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Abstract: Hepatocellular carcinoma (HCC) is one of the most prevalent malignancies worldwide.
HCC is associated with several etiological factors, including HBV/HCV infections, cirrhosis, and
fatty liver diseases. However, the molecular mechanism underlying HCC development remains
largely elusive. The advent of high-throughput sequencing has unveiled an unprecedented discovery
of a plethora of long noncoding RNAs (lncRNAs). Despite the lack of coding capacity, lncRNAs have
key roles in gene regulation through interacting with various biomolecules. It is increasingly evident
that the dysregulation of lncRNAs is inextricably linked to HCC cancer phenotypes, suggesting that
lncRNAs are potential prognostic markers and therapeutic targets. In light of the emerging research
in the study of the regulatory roles of lncRNAs in HCC, we discuss the association of lncRNAs
with HCC. We link the biological processes influenced by lncRNAs to cancer hallmarks in HCC and
describe the associated functional mechanisms. This review sheds light on future research directions,
including the potential therapeutic applications of lncRNAs.

Keywords: long non-coding RNA; hepatocellular carcinoma; cancer hallmarks; biomarkers; thera-
peutic strategies; HBV/HCV infections

1. Introduction

Hepatocellular carcinoma (HCC) is one of the most prevalent cancers worldwide. It is
particularly prevalent in Asia and Africa where 80% of HCC cases are associated with viral
hepatitis [1]. Other risk factors for HCC include excessive alcohol consumption, dietary
exposure to aflatoxin, non-alcoholic fatty liver disease (NAFLD), and liver cirrhosis [2].
Owing to diagnostic delay and limited effective treatment options, the mortality rate of
HCC is high, with over 600,000 global deaths annually [3]. A minority of HCC patients
(10–20%) who present with HCC at early stages can be treated with surgical resection and
liver transplantation. Unfortunately, due to the asymptomatic nature of HCC, most HCC
patients are diagnosed at advanced stages, during which surgical therapy is no longer
an option. Treatments such as trans-arterial chemoembolization (TACE) and systemic
chemotherapies are the current mainstay of therapy for advanced HCC patients [4]. To
date, multi-tyrosine kinase inhibitors such as Sorafenib, Lenvatinib, and Regorafenib, have
been approved for advanced HCC treatment, yet they can only extend survival for three
months [5]. Given the poor survival and high recurrence rate of HCC, researchers are now
endeavoring to study the underlying molecular landscape of HCC progression to develop
new treatment strategies for HCC patients.

The progression of HCC is a multistep process driven by the accumulation of genetic
and epigenetic alterations. Repeated cycles of injury and regeneration render hepatocytes
more susceptible to the detrimental effects of mutagenic stimuli [6,7]. After acquiring the
requisite number of genetic and epigenetic alterations, the formation of dysplastic foci
and nodules occurs, eventually evolving into HCC [8]. HCC has a complex mutational
landscape involving major pathways, including genes in Wnt/beta-catenin, TP53, telomere
maintenance, oxidative stress response, epigenetic remodeling, and PI3K/Akt/mTOR
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signaling pathways [9]. Despite the emerging breadth of molecular inhibitors alongside the
FDA-approved chemotherapeutics, the survival rate of HCC patients remains low. Owing
to the genomic complexity of HCC, the development of effective therapeutic regimens
remains a daunting task.

The central dogma of molecular biology proposed by Francis Crick advocated that
the only role of RNA was to encode proteins [10]. With time, the advancement in high-
throughput transcriptomic studies has given an unprecedented picture of the fascinating
complexity of the human transcriptome. It is now evident that while less than 2% of the
human genome encodes proteins, more than 70% is actively transcribed into a variety
of non-coding RNAs, including short nuclear and small nucleolar RNAs (snRNAs and
snoRNAs), piwi-interacting RNAs (pi-RNAs), microRNAs (miRNAs), long noncoding
RNAs (lncRNAs) and circular RNAs (circRNAs) [11]. Numerous studies have revealed
a group of small regulatory RNAs, such as miRNAs which fine-tune the key biological
processes via regulating messenger RNA (mRNA) translation. Nevertheless, miRNAs are
just a small facet of noncoding RNAs scratching only the surface of the RNA world.

Long noncoding RNAs (lncRNAs), once depicted as ‘the dark matter of the genome’,
have drawn increasing attention. LncRNAs are transcripts longer than 200 nucleotides in
length. They are expressed in a highly tissue-specific manner. Similar to mRNAs, most lncR-
NAs are transcribed by RNA polymerase II, 5′-capped, spliced and polyadenylated [12].
Despite lacking protein-coding capacity, multiple lines of evidence have highlighted the
important roles of lncRNAs in human cancers [12]. Taking up the majority of the mam-
malian transcriptome, lncRNAs have been found to fulfill a wide array of regulatory roles
at every stage of gene expression. Depending on the subcellular localization, lncRNAs may
exert their roles through the crosstalk with RNA, DNA, and proteins. To date, dozens of
lncRNAs have been inextricably linked to HCC progression [13], suggesting that lncRNAs
are potential therapeutic targets.

In this review, we present an overview of the current knowledge of lncRNAs in HCC
progression and scrutinize their modes of action in cancer phenotypes. We also discuss
the potential applications of lncRNAs as prognostic biomarkers and therapeutic targets
for HCC patients, as well as future research directions to fully understand the diverse
mechanisms of lncRNAs in HCC.

