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Abstract

Selective potentiators of glutamate response at metabo-
tropic glutamate receptor subtype 5 (mGluR5) have
exciting potential for the development of novel treat-
ment strategies for schizophrenia. A total of 1,382 com-
pounds with positive allosteric modulation (PAM) of the
mGluR5 glutamate response were identified through
high-throughput screening (HTS) of a diverse library of
144,475 substances utilizing a functional assay measuring
receptor-induced intracellular release of calcium. Primary
hits were tested for concentration-dependent activity, and
potencydata (EC50values) wereused for trainingartificial
neural network (ANN) quantitative structure-activity
relationship (QSAR) models that predict biological
potency from the chemical structure. While all models
were trained topredictEC50, thequalityof themodelswas
assessed by using both continuous measures and binary
classification.Numerical descriptorsof chemical structure
wereusedas input for themachine learningprocedureand
optimized in an iterative protocol. The ANN models
achieved theoretical enrichment ratios of up to 38 for an
independent data set not used in training the model. A
database of ∼450,000 commercially available drug-like
compounds was targeted in a virtual screen. A set of 824
compounds was obtained for testing based on the highest
predicted potency values. Biological testing found 28.2%
(232/824) of these compounds with various activities at
mGluR5 including 177 pure potentiators and 55 partial
agonists. These results represent an enrichment factor of
23 for pure potentiation of the mGluR5 glutamate res-
ponse and 30 for overall mGluR5 modulation activity
when compared with those of the original mGluR5
experimental screening data (0.94% hit rate). The active
compounds identified contained 72% close derivatives of

previously identified PAMs as well as 28% nontrivial
derivatives of known active compounds.
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G
lutamate is theprimary excitatory neurotrans-
mitter in the mammalian central nervous
system (CNS) and activates metabotropic

glutamate receptors (mGluRs), which are coupled to
downstream effector systems through guanine nucleotide
bindingproteins (Gproteins) (1, 2). ThemGluRsprovide
a mechanism by which glutamate can modulate or fine-
tune activity at the same synapses on which it elicits fast
synaptic responses. Because of the wide diversity, hetero-
geneous distribution, and diverse physiological roles of
mGluR subtypes, the opportunity exists for developing
therapeutic agents that selectively interact with mGluRs
involved in only one or a limited number of CNS
functions. Such drugs could have a dramatic impact on
the development of novel treatment strategies for a
variety of psychiatric and neurological disorders includ-
ing depression (3), anxiety disorders (4, 5), schizophrenia
(6-9), chronic pain (10), epilepsy (11), Alzheimer’s dis-
ease (12), and Parkinson’s disease (13). The mGluR5
receptor subtype is a closely associated signaling partner
of the ionotropic NMDA receptor (NMDAR) and may
play a significant role in setting the tone of NMDAR
function in the forebrain regions containing neuronal
circuits important for cognitive behavior and for report-
ing on the efficacy of antipsychotic agents (6).

Activators of mGluR5 May Provide a Novel
Approach to the Treatment of Schizophrenia

