently, GC, LC, and capillary electrophoresis (CE) have

been incorporated into MS-based metabolomics. GC-MS, which is suitable for the analysis of

volatile, thermally stable, and energetically stable compounds, is extensively used for routine

primary metabolite studies of common but important metabolite classes such as amino acids,

organic acids and free fatty acids. CE-MS is inherently low in sensitivity, poor in reproducibil-

ity, and may be affected by electrochemical reactions of metabolites. Recently, Büscher et al.

compared the performances of GC-MS, LC-MS, and CE-MS in application to quantitative

metabolomics, and demonstrated that CE-MS was the least effective platform for analyzing

complex biological samples [25]. Thus, LC-MS was chosen in this study for discovering

unknown metabolites by untargeted metabolomics based on the wider range of compounds it

can analyze.

Tian et al. analyzed the metabolomic signatures of CRC tissues and their adjacent non-

involved tissues from Chinese patients using high-resolution magic-angle spinning (HRMAS)

1H NMR spectroscopy in combination with GC-FID/MS [26]. In that study, tissue metabolic

phenotypes (in energy metabolism, membrane biosynthesis and degradations, osmotic regula-

tion, and proteins and nucleotides metabolism) was able to discriminated CRC tissues from

adjacent non-involved tissues [26]. More recently, Satoh et al., using CE-MS metabolome for

profiling paired tumor and normal tissue from Japanese patients with CRC, found that S-ade-

nosylmethionine (SAM) was the most up-regulated metabolite in tumor tissue [27]. The

LC-MS-based metabolomics approach of this study provides additional information that com-

plements our current understanding of the metabolomic differences between CRC tissues and

adjacent non-involved tissues. In this study, it was shown that diverse metabolic pathways

(such as N-glycan biosynthesis, carotenoid biosynthesis, cholesterol metabolism, bile acid

metabolism, pentose and glucuronate interconversions, biosynthesis of secondary metabolites,

amino acid metabolism and steroid hormone biosynthesis) differs between tumor and normal

tissues. Consistent with previous studies [26,27], molecular evidence from this study suggests

that cancer cells may alter their metabolism for the production of macromolecular precursors

in CRC. The finding of SAM by Satoh et al. and subsequently SAH in our study to be fre-

quently elevated in tumor tissues highlighted the importance of cysteine and methionine

metabolism in carcinogenesis. Methionine, an essential amino acid in protein synthesis, is the

precursor to SAM required by a variety of methyltransferases for the methylation of DNA,

RNA, proteins, and lipids [28]. When SAM releases activated methyl group in methylation

reactions, it is transformed into SAH that is further hydrolyzed to homocysteine [28]. Sibani

et al. has demonstrated that there was positive correlations between SAM, SAH, and DNA

hypomethylation with cellular transformation under folate-adequate conditions in pre-neo-

plastic small intestine of multiple intestinal neoplasia (Min) mice [29], thus illustrating the
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importance of SAM and SAH in DNA methylation and colorectal carcinogenesis. Further-

more, several cancer cells utilize SAM for hyperactive polyamine synthesis [28]. In turn, poly-

amine putrescine reacts with a decarboxylated form of SAM to form spermidine and spermine

[28]. Therefore, this may explain the elevation of SAH and depletion of spermidine at tumor

sites compared surrounding non-affected mucosa (Table 3).

Serotonin, 5-hydroxytryptamine (5-HT) is mainly synthesized at the gastrointestinal (GI)

tract and it is closely associated with GI function and physiology as extensively reviewed by

Manocha and Khan [30]. In intestinal enterochromaffin (EC) cells, conversion of dietary tryp-

tophan is the first step in the biosynthesis of serotonin, has been implicated in various GI dis-

eases and functional disorders [30]. Alteration in serotonin signaling is associated with celiac

disease, CRC, and diverticular disease [30]. The absence of serotonin at tumor sites compared

to corresponding adjacent non-involved sites may suggest increased catabolism of serotonin

by cancerous cells. Serotonin is essential for the growth of s.c. colon cancer allografts in vivo by

acting as a regulator of angiogenesis which reduces the expression of matrix metalloproteinase

12 (MMP-12)—an endogenous inhibitor of angiogenesis—in tumor-infiltrating macrophages

[31]. The intricate interactions of the gut microbiota, food consumed, and intestinal cells

together will impact the serotonin production, secretion, and degradation, and, hence, may be

accountable for the impaired function of serotonin in GI diseases [30]. Thus, modulation of

tryptophan metabolism, such as the production of serotonin can be used as a potential thera-

peutic strategy for CRC in the future.

2,2’-Diketospirilloxanthin is a naturally occurring carotenoid. Carotenoids are organic pig-

ments produced by many plants and algae, as well as by various bacteria and fungi [32]. Natu-

ral carotenoids, because of their antioxidant properties, have been suggested to have

anticarcinogenic activity [32]. On the other hand, a prospective Multiethnic Cohort Study

based on quantitative food frequency questionnaires did not find any significant association

between intake of individual and total carotenoids and CRC risk [33]. The detection of 2,2’-

diketospirilloxanthin at cancerous sites but not adjacent non-involved sites suggests that the

carotenoid may have local protective effects on epithelial tissues.

The detection of metabolites involved in antibiotics biosynthesis in CRC tissues suggests a

role of microbiota structure and composition in colorectal carcinogenesis. Supported by data

from meta-omics analyses and mechanistic studies in vitro and in vivo, bacteria, such as Fuso-
bacterium nucleatum, enterotoxigenic Bacteroides fragilis, and colibactin-producing Escheri-
chia coli, may be potentiators for CRC development [34]. In addition, it has been

demonstrated that functional predictions from 16S rRNA gene sequences and metabolomics

support that colonic mucosal biofilm contributes to antibiotic biosynthesis leading to alter-

ation of the cancer metabolome to regulate cellular proliferation and colon cancer growth

potentially affecting cancer development and progression [6,10,35]. The study of microbiome

differences between tumor and surrounding non-affected tissues in this study has highlighted

both taxonomical and predicted functional differences between normal and cancerous tissues.

Predicted functions implied from the 16S rRNA gene sequences are consistent with findings

from metabolomics analysis showing depletion of bacteria genera involve in steroid biosynthe-

sis, terpenoid biosynthesis, and bile secretion in tumor relative to paired normal tissues. In

addition, significant correlation was found between Anaerotruncus, Intestinimonas and Oscilli-
bacter and steroid and terpenoid biosyntheses. However, the abundance of bacteria genera

associated with bile secretion pathway was low (<0.001%). Nevertheless, the human host is

known to produce large, conjugated and hydrophilic bile acids. Members of the intestinal

microbiome may utilize bile acids and their conjugates resulting in smaller, unconjugated and

hydrophobic bile acids. These unconjugated bile acids induce oncogenesis in colonic epithelial

cells by altering muscarinic 3 receptor (M3R) and Wnt/ β-catenin signaling and thus act
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potential promoters of colon cancer [36]. Interestingly, many naturally occurring triterpenoids

have been shown to exhibit cytotoxicity against tumor cells, as well as demonstrated to have

anticancer efficacy in vivo [37].

In conclusion, this study expanded our insight into localized metabolic and microbiome

differences between tumor and normal colonic tissues in CRC patients. Besides providing

deeper understanding of the pathogenic process of colorectal carcinogenesis, these functional

metabolites have potential implications in both the drug discovery process and in precision

medicine. Future large-scale meta-analysis could be carried out by comparing the current and

other datasets collected from different parts of the world to explore the association between

the geographical factors with the metabolic differences in the CRC patients.
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