2. Classification of lncRNAs

With the advancement of sequencing technologies, the number of annotated lncR-
NAs has skyrocketed in recent years. Currently, more than 50,000 lncRNAs have been
identified, with approximately 48,000 lncRNA transcripts curated in the Encyclopedia of
DNA Elements (ENCODE) Project Consortium (GENCODE release 36) and 27,919 human
lncRNAs with high-confidence 5′ ends in Functional Annotation of Mammalian Genomes
(FANTOM5). LncRNAs are highly heterogeneous. In contrast to small RNAs, it is chal-
lenging to classify lncRNAs because of poor sequence conservation, differential subcellular
localization, structural variation, and diverse molecular actions [14]. Depending on their
genomic locations relative to protein-coding genes, as well as their origins and directions
of transcription, lncRNAs can be classified into six categories: antisense lncRNA, which is
transcribed oppositely to a protein-coding gene; bidirectional lncRNA, whose promoter is
close to its adjacent protein-coding gene; intronic lncRNA, which lies within an intronic
region of a protein-coding gene; intergenic lncRNA, which does not overlap with the
sequence of a protein-coding gene; overlapping lncRNA, which encompasses the sequence
of a protein-coding gene; and enhancer RNA, which arises from enhancer regions [15].

3. Roles of Oncogenic and Tumor-Suppressive lncRNAs in HCC

LncRNAs play an indispensable role in promoting HCC progression (Figure 1).
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3.1. Sustaining Proliferative Signaling

Cancer cells escape from the normal balance of cell growth by sustaining proliferative
signaling [16]. The dysregulation of receptor tyrosine kinases (RTK) such as epithelial
growth factor receptor (EGFR), c-Met, and HER2 often occurs in HCC, which subsequently
contributes to constant activation and autophosphorylation of a wide range of downstream
signaling pathways such as RAS/MAPK, PI3K/AKT, and JAK2/STAT signaling, thereby
driving cell proliferation in HCC [16]. Several lncRNAs have been shown to promote cell
proliferation by regulating RTK-related gene expression, such as NEAT1 [17]. Furthermore,
the overexpression of LINC01225 promotes HCC proliferation by binding to EGFR, which
subsequently increases the protein level of EGFR and activates a network of intracellular
transduction of proliferative signals [18]. In addition to the dysregulation of RTK-signaling
pathways, cancer cells acquire the capability to avert cell cycle arrest, consequently pro-
moting HCC proliferation. There are several lines of evidence to support the notion that
protein levels and kinase activities of CDK4, CDK6, and Cyclin D1, the key drivers of
G1/S transition leading to early activation of DNA replication, are significantly higher in
advanced HCC [19]. A recent report postulated that an lncRNA named lnc-UCID promotes
G1/S transition and hepatoma growth by sequestering DHX9 from CDK6 3′UTR, thereby
maintaining CDK6 mRNA stability in HCC [20].
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3.2. Dysregulating Cellular Energies

To fulfill the overwhelming demand for the high rate of proliferation, cancer cells
accumulate metabolic alterations to acquire necessary nutrients from a nutrient-deprived
environment for the creation of new biomass [21]. High glycolytic rate confers adaptive
advantages to cancer cells for fueling ATP production [21]. Under low oxygen condi-
tions, hypoxia-inducible factor 1α (HIF-1α) activates the transcription of lncRNA RAET1K
to exaggerate the rate of glucose uptake [22]. In addition, recent studies showed that
the overexpression of TUG1 and circular RNA MAT2B enhances glycolysis rate through
transcriptional and translational regulation of glycolytic enzymes [23,24].

Cancer cells always carve for more glucose from the surrounding tumor microenviron-
ment to support the high energy demand. When blood glucose levels drop, glucogenesis, a
reverse process of glycolysis, is initiated to regenerate glucose from the liver and secrete
it into the bloodstream [21]. However, such energy consumption would be an obstacle
to sustaining cancer cell viability. A recent study showed that MALAT1 represses the
activity of gluconeogenic enzymes and upregulates the expression of glycolytic genes by
enhancing the translation of metabolic transcription factor TCF7L2 [25]. In addition to the
dramatically increased rate of glycolysis, HCC has been associated with the dysregulation
of lipid metabolism. A high rate of lipid uptake and de novo lipid synthesis facilitates
the formation of lipid bilayers, thereby accommodating the high rate of proliferation of
HCC cells. A recent study documented the ability of HULC in modulating abnormal
lipid metabolism. HULC stimulates the accumulation of intracellular triglycerides and
cholesterol through overexpressing acetyl-CoA synthetase. Cholesterol addiction promotes
a positive feedback loop to activate HULC expression, thereby enhancing the proliferation
of HCC cells [26].

Another study found that NEAT1 disrupts the lipolysis of hepatoma cells via a lipolytic
enzyme adipose triglyceride lipase (ATGL), which ultimately maintains a high level of
free fatty acid and diacylglycerol that favors HCC cell growth [27]. As a bioenergetic
and signaling hub, mitochondria utilize substrates from the cytoplasm to fuel oxidative
mitochondrial metabolism and synthesize an array of biomolecules and NADPH for
redox homeostasis [28]. In some cases, lncRNAs have been associated with mitochondrial
dysfunction. As a nuclear lncRNA, MALAT1 hitches a ride with RNA transporters into
mitochondria where MALAT1 interacts with mitochondrial DNA to regulate mitochondrial
metabolism of HCC cells [29]. Nevertheless, it remains unclear what factors govern the
trafficking of lncRNA from the nucleus to mitochondria.