Activation of mGluR5 potentiates NMDAR func-
tion in forebrain circuits thought to be disrupted in
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schizophrenia. The mGluR5 selective allosteric anta-
gonist [2-methyl-6-(phenylethynyl)-pyridine] MPEP
potentiates the effect of the noncompetitive NMDAR
antagonist phencyclidine (PCP) in behavioral pheno-
typic assays (14-16), andmGluR5 knockoutmice have
deficits in prepulse inhibition in acoustic startle response
behavioral assays comparedwith those ofwild typemice
(14, 17). Positive allosteric modulators of mGluR5
have recently been developed and reported (18-22).
Four well-characterized structural classes of mGluR5
allosteric potentiators have been identified, including ben-
zaldazine derivatives [3,3-difluorobenzaldazine] (DFB),
two types of benzamides, [N-{4-chloro-2-[(1,3-dioxo-1,3-
dihydro-2H-isoindol-2-yl)methyl]phenyl}-2-hydroxy-
benzamide] (CPPHA) and [3-cyano-N-(1,3-diphenyl-
1H-pyrazol-5-yl)benzamide] (CDPPB), and an
oxadiazole chemotype represented by ADX-47273
(23-26). Despite striking functional similarities, radi-
oligand binding studies revealed different mGluR5
binding profiles for DFB and CDPPB compared with
those of CPPHA (19, 21, 27). Both CDPPB (20, 21)
and ADX-47273 (24-26) have displayed in vivo efficacy
in behavioral models. Unfortunately, lead optimization
of the CDPPB scaffold was unable to address a number
of issues including poor physiochemical properties due to
the lack of solubility in many vehicles (22). However,
some improvement of physicochemical properties was
recently reported for themGluR5 ago-potentiatorADX-
47273 (23). Recent reports have also shown that small
structural modifications to related compounds in a series
including benzaldazine and (phenethynyl)pyrimidine
scaffolds can bind to a single allosteric site to exert effects
ranging from partial to full antagonism to positive
allosteric modulation (18, 28, 29). For these reasons,
further validation of mGluR5 potentiation as a thera-
peutic approach to Schizophrenia requires the discovery
of novel chemotypes possessing improved physio-
chemical and pharmacological properties.

High-Throughput Screening in Drug Discovery
High-throughput screening (HTS) is the process of

testing a large number of diverse chemical structures
against potential disease targets to identify new poten-
tial lead compounds by taking a rapid, high efficiency
approach to the generation of ligand-target interac-
tion data sets (30, 31). More than 120 GPCR-based
HTS assays have been published in PubChem
(pubchem.ncbi.nlm.nih.gov). For example, 63,676 com-
pounds were screened at Vanderbilt in an assay for
allosteric agonist activity at acetylcholine Muscarinic
M1 Receptor to identify 309 confirmed M1 agonists
(PubChem Bioassay number AID626 (primary screen)
and AID1488 (confirmatory screen)). Increased throu-
ghputGPCRscreensusing1,536well formathave recently
been reported for targets such as M1 acetylcholine

receptor (32) and 5HT2b serotonin receptor (33). How-
ever, the current literature suggests that one market-
able drug emerges from the information gained by screen-
ing approximately one million compounds (31). If
fewer compounds could be tested without compromising
the probability of success, screening cost and time as
well as failure rates in clinical testing may be reduced
(30, 31, 34).

Quantitative Structure Activity Relations in Drug
Discovery

Quantitative structure activity relations (QSAR)
attempt to model complex nonlinear relationships be-
tween the chemical and physical properties of molecules
and their biological activity (35, 36). Hansch et al. estab-
lished classical QSARanalysis as a paradigmby reporting
the use of Hammett substituent constants to establish a
quantitative relationship between electron density and
biological activity (37). At the same time, they introduced
anewhydrophobicparameter, thepartition coefficient (P)
of the compound in a 1-octanol-water system (log P).
Variations and extensions of the Hansch analysis have
been applied to drug discovery for over 40 years and rely
onwell-studied scalar or 2Ddescriptors such as calculated
log P (c log P), molecular refractivity (CMR), and topo-
logical polar surface area (TPSA). Modern QSAR tech-
niques employ advanced 2D molecular fingerprints and
3D molecular descriptors coupled with machine learning
(38-40). High-resolution methods such as comparative
molecular field analysis (CoMFA) (41, 42) and compara-
tive molecular similarity indices analysis (COMSIA) (43)
require the alignment of biologically relevant 3D confor-
mations of molecules with a common substructure to
generate a map of regions important for the structure-
-activity profile of a given related series of molecules.

Numerical Descriptors of Chemical Structure for
QSARs

Encoding schemes that are fragment-based usually
identify a common fragment in small focused chemical
libraries, and chemical modifications to that fragment
(common substructure) are numerically encoded (the size
of a substituent in position A, the presence of a negatively
charged group in position B, atom type in heterocyle C,
etc.). Examples of fragment-based strategies include
MACCS (44, 45), binary structural keys based on occur-
rence/countsofup to166different chemical features found
in a compound; HQSAR (46-48), a 2D method for
capturing chiral information based on a molecular holo-
gram hashing algorithm without the requirement for the
generation of 3D coordinates; and SKEYS/FRED, a
combination of MDL structural key based fingerprints
with an evolutionary algorithm (49).

Traditional 2D- and 3D-QSARmethods often require
fragment-based structural encoding schemes (44, 50) or
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conformational superposition of biologically active
conformations of the chemical structures (42, 51, 52)
that may restrict the utility of resulting models to
predictions related to single chemotypes (50) or
single protein binding sites (50, 52). While suitable
for optimization of a lead structure in a small focused
library, such encoding schemes often preclude the
analysis of large, diverse databases as a large major-
ity of the substances in such a database will not share
a large common fragment.

Fragment-Independent Transformation-Invariant
Descriptor Schemes

Fragment-independent molecular descriptors have
the potential to encode a large diversity of chemical
scaffold information into mathematical representations
not sensitive to scaffold size, composition, and rotation/
translation of 3D coordinate molecule representations.
Theuseof featurepoint pharmacophores (FEPOPS), an
automated method that simplifies flexible 3D chemical
descriptions, was recently reported to outperform tradi-
tional 2D- and 3D-QSAR methods for enrichment of
actives taken from high-throughput screening com-
pound collections (52) and to identify novel chemotypes
with biological activity at query targets from virtual
screens (53). A recent study of HIV-1 integrase inhibi-
tors introduced atom-type linear indices of the mole-
cular pseudograph atom adjacency matrix as fragment-
independent indices containing important structural
information tobeused inQSARanddrugdesign studies
(54). Radial distribution functions have recently been
shown to outperform traditional fragment-based
molecular descriptors in a study of the chick intestinal
vitamin D receptor affinity of 49 vitamin D analogues
(55) and in an investigation to separate the activity of
carcinogenic and noncarcinogenic compounds in a
rodent toxicity model (56). Autocorrelation functions
are fragment independent, invariant to translation and
rotation, and encode the identity and electronic attri-
butes of molecular structure including atom types,
partial atomic charges, electronegativity, and polariz-
ability into vector representations (57). Several studies
have employed autocorrelation descriptors for training
machine learning algorithms for applications including
separation of dopamine agonists and benzodiazepine
receptor agonists (58), virtual screening for chemical
library enumeration (59), and identification of novel
chemotypes (60). Surface area correlation functions
store molecular shape geometry for molecules with
known biological activity into neural networks for
shape-basedmolecular recognition in external data sets,
as reported for the analysis of corticosteroid-binding
globulin activity of steroids (61). Self-organizing neural
networks using molecular electrostatic potential as
the structural encoding scheme were also successfully

applied to study structurally different classes of mus-
carinic acetylcholine receptor allosteric modulators (62).

Application of Machine Learning Algorithms to
Establish QSARs

Machine Learning algorithms have proven to be of
practical value for approximating nonlinear separable
data, especially for classifying biological target data (39,
63). Recently, a machine learning approach was applied
to generate a model for the tubulin polymerization
activities of a library of 250 analogues of the anticancer
drug Epothilone (38). ANNs have been successfully
applied for many years in chemistry and biochemistry
to generate QSAR models (40, 64, 65). Studies were
reported involving the prediction of dihydrofolate redu-
ctase inhibition based on data derived from high-
throughput screening using preclustering and evolved
neural networks (66) aswell as applications for prescree-
ning compounds for HIV inhibition while optimizing
specificity and potency (67). Our group recently pub-
lished a theoretical comparison of machine learning
techniques for the identification of compounds that
are predicted allosteric modulators of the mGluR5
glutamate response (68).