3.3. Cancer Invasion and Metastasis

To migrate from the original tumor site, disseminate throughout the body, and de-
velop a new tumor site, cancer cells undergo epithelial-to-mesenchymal (EMT) progression
that induces a shift in the expression of signaling molecules [30]. In addition to the
well-characterized lncRNAs namely MALAT1 and HOTAIR, several lncRNAs have been
reported to be critical drivers for HCC progression. For example, ZFAS1, lnc-ATB, and
HCCL5 promote the upregulation of ZEB1 [31–33]. On the other hand, down-regulation of
lncRNA CASC2 relieves miR-367 from RNA sponging. Activation of miR-367 in turn sup-
presses the tumor-suppressor gene FBXW7 to promote metastasis in HCC [34]. Moreover,
hypoxia induces low expression of lncRNA-LET in HCC. Down-regulation of lncRNA-LET
stabilizes HIF-1α and CDC42 mRNA, leading to hypoxia-induced cancer cell invasion [35].

3.4. Inducing Angiogenesis

In light of the increasing demand for oxygen and nutrients, cancer cells produce many
pro-angiogenic factors to stimulate the sprouting of new blood vessels from pre-existing
blood vessels [36]. Specifically, vascular endothelial growth factor (VEGF) is significantly
upregulated in most cancers. Factors including hypoxic conditions, ROS production,
and secretion of growth factors and cytokines greatly contribute to the upregulation of
VEGF. Not surprisingly, some lncRNAs such as UBE2CP3 and MYLK-AS1 have been
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shown to modulate the process of angiogenesis through activating the VEGF signaling
pathway [37,38]. Furthermore, lncRNA MVIH, whose expression level predicts poor
outcome in HCC patients, activates tumor-inducing angiogenesis by inhibiting the secretion
of a glycolytic enzyme phosphoglycerate kinase (PGK1) [39]. Lymphatic vasculature
facilitates tissue fluid absorption and trafficking of immune cells during inflammation.
Unfortunately, under oncogenic stress, the generation of new lymphatic vessels facilitates
tumor cell dissemination [40]. lncRNA HANR sequesters the tumor-suppressor miR-296,
which in turn increases VEGF level to promote lymphangiogenesis [41].

3.5. Resisting Cell Death

To ensure constitutive cell growth, cancer cells must circumvent programmed cell
death in response to metabolic and therapeutic stress. Apoptosis is a cellular suicide
program that promotes anti-tumorigenic effects [42]. LncRNAs are capable of influencing
drug resistance through dysregulating apoptotic pathways. In an attempt to study the
underlying causes of chemoresistance of HCC cells, Xie et al. found that lncRNA PDIA3P1
is upregulated following the treatment of DNA-damaging chemotherapeutic agents. Mech-
anistically, PDIA3P1 relieves the repression of miR-125 on TRAF6, leading to the activation
of the nuclear factor kappa B (NF-kB) pathway that promotes anti-apoptotic effects [43].

Autophagy is characterized by the degradation of organelles of damaged cells as a
means of recycling nutrients and sustaining cellular metabolism [44]. Cancer cells can
exploit protective autophagy to alleviate the cytotoxicity of chemotherapeutic drugs. Accu-
mulating evidence has revealed several lncRNAs involving in modulating the dynamics
of autophagic-induced drug resistance in HCC. For example, conventional chemotherapy
induces the overexpression of HULC, which elicits autophagy by enhancing the protein
level of SIRT1 and activating autophagy-related genes namely Atg5 and Atg7, thereby
protecting HCC cells from chemotherapeutic stress-induced cell death [45]. Autophagy
contributes to anoikis, a form of apoptosis that is demarcated by cell detachment from
the extracellular matrix [44]. Cancer cells overcome anoikis stress by activating PI3K/Akt
pathway. A recent study showed that lnc-ARSR contributes to doxorubicin resistance by ac-
tivating PI3K/Akt pathway following the inactivation of PTEN [46]. Multidrug resistance
(MDR) is a bane of HCC therapy. In addition to dysregulating the programmed apoptotic
and autophagic pathways, MDR can be accomplished by increasing drug efflux pumps,
including ATP-binding cassette (ABC) drug efflux. LncRNA NR2F1-AS1 promotes oxali-
platin resistance in HCC cells by augmenting the expressions of drug resistance-related
genes including MDR1 and ABCC1 [47].

3.6. Acquiring Stemness Feature

The heterogeneity of HCC arises from the hierarchical organization of tumor cells
where a minority population of cancer stem cells (CSCs) residing in the tumor bulk is
responsible for maintaining the tumor architecture [48]. Hence, CSCs are the major culprits
leading to tumor recurrence. The dysregulation of multiple signaling pathways endows
CSCs with the capacity for self-renewal, drug resistance, cancer metastasis, and immune
evasion. Several key signaling pathways, such as Hippo-YAP, Wnt/beta-catenin, trans-
forming growth factor-beta (TGF-beta), Notch, and Hedgehog pathways, appear critical for
regulating the niche of CSCs [48]. In HCC, the side-population of CSC has been demarcated
by distinct cell surface markers (e.g., CD133, CD24, CD90, and epithelial cell adhesion
molecule (EpCAM) [49]. A significant body of studies has deciphered the underlying mech-
anism of lncRNAs in regulating HCC CSCs. LncHDAC2 is highly expressed in CD133+
HCC cells, and that high expression promotes self-renewal of liver CSCs by activating
Hedgehog signaling cascades [50]. Numerous self-renewing growth factors and cytokines
have been implicated in the maintenance of CSCs, with the activation of several critical
transcription factors such as NF-kB and STAT3 [51,52]. Intriguingly, a previous study
opined that Inc-DILC serves as a tumor suppressor lncRNAs to inhibit liver CSC expansion
through the suppression of IL-6 autocrine signaling [53].
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3.7. Tumor-Promoting Inflammation

Hepatitis viral infection evokes an inflammatory response involving extensive produc-
tion of cytokines and immune cell infiltration, thereby creating a tumor microenvironment
that favors the development of HCC [54]. Production of inflammatory cytokines activates
key transcription factors such as NF-kB to induce the transcription of genes promoting cell
proliferation and survival [54]. The activation of NF-kB in HCC cells induces the upregula-
tion of LINC00665, which exerts its oncogenic function through promoting the activation
and stability of double-stranded RNA-activated protein kinase, resulting in positive feed-
back on the NF-kB signaling to sustain tumor-associated inflammation [55]. Macrophages
exhibit a high degree of dynamic polarization. Ye et al. discovered the role of lnc-Cox2
in macrophage polarization where knockdown of lnc-Cox2 compromises the tumoricidal
ability of M1, suppresses the tumor growth, and activates M2 macrophages, indicating the
suppressive role of lnc-Cox2 in tumor-inflammatory response [56]. More strikingly, knock-
out mice models have corroborated the roles of lncRNAs in chronic inflammation-mediated
hepatocarcinogenesis. By using the Mdr2-Knockout mouse model to mimic the process
of inflammatory-induced HCC development, Gamaev et al. found that high expression
of lncRNA H19 further aggravates HCC tumorigenesis. Contrary results were observed
in the double KO mouse model (Mdr2-KO/H19-KO) where the development of HCC is
impeded in the absence of H19 [57].

3.8. Escaping from Immune Destruction

Tumor cells adopt different strategies to circumvent immune detection [58]. At the
early stage of tumorigenesis, natural killer cells and effector T cells eliminate more im-
munogenic cancer cells. Once the selected cancer cells escape from tumoricidal immunity,
they undergo additional immune-tolerance mechanisms orchestrated by regulatory T
cells (Tregs) and tumor-associated macrophages (TAMs) [58]. Accumulating evidence has
revealed the crosstalk between lncRNAs and immune cells to modulate the tolerogenic
immune response. In HCC, lnc-EGFR sustains the activation of EGFR signaling cascades
to promote Treg differentiation and suppress the activity of cytotoxic T lymphocytes [59].
In addition, Lnc-Tim3 is upregulated in tumor-infiltration CD8 T cells of HCC patients.
Mechanistically, Lnc-Tim3 promotes CD8 T cell exhaustion via binding to Tim-3, which
triggers nuclear localization of Bat3 to enhance p300/p53/p21-mediated cell cycle arrest
and compromise the anti-tumor immunity [60]. In contrast to Lnc-EGFR and Lnc-Tim-3,
FENDRR suppresses the Treg-mediated immune escape, outlining the potential role of
FENDRR as an alternative immune-based treatment strategy [61].

4. Functional Mechanism of lncRNAs

Depending on the subcellular localization, lncRNAs have profound impacts on tran-
scriptional and post-transcriptional control. While nuclear lncRNAs act as ‘RNA bridges’
to facilitate the interaction between chromatin-modifying complexes and chromatin, as
well as promote higher-order chromatin architecture, cytoplasmic lncRNAs act as post-
transcriptional regulators to regulate mRNA decay and protein translation or act as
‘sponge’ for miRNA sequestration. Considering the unique expression and exquisite
tissue-specificity of lncRNAs, researchers have been exploring the functional crosstalk
between lncRNAs and epigenetic machinery in promoting HCC progression (Figure 2).
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Figure 2. Diverse mechanism of lncRNAs in promoting HCC progression. (a) TUG1 and HOTTIP act as guide to recruit
histone modifiers to the specific loci. (b) Lnc-TCF7 and HAND-AS1 recruit SWI/SNF complex to specific gene promoters
to promote self-renewal. (c) Lnc-β-Catm reinforces protein-protein interaction and controls protein stability. (d) Lnc-FTX
serves as a molecular decoy to move MCM2 away from the chromatin. (e) Cytoplasmic lncRNAs like CASC9 interacts with
HNRNPL to promote HCC progression. (f) LINC01138, CMSD1, and Lnc-MUF interact with protein partners to control
protein stability. (g) Some lncRNAs control mRNA stability through forming RNA duplex with target mRNA, acting as
competitive sponge for miRNA binding or recruit RNA-binding protein to stabilize target mRNA stability. (h) GMAN
regulates post-transcriptional modification by disrupting the interaction between target protein and protein-modifying
enzyme.

4.1. Nuclear-Specific lncRNAs in Transcriptional Control

If functional, lncRNAs that are enriched at their own sites of transcription are expected
to be involved in chromatin modification processes. Compiling evidence supports the roles
of lncRNAs in regulating transcriptional activity of local or distal genes using different
approaches, such as modulating the activities of epigenetic regulators, direct interaction
between lncRNAs and DNA, as well as facilitating enhancer-promoter interaction.