Quantitative Structure-Activity RelationModels
for mGluR5 Positive Allosteric Modulation

The objective of the present research is to employ
ANNs to develop QSAR models for mGluR5 PAM
activity. QSARmodels capable of combining the struc-
tural diversity of different chemical scaffolds into a
single model could inform the discovery of new chemo-
types for allosteric potentiation of the mGluR5 gluta-
mate response. Such models may also be useful for the
identification of compounds with a spectrum of activity
(agonists, antagonists, and allosteric potentiators) by
analogy to the well-documented activities of agonists,
inverse agonists, and neutral antagonists at orthosteric
binding sites on a broad range of receptors (18, 28, 29).
Activity data for mGluR5 PAMs obtained from a high-
throughput screen of ∼150,000 compounds is used to
develop the QSAR model. A set of fragment-indepen-
dent and transformation-invariant chemical descriptors
serves as input for the ANN. A novel strategy for the
selection of an optimal descriptor subset yields QSAR
models that enrich active compounds by a factor of up
to 38 in independent data sets. Themethod is applied to
a virtual screen of a commercial library of ∼450,000
available compounds. A set of 824 compounds with
predicted mGluR5 PAM activity containing multiple
chemical scaffolds was experimentally tested.

Results and Discussion

Machine learning techniques were applied to gene-
rate specific QSARmodels for allosteric potentiation of
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the mGluR5 glutamate response. These models were
then used to prioritize compounds for acquisition with
the aim of enhancing both the speed and diversity of
hit-to-lead discovery efforts for mGluR5 positive allos-
teric modulators (PAMs).

ConcentrationResponseCurves in theExperimental
High-Throughput Screen

Concentration response curves were generated from
the averaged data of three experiments using a four
point logistical equation, a þ b/[1 þ (x/c)d]. No para-
meters were constrained and no values were weighted.
Points corresponding to concentrations of PAM exhi-
biting an agonist effect were excluded from the analysis.
For a PAM with excellent potency (EC50 value below
100 nM), 95% confidence intervals were on average
within a range of 30 nM. For a PAM with moderate
potency (EC50 value roughly 100 nM to 1 μM), con-
fidence intervals were within a range of 300 nM. For a
PAMwith low potency (EC50 value above 1 μM), 95%
confidence intervals were generally within a range of
1.5 μM. Weak PAMs whose concentration response
curve did not reach a plateau but did significantly
enhance a glutamate EC20 were categorized as PAMs,
but fit statistics were not determined. A summary of fit
statistics and a concentration response curve for one
example of each of themajor scaffolds identified includ-
ing benzoxazepine, phenylethynyl-phenyl, and benza-
mide PAMs is detailed in the Supporting Information
(Figure S1 and Table S1).

Input Sensitivity Is aReliableMeasure toPrioritize
Descriptors

The selection of input descriptors with highest input
sensitivity reduces the degrees of freedom within the
ANN model and results in models with substantially
improved prediction capability. The input sensitivity
can be understood as the partial derivative of each input
with respect to the output of the ANN (see Methods).
The main reason for this improvement is the reduction
of noise through the increased ratio of data sets versus
weights. An increased ratio of data sets versus weights
leads tomore informationavailable to fit every degreeof
freedom. Each degree of freedom can be determined
more precisely despite the intrinsic noise of HTS data
used for training. Since several of the ADRIANA
molecular descriptors (see Methods) encode the same
chemical property with different encoding functions, it
seems plausible that information in these descriptors is
redundant and therefore does not add to the determina-
tion of the optimal solution.