4.1.1. Chromatin Remodeling and Histone Modification

Aberrant histone modification profiles are frequently observed during HCC pro-
gression owing to the dysregulation of epigenetic regulators [7]. Notably, various tran-
scription repressive histone methyltransferases including EZH2, SETDB1, and G9a are
frequently deregulated in HCC, resulting in the epigenetic silencing of tumor-suppressor
genes [62–64]. Supporting the contention that lncRNAs interface with these epigenetic
modifiers to influence gene transcription, a recent study utilized multiple genetic and chem-
ical approaches to underscore the roles of RNA in modulating the activity of polycomb
repressive complex 2 (PRC2) [65]. The perturbation of RNA-PRC2 interaction results in a
substantial loss of PRC2 at the genomic targets, consequently promoting the pre-mature
expression of repressive genes that lead to functional abnormalities of the cardiomyocytes.
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In HCC, TUG1 facilitates the recruitment of PRC2 to deposit the H3K27me3 silencing
mark at the promoter of KLF2 and suppress KLF2 expression [66]. Beyond repressive
histone methyltransferases, several lncRNAs have played a role in trafficking transcription
activators to the specific loci. This mechanism is exemplified by HOTTIP, where it interacts
with the WDR5/MLL complex and localizes it to the proximity of the HOXA locus, leading
to transcriptional activation of HOXA genes, and thus, hepatocarcinogenesis [67]. Another
study demonstrated the cis-regulatory role of 91H on its neighboring gene IGF2 through
recruiting RBBP5 [68]. A similar recruiting mechanism has been observed in lncAKHE,
which cooperates with transcription activator YEATS4 to enhance NOTCH2 signaling in
HCC [69].

HCC displays distinct DNA methylation signatures associated with HCC grades
and patient survival [70,71]. A few studies have inferred the roles of lncRNAs in mod-
ulating the activity of DNA methyltransferases (DNMTs), resulting in the alteration of
DNA methylation. It was reported that LncRNA34a recruits DNMT3a to promote DNA
methylation activity on miR-34a promoter in HCC. This recruitment promotes lnc-34a
mediated transcriptional silencing of miR-34a [72].

Mutations in genes encoding for components of ATP-dependent chromatin remodel-
ing complexes such as switching defective/sucrose nonfermenting (SWI/SNF) complex
and INO80 exhibit significant impacts on HCC progression [73]. Recent studies have shown
the capacity of lncRNAs to regulate gene expression and remodel chromatin accessibility
through interacting with SWI/SNF complexes [74]. For example, lncTCF7 promotes tran-
scriptional activation of its neighboring gene TCF7 by recruiting the SWI/SNF complex to
the promoter of TCF7, which in turn triggers the activation of the Wnt signaling pathway
to maintain the self-renewal of HCC CSCs [75]. Another study revealed the functional in-
terdependence between lncBRM and a subunit of SWI/SNF complex BRM, where lncBRM
physically associates with BRM to initiate the activation of YAP1 signaling and sustain
the self-renewal of HCC CSCs [76]. Besides SWI/SNF complex, lncRNA HAND2-AS1
recruits INO80 to the promoter of BMPR1A, thereby inducing the expression of BMPR1A
to promote liver CSCs self-renewal [77]. Together, these findings highlight the functional
crosstalk between lncRNAs and epigenetic modifiers in controlling the transcriptional
output of target genes.

4.1.2. Scaffolds for Protein-Interacting Partners/Transcription Factors

Although proteins can serve as scaffolds for other proteins, RNA-protein scaffold
is more cost-effective, as an RNA molecule comprising 100 nt can capture more than
five proteins simultaneously [78]. Several studies have suggested that lncRNAs interact
with proteins to regulate a joint set of target gene transcription, thereby promoting HCC
tumorigenesis [79,80]. Indeed, lncRNAs have been shown to reinforce protein-protein
interaction. Zhu et al. observed through domain mapping that a lncRNA Lnc-β-Catm
physically interacts with β-catenin and EZH2. EZH2 methylates β-catenin to suppress the
ubiquitination of β-catenin, thereby allowing β-catenin to activate Wnt-signaling to sustain
the self-renewal of HCC CSCs [81].

While the lncRNAs cited above exert oncogenic roles in HCC, other lncRNAs have
been reported to suppress tumor growth through co-operating with other proteins in
HCC [82,83]. For instance, downregulation of TCAM1P-004 and RP11-598D14.1 abolishes
their tumor-suppressive effects by disrupting their interaction with their protein partners
IGF2BP1, HIST1H1C, and STAU1, consequently repressing the expression of apoptotic
factor DDI3 in HCC [83]. Some lncRNAs have been reported to act not by recruiting
but rather by sequestering proteins from the chromatin to regulate gene transcription.
For example, lnc-FTX binds DNA replication licensing factor MCM2, causing a decrease
in chromatin-bound MCM2, thereby impeding DNA replication and inhibiting HCC
growth [82]. Nevertheless, many proteins lack canonical RNA binding domains [65].
Whether these proteins can identify specific RNA sequences or structure or whether they
bind RNA promiscuously remains unclear.
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4.1.3. Modulating Chromatin Architecture