Optimization ofMolecular Descriptor Set Improves
the Prediction Accuracy of the ANNModel

To obtain a baseline for descriptor optimization,
an ANN was trained using only the scalar descriptors

1-8 (Table 1). The root-mean-square deviation (rmsd)
(see eq 1) value for the independent data set of 0.228,
area under the receiver operating characteristic curve
(auc) value of 0.673, and enrichment of active com-
pounds relative to inactive compounds value of 6 served
as a basis for comparison in model optimization
(Table 2). For a definition of these measures, see
Methods. The individual sensitivity value for X log P
(0.97) remained the highest in the baseline network with
the remaining input sensitivity distributed across the
other scalar descriptors (Figure 1a). Keeping the scalar
descriptors in the following models allowed one to
compare their sensitivity with this baseline.

rmsd ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

ðexpi -prediÞ2

n

vuuut ð1Þ

The most sensitive 428 descriptors in 14 categories were
retained for additional iterations of descriptor optimi-
zation. Retraining of the ANN with 428 descriptors
(iteration 1) yields significantly improvedmetrics relative
to the baseline model (scalar only) including an rmsd
value for the independent data of 0.214, an auc value of
0.731, and an enrichment of 36 (Table 2). To further
optimize the set of descriptors, the least sensitive descrip-
tor categories were systematically removed in an iterative
process (Table 2 iterations 2-6; Figure 1a). In particular,
the enrichment measure is substantially improved with
respect to the scalar only baselineANNas emphasizedby
the initial slope of the ROC curves in Figure 2.

Iterations 1-4 remove 152descriptors to yield a set of
276 descriptors including the eight scalar descriptors,
the 3D autocorrelation lone pair electronegativity,
and the radial distribution functions for lone pair
electronegativity and π-electronegativity (Table 2 and
Figure 1a). Retraining of the ANNwith 276 descriptors
yields an rmsd value for the independent data of 0.212,
an auc value of 0.757, and an enrichment of 38.

In the last two iterations 5 and 6, the radial distribu-
tion function for π-electronegativity and the 3D auto-
correlation function for lone-pair electronegativity were
removed (Figure 1a and Figure 2). In iteration 5, the
ANN with 148 descriptors failed to improve the model
as indicated by an rmsd value for the independent data
of 0.217, an auc value of 0.738, and an enrichment of 25
(Table 2). In iteration 6, the ANN with 136 descriptors
had similar quality measures.

At this point, the iterative descriptor optimization
procedure was terminated. TheANNmodel from itera-
tion 4 with 276 input descriptors is considered to be the
optimalmodel as it displays optimal performance on the
independent data set combined with the smallest de-
scriptor set. This network was used in all of the in silico
screening experiments described below.
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The rationale for keeping the scalar descriptors with
lower sensitivity throughout descriptor optimization is to
maintain comparability with the baseline established by
training with these eight descriptors alone (read below).
These parameters relate to Lipinski’s Rule of Five (69)
and therefore are widely accepted criteria for drug-like
compounds. Note that the scalar descriptors represent
only 0.6%of all descriptors.Removal of scalar descriptors
will therefore not decrease the complexity of the ANN
model.

Balancing through Oversampling Yields Better
Results than Two Undersampling Strategies

The oversampling strategy employed throughout the
study (see Methods) was compared with two appro-
aches that undersample inactive compoundswhenusing

the optimized 276 input descriptors (Figure 3). Usage of
randomly chosen inactive compounds resulted in an
rmsd value for the independent data of 0.221, an auc
value of 0.753, and an enrichment of 8. Determining
inactive compounds for undersamplingmaximally simi-
lar to the active compounds yields in an rmsd value for
the independent dataof 0.261, an auc valueof 0.654, and
an enrichment of 2 (Table 2).

Our interpretation of this finding is that our models
do not so much recognize active compounds but rather
filter out inactive compounds. Hence, detailed knowl-
edge of the entire space of inactive compounds improves
performance of the models in binary classification set-
tings. Random selection of a small fraction of inactive
compounds reduces the space of inactive compounds

Table 1. Summary of 1,252 Molecular Descriptors in 35 Categories Computed with ADRIANA

description method description property abbreviation number

1 scalar descriptors molecular weight of compound Weight 1

2 number of hydrogen bonding acceptors HDon 1

3 number of hydrogen bonding donors HAcc 1

4 octanol/water partition coefficient in [log units] XlogP 1

5 topological polar surface area in [Å2] TPSA 1

6 mean molecular polarizability in [Å3] Polariz 1

7 dipole moment in [Debye] Dipol 1

8 solubility of the molecule in water in [log units] LogS 1

9 2D autocorrelation atom identities 2DA_Ident 11

10 σ atom charges 2DA_SigChg 11

11 π atom charges 2DA_PiChg 11

12 total charges 2DA_TotChg 11

13 σ atom electronegativities 2DA_SigEN 11

14 π atom electronegativities 2DA_PiEN 11

15 lone pair electronegativities 2DA_LpEN 11

16 effective atom polarizabilities 2DA_Polariz 11

17 3D autocorrelation atom identities 3DA_Ident 12

18 σ atom charges 3DA_SigChg 12

19 π atom charges 3DA_PiChg 12

20 total charges 3DA_TotChg 12

21 σ atom electronegativities 3DA_SigEN 12

22 π atom electronegativities 3DA_PiEN 12

23 lone pair electronegativities 3DA_LpEN 12

24 effective atom polarizabilities 3DA_Polariz 12

25 radial distribution function atom identities RDF_Ident 128

26 σ atom charges RDF_SigChg 128

27 π atom charges RDF_PiChg 128

28 total charges RDF_TotChg 128

29 σ atom electronegativities RDF_SigEN 128

30 π atom electronegativities RDF_PiEN 128

31 lone pair electronegativities RDF_LpEN 128

32 effective atom polarizabilities RDF_Polariz 128

33 surface autocorrelation molecular electrostatic potential Surf_ESP 12

34 hydrogen bonding potential Surf_HBP 12

35 hydrophobicity potential Surf_HPP 12

total 1252



r 2010 American Chemical Society 293 DOI: 10.1021/cn9000389 |ACS Chem. Neurosci. (2010), 1, 288–305

pubs.acs.org/acschemicalneuroscience Article

substantially; targeted selection of inactive compounds
similar to active compounds reduces the space even
more. The model loses the ability to classify molecules
dissimilar from active compounds.

Radial Distribution Functions and Electronegativity
Contribute Most to an Accurate Prediction

Analysis of input sensitivity by encoding functions
(3D autocorrelation, radial distribution functions, and

Table 2. The rmsd, auc, and enrichment Values for All QSAR Models

rmsd

iteration number and type of descriptors train monitor independent auc enrichment

all 1252 1-35 0.196 0.248 0.248 0.701 10

scalar 8 1-8 0.223 0.224 0.228 0.673 6

1 428 1 - 8, 23, 30-32, 34, 35 0.196 0.212 0.214 0.731 36

2 416 1-8, 23, 30-32, 34 0.193 0.213 0.216 0.742 38

3 404 1-8, 23, 30-32 0.191 0.214 0.214 0.731 36

4 276 1-8, 23, 30, 31 0.185 0.215 0.212 0.757 38

5 148 1-8, 23, 31 0.203 0.215 0.217 0.738 25

6 136 1-8, 31 0.204 0.214 0.217 0.742 25

method

binary 276 1-35 0.334 0.370 0.385 0.744 26

undersampled

-random 276 1-8, 23, 30, 31 0.202 0.226 0.221 0.757 8

-MACCS 276 1-8, 23, 30, 31 0.171 0.195 0.217 0.654 2

Figure 1. Schematic view of an ANN: (a) Up to 1,252 descriptors (from 35 categories) are fed into the ANN input layer. (b) The weighted sum
of the input data is modified by the activation function and serves as input to the next layer. (c) The output predicts the biological activity of the
input molecule on the basis of complex nonlinear relationships derived from machine learning through iterative ANN model training. Panel
(a) displays input sensitivities for iterations 1-6 as a heat map from least sensitive (red) to most sensitive (green). The final optimized ANN
model with 276 descriptors is highlighted by a black frame.
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surface autocorrelation) reveals the superior perfor-
mance of radial distribution functions across the six
ANN models tested (Figure 1a). Surface autocorre-
lation functions were only tested in the first two

models (428 and 416 descriptors) because of lower
sensitivity scores (Figure 1a). Analysis of input
sensitivity by property revealed high sensitivities
for π atom (0.92-1.38) electronegativity, lone pair
(1.42-2.54) electronegativity, and for polarizability
(0.70-0.94).

The impact of these descriptors makes intuitive
sense as active compounds such as benzoxazepines
and benzamides (Figure 4) that are well represented
in the training data set contain extended π con-
jugated systems as well as hetero atoms with lone
pair electrons. However, we expect overlap in
the description of chemical structure by various
groups of descriptors. Hence, while the current
descriptor set is optimal for the prediction of
mGluR5 PAM activity, other suitable combinations
of descriptors can yield similarly good results as
demonstrated in iterations 1, 2, and 3. Neverthe-
less, descriptor optimization is important as usage of
the maximum number of descriptors or usage
of a small set of scalar descriptors will hamper the
performance of the QSAR model (Table 2 and
Figure 1a).

A recent study demonstrated the necessity for opti-
mizing molecular descriptor types for each individual
data set to yield optimal QSAR models (70). Other

Figure 3. Receiver operating characteristic (ROC) curve plots for
undersampling methods comparison. ROC curve analysis showing
optimized descriptor set HTS_276 based on oversampling (solid
black line) compared to undersampling using a random selection of
inactive compounds for monitoring and training data sets (solid
gray line) as well as a selection of the most similar inactive to active
compounds (dashed gray line).

Figure 2. Receiver operating characteristic (ROC) curve plots. Traditional (8) scalar QSAR descriptors (HTS_8, dotted gray line) were
compared to groups of ADRIANA scalar and vector descriptor sets from the input sensitivity analysis (see Figure 4a) by plotting ROC
curves to examine the initial slope. The descriptor set was systematically reduced in size in sequential steps using oversampled data from
HTS_428 to HTS_8 to statistically optimize the final QSAR model of the mGluR5 experimental HTS data set. On the basis of the ROC
curve analysis, HTS_276 descriptors (heavy black line) and HTS_428 descriptors (heavy gray line) displayed the best signal-to-noise
profiles.
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studies independently reported the radial distribu-
tion function as the most robust molecular descriptor

category in capturing the structure activity signal from
experimental HTS data sets (55, 56).

Figure 4. Scaffold category analysis. (I) Scaffold composition of 1,382 mGluR5 PAMs from HTS. mGluR5 PAMs were clustered with the
Mathematica package using the Tanimoto coefficient of the largest common substructure as distance measure. Three major scaffolds are
constituted by 137 benzoxazepines (9.9%, a), 14 phenylethynyls (1.0%, b), and 267 benzamides (19.3%, c). (II) Scaffold composition of active
compounds in the postscreen. (III) Scaffold composition of inactive compounds in the postscreen. Compounds d, e, and f are nontrivial
mGluR5 PAM scaffold modifications identified by the virtual screen using the ANN QSAR model. Panel (g) highlights representative
compounds found inactive in the postscreen.
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Virtual Screening of the ChemBridge Compound
Library

The ANN QSAR model was applied in a virtual
screen of the ChemBridge database of commercially
available compounds. In silico screening of the entire
library of ∼450,000 compounds took approximately
one hour on a regular personal computer. A total
of 813 compounds with predicted EC50 values below
1.0 μM for mGluR5 PAM activity were selected. An
additional 11 compounds were chosen on the basis
of visual inspection by an expert medicinal chemist
(C.W.L.) from clusters at a lower potency cutoff of
10 μM for a total of 824 compounds.