While the interplay with epigenetic machinery enables lncRNAs to recognize gene
loci, several lines of evidence have pointed to the connection of lncRNAs with chromatin
architecture. One of the mechanisms by which lncRNAs directly bind to genomic DNA is
R-loop formation. For example, an antisense lncRNA VIM-AS1 forms an R-loop around the
VIM promoter to induce chromatin opening that favors NF-kB binding and promotes VIM
transcription [84]. Another way of direct lncRNA-chromatin interaction is the formation
of RNA-DNA triplex that accelerates transcriptional induction [85]. A previous study
demonstrated an interesting model where an antisense lncRNA Khps1 forms RNA/DNA
triplex around the SPHK1 promoter to trigger an open chromatin structure and facilitate
the recruitment of CBP/p300, thereby driving transcriptional activation of SPHK1 [86].
Furthermore, the 3D architecture of the chromosome can allow lncRNAs to spread their
effects over distal regions along the same chromosome [87]. For example, CCAT1, which is
transcribed from super-enhancer upstream of MYC, promotes transcriptional activation of
MYC by promoting chromatin looping that places CCAT1 in the proximity to MYC with the
recruitment of CTCF in human colorectal cancer [88]. These findings collectively highlight
the indispensable role of lncRNAs in modulating chromatin architecture to promote target
gene transcription. However, much remains to be determined regarding what drives
lncRNAs to modulate chromatin architecture and whether such transcriptional regulation
is involved in promoting HCC progression.

4.2. Cytoplasmic-Specific lncRNAs in Post-Transcriptional Control

LncRNAs are not restricted to the control of the localization of proteins on the chro-
matin. Many lncRNAs are exported to the cytoplasm where they modulate two cytoplasmic
processes that have a profound impact on protein translation—mRNA turnover and trans-
lation.

4.2.1. mRNA Stability

LncRNAs can regulate mRNA dynamics at a post-transcriptional level through (1)
miRNA sponge, (2) mRNA interaction, and (3) recruitment of RBPs. Sequence-specific
interaction renders lncRNAs to fine-tune gene expression that favors HCC tumorigenesis
by modulating mRNA stability and miRNA availability. LncRNA-mRNA complex can
prevent microRNAs from binding the target mRNAs, thereby reversing the suppressive
effect of miRNAs on mRNA targets [89]. For instance, lncRNA DANCR occupies the
miRNA binding site on CTNNB1 3′UTR, which increases the population of tumor cells with
stemness features [90]. In addition, the lncRNA-mRNA complex can increase the stability
of mRNA. For example, ICAM-1-related noncoding RNA (ICR) increases the stability of its
target mRNA ICAM-1 through RNA duplex formation to maintain the stem cell properties
of ICAM+HCC CSCs [91]. Some lncRNAs function as competing for endogenous RNAs
(ceRNAs) to compete for miRNA binding, consequently reducing miRNA action on mRNA
targets [33,92–95]. An example of this lncRNA-miRNA interplay is DLGAP1-AS1, which
sequesters HCC-inhibitory miRNAs, miR-26a-5p and miR-26b-5p, and thus, enhances IL-6
level to activate JAK2/STAT3 signaling during HCC progression [93].

Besides miRNA sponge, some lncRNAs can modulate mRNA expression by recruiting
RBPs. For example, lncRNA UFC1 binds with mRNA stabilizing protein HuR to stabilize
and increase the level of β-catenin mRNA [96]. Moreover, lncRNAs can form a complex
with RBPs to mediate transcriptional repression. It has been reported that lncRNA miR-
503HG interacts with heterogeneous nuclear ribonucleoprotein A2/B1 (HNRNPA2B1) to
promote its degradation, which in turn reduces the stability of p53 and p65 mRNA and
eventually inhibits NF-kB signaling pathway and EMT process in HCC [97].

4.2.2. Protein Stability

Compiling evidence has indicated that lncRNAs can regulate protein stability through
controlling ubiquitin or proteasome machinery. Some lncRNAs exert their oncogenic func-
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tions through stabilizing oncoproteins in HCC [98–100]. For example, lncRNA CMSD1
specifically binds and stabilizes MYC protein to protect it from ubiquitin-proteasome degra-
dation, thereby promoting hepatocarcinogenesis [100]. Likewise, LINC01138 promotes
HCC tumorigenesis by enhancing the stability of arginine methyltransferase (PRMT5)
and that LINC01138 function depends on the presence of PRMT5 [99]. In contrast, a
tumor-suppressive lncRNA RP11-286H15.1 binds to poly (A) binding protein 4 (PABPC4)
to promote its ubiquitination [101]. Similarly, lncRNA PSTAR inhibits HCC tumorigenicity
by enhancing the SUMOylation modification of heterogeneous nuclear ribonucleoprotein K
(hnRNP-K), which further strengthens the interaction between hnRNP-K and p53, leading
to the transactivation of p53 [102].

4.2.3. Signal Transduction

Some lncRNAs work with RBPs to promote signal transduction in the cytoplasm. For
example, CASC9 forms a functional cytoplasmic complex with RBP heterogeneous nuclear
ribonucleoprotein L (HNRNPL), consequently activating the AKT pathway-associated
signaling molecules to promote hepatocarcinogenesis [103]. Furthermore, some lncRNAs
control the subcellular mobilization of proteins. For example, lnc-MUF promotes the
interaction of AXNA2 and GSK-3β, whereby AXNA2 alters the subcellular localization
of β-catenin to activate Wnt signaling cascades by protecting β-catenin from GSK-3β-
mediated degradation [80]. In some cases, lncRNAs interact with proteins and modulate
signal transduction pathways by modifying their phosphorylation status. For example,
HNF1A-AS1 binds to the C-terminal of Src homology region 2 (SH2) domain-containing
phosphatase 1 (SHP-1) protein and increases the phosphatase activity of SHP-1, which
subsequently promotes anti-tumor effects of HNF-1α and HNF1A-AS1 [104]. Interestingly,
some lncRNAs modulate protein translation. LncRNA GMAN was found to interact with
eukaryotic translation initiation factor 4B (eIF4B) and promote its phosphorylation by
preventing dephosphorization of another protein mediator phosphatase 2A subunit B
(PPP2R2A). These changes subsequently increase the expression of anti-apoptosis-related
protein expression, thereby promoting HCC tumorigenesis [105].

5. From Cancer Hallmarks to Clinical Utility

Ultrasound imaging and alpha-fetoprotein (AFP) measurement are the current surveil-
lance tools for the early detection of HCC [106]. However, these detection approaches
have unconquerable limitations. While ultrasound imaging detects early-stage HCC with
only 47% sensitivity, the sensitivity and specificity of AFP for initial HCC diagnosis is low,
indicating an urgent need for novel biomarkers in the hope of enhancing early detection of
HCC [107]. The crucial roles of lncRNAs in diverse cellular processes render them appeal-
ing candidates for the diagnosis and treatment of HCC. The exquisite tissue-specificity of
lncRNAs can help classify different subclasses of tumors or even help predict different clini-
cal outcomes. This realization has spurred further exploration of the advantages of quantify-
ing lncRNA expression in tumor biopsies and plasma. Some lncRNAs are highly specific in
tumor patients compared with healthy counterparts, and their striking expression patterns
in tumors make them detectable in body fluids such as plasma, blood, and saliva, indicating
the potential as non-invasive diagnostic biomarkers (Table 1). For example, HULC, whose
expression predicts poor clinical outcome for HCC patients, is detected in the blood of HCC
patients and its corresponding tumor tissues by the conventional PCR method. Other lncR-
NAs such as MALAT1, LINC00152, RP11-160H22.5, Lnc-PCDH9-13:1, and XLOC014172
have been reported to be circulating lncRNAs [108–111]. In addition, the collection of
exosomal lncRNAs becomes a new source of biomarkers for non-invasive cancer diagnosis.
As a signal molecule of cell-to-cell communication, exosomes containing all biological com-
ponents provide a more comprehensive resolution of cancer heterogeneity [112]. Exosomes
include tumor-specific lncRNAs that are protected from enzymatic degradation in body
fluid, rendering them attractive alternatives for non-invasive biomarkers. Extracellular
vesicle long RNA sequencing (exLR-seq) detects more than 10,000 exosomal long RNAs,
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some of which are HCC-overexpressing lncRNAs with functional implications [113]. In
addition, some exosome-derived lncRNAs, such as LINC00853, lncRNA-ATB, LINC00511
are associated with prognostic factors for HCC patients [108,113–115], indicating poten-
tial diagnostic biomarker for early HCC [114]. Some lncRNAs such as lncRNA-VLDLR
and lncRNA-ROR have been implicated in modulating hepatoma cellular responses to
Sorafenib through extracellular vesicle-mediated intracellular signaling in HCC. These
findings open an avenue for direct precision medicine [116,117].

As discussed above, lncRNAs regulate specific facets of cellular networks, suggesting
that they are desirable for potential therapeutic regimens. Considering the undesirable toxic
effects of direct protein target inhibition, drugs targeting lncRNAs would be a desirable
strategy for the inhibition of protein activity. The most promising attempt of lncRNA inhi-
bition therapy is based on the use of antisense oligonucleotides (ASOs), which have been
reported to have excellent efficacy in reducing lncRNA levels, especially nuclear-specific
lncRNAs, as exemplified by the success of targeting LINC00210 that impairs self-renewal of
CSCs in vitro in HCC and targeting lncRNA SCAT7 in vivo in lung cancer [118,119]. Given
the interplay between lncRNAs and epigenetic modifiers such as PRC2, researchers are
developing synthetic molecules that occupy the binding sites where target lncRNAs and
PRC2 interact to de-repress PRC2-target genes [120]. Besides blocking the interaction sites,
investigators are exploring synthetic ncRNAs molecules to establish tumor-suppressive
functions [121]. The development of lncRNA-based inhibitors helps reshape the drug
discovery landscape; however, a few challenges regarding the delivery system, as well as
adverse effects remain to be addressed.

Table 1. Examples of lncRNA markers with potential prognostic and diagnostic values for HCC patients.

Examples of
LncRNAs

Source of
Biomarkers

Method of
Analysis

Roles in
HCC Modes of Action Biological

Functions Reference

HULC Blood qRT-PCR Oncogene miRNA sponge;
Stabilizing SIRT1

Promote metastasis
and chemotherapy

resistance
[45,109]

MALAT1 Plasma qRT-PCR Oncogene SRSF1 upregulation
and mTOR activation

Promote metastasis
and tumorigenesis [110,122]

LINC00152 Plasma qRT-PCR Oncogene

Upregulate the
expression of CCND1

through miRNA
sponge

Promote cell cycle
progression [115,123]

LINC00511 Serum-derived
exosomes qRT-PCR Oncogene

Upregulate EYA1
expression through

miRNA sponge

Promote cell
proliferation and

migration
[108,124]

LINC00161 Serum-derived
exosomes qRT-PCR Oncogene

Activate ROCK2
signaling pathway
through miRNA

sponge

Promote
angiogenesis and

metastasis
[125]

LncRNA-ATB Serum-derived
exosomes qRT-PCR Oncogene

Upregulate ZEB1
expression through

miRNA sponge
Promote metastasis [33,108]