The compounds identified in the virtual screen were
ordered from the vendor (ChemBridge) and tested at the
VanderbiltHTS facility. In an initial primary screen (see
Methods) of the predicted compound collection from
our virtual screen, 260 compounds were identified
and classified as 210 PAMs, 49 partial agonists, and
1 antagonist. Follow-up CRC assays confirmed 232
compounds with various activities at mGluR5. The
compounds were classified as pure potentiators (177)
and partial agonists (55). The remaining 27 compounds
were either inactive (Figure 4g) (21), fluorescent (2), or
showed increased baseline measurements in the fluore-
scent assays (4). This result reflects an enrichment =
232/824 � 144,475/1,356 = 30 relative to the initial
experimental HTS hit rate. The experimental enrich-
ment is consistent with the enrichment values predicted
from an analysis of an independent data set during the
development of the QSAR model (Table 2).

To assess whether the active compounds identified
by the present virtual screening approach could have
been identified through simpler procedures, a similarity
search was performed on the ChemBridge database
usingMACCSstructural keys asmolecular fingerprints.
Implementation of a Tanimoto coefficient cutoff of
99% for similarity between known actives from the
high-throughput screen and compounds with unknown
activity yielded a total of 1204 novel hits including
849 benzamides, 91 benzoxazepines, and two pheny-
lethynyl-phenyls. The overlap between this set and the
232 active compounds identified by the ANN approach
is 74 compounds (32%). This result demonstrates that
our method identified 158 compounds that would have
been missed in a naı̈ve similarity search.

Analysis of the Newly Identified Set of mGluR5
Potentiators

According to MACCS fingerprint-based clustering
(51, 71) using a Tanimoto coefficient (71) of 0.75 for
similarity, of the 232 compounds with confirmed
mGluR5 activity identified in our virtual screen of the
ChemBridge commercial library 67 compounds (28.9%)
were classified as benzoxazepines with pure potentiator

activity (Figure 4a); 2 compounds (0.9%) were struc-
turally similar to MPEP (containing a phenylethynyl-
phenyl moiety) and displayed partial agonist activity
(Figure 4b); 53 compounds (22.8%) were classified as
benzamide derivatives with partial agonist activity, and
107 compounds (46.1%) from the same scaffold were
classifiedwith pure potentiator activity (Figure 4c); and 3
compounds (1.3%) contained other nontrivial scaffold
modifications (Figure 4d-f) with weaker potentiator
activity (EC50 g 2.5 μM). The latter 3 compounds were
contained in the 813 compounds predicted at the higher
potency (1.0 μM cutoff).

MajorScaffoldsAreEvenlyDistributedThroughout
Training, Monitoring, and Independent Data Sets

The library of 1,382 compounds identified as active in
the original HTS screen was analyzed using a clustering
approach (see Methods). At a cutoff of 25% similarity,
25 different scaffolds were identified (Figure 4).

All large scaffold clusters were equally represented
throughout the training,monitoring, and independentdata
sets. Of the 267 compounds classified as benzamides, 214
compounds (80.1%), 21 compounds (7.9%), and 32 com-
pounds (12.0%) were found in the training, monitoring,
and independent data sets, respectively; and 137 com-
pounds were classified as benzoxazepines, with 114 com-
pounds (83.2%) in the training set, 13 compounds (9.5%)
monitoring set, and 10 compounds (7.3%) in the indepen-
dent set. Last, the mGluR5 PAM library contained
14 compounds structurally similar to MPEP (containing
a phenylethynyl-phenyl moiety) which were distributed
throughout the data sets as follows: 12 compounds
(85.7%), 1 compound (7.1%), and 1 compound (7.1%).

Majority of Hit Compounds Share a Scaffold with
Previously Identified