ZFAS1 Plasma qRT-PCR Oncogene
Upregulate ZEB1

expression through
miRNA sponge

Promote metastasis [31,126]

6. Future Perspectives and Challenges

Taking the advantage of new technologies, we have witnessed remarkable progress
in discovering the ‘dark matter’ of the genome. As indispensable ‘game players’ in the
genome, lncRNAs interface with epigenetic factors, transcription factors, proteins, and
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nucleic acids to temporally and spatially modulate their activities, collectively shaping the
outcomes of crucial cellular processes. As discussed above, the dysregulation of lncRNAs
contributes to HCC cancer phenotypes. Hence, screening the abundance of oncogenic
lncRNAs in body fluid becomes a promising strategy for biomarker identification. Targeted
lncRNA sequencing is superior in detecting an array of potential oncogenic lncRNAs in
multiple pairs of human liquid biopsy [127,128]. Given the functional crosstalk between
lncRNAs and epigenetic machinery, targeting RNA becomes a new frontier for drug
development. While ASOs represent the best oligo-based drug to target lncRNAs, some
RNAs have been reported to be rich in potentially druggable structure, holding a promise
for the development of small molecules against target lncRNAs [129–131]. The structurally
conserved lncRNAs are appealing for predicting physical targets and drug selectivity,
although more works are necessary to scrutinize the high-order structure of lncRNAs and
RNA-ligand interaction.

Despite the discovery of a large repertoire of annotated lncRNAs, the era of studying
the functions of lncRNAs in HCC is just beginning, and we are still far from clinical tri-
als with lncRNA-based therapeutics for HCC patients. LncRNAs possess many features
reminiscent of protein-coding genes such as post-transcriptional modifications. Among
them, RNA modifications such as 5-methylcytosine (m5C) and N6-methyladenosine (m6A)
have recently come to the spotlight in lncRNA studies [132,133]. Several studies have
reported that m6A frequently regulates the structure, stability, expression, as well as
subcellular distribution of lncRNAs [134,135]. In HCC, m6A modification increases the
stability of LINC00958, thereby leading to its overexpression and promoting tumor growth
in HCC [136]. m6A modification may affect lncRNA secondary structure, thereby dys-
regulating the interaction between lncRNAs and their protein partners or other RNA
species, consequently driving the dysregulation of signaling pathways that favor tumor
progression [136]. Nevertheless, only a handful of studies have reported the roles of m6A
modification of lncRNAs in promoting HCC progression. Given that most lncRNAs exert
their functions through their protein partners, there is a pressing need to study the under-
lying mechanisms by which m6A modification regulates oncogenic functions of lncRNAs
in HCC.

One of the greatest challenges is to understand how lncRNA sequences and RNA
structure reflect their functions, given their limited sequence conservation and noncoding
nature [137]. Attempts to identify functional lncRNAs in HCC have been relied on RNA-seq
to find out the aberrant expression of lncRNAs between tumor and non-tumor. However,
the differential expression patterns of lncRNAs do not necessarily reflect the functions of
lncRNAs. Multiple genetic approaches are required to elucidate the functions of lncRNAs,
which seem to be daunting to identify the functions of thousands of lncRNAs at once.
Over the last five years, Clustered Regulatory Interspaced Short Palindromic Repeat
(CRISPR) screening technology has been employed to interrogate the functions of protein-
coding genes and lncRNAs associated with screening phenotypes—proliferation and drug
resistance [138–140]. CRISPR screening not only enables the discovery of novel functional
lncRNAs that influence the phenotype of interest but also facilitates the development of
lncRNA-based therapeutic targets across a broad spectrum of human diseases.

In summary, the dysregulation of lncRNAs is closely associated with HCC progression.
However, the field is riddled with many unresolved questions. Future research efforts
should go beyond the descriptive identification of differentially expressed lncRNAs and
focus on the functions and molecular modalities of lncRNAs in promoting HCC progression,
which are extremely necessary for the development of lncRNA-based biomarkers and
therapeutics with high specificity and sensitivity.

Author Contributions: L.-S.W. and C.-M.W. wrote this manuscript. All authors have read and agreed
to the published version of the manuscript.

Funding: This study was supported by Hong Kong Research Grant Council-Theme-based Research
Scheme (T12-704/16-R), Hong Kong Health and Medical Research Fund (04150776), The University



Int. J. Mol. Sci. 2021, 22, 3137 13 of 19

of Hong Kong Seed Fund for Translational and Applied Research (201910160019) and The State Key
Laboratory of Liver Research—Innovative Research Fund 2018.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: Figures 1 and 2 were created with Biorender.com, accessed date: 17 March 2021.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

ABC ATP-binding cassette transporters
Akt Protein kinase B
ASO Antisense Oligonucleotides
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HNRNPK Heterogeneous nuclear ribonucleoprotein K
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LncRNAs Long noncoding RNAs
mTOR Mechanistic target of rapamycin
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SIRT1 Sirtuin 1
SPHK1 Sphingosine Kinase 1
STAU1 Staufen Double-Stranded RNA Binding Protein 1
SWI/SNF SWItch/Sucrose Non-Fermentable
TAMs Tumor-associated macrophages
TERT Telomerase reverse transcriptase
TGF-β Transforming growth factor-beta
TRAF TNF receptor associated factor
Treg Regulatory T cells
VEGF Vascular endothelial growth factor
YAP1 Yes-associated protein 1
ZEB1 Zinc finger E-box-binding homeobox 1
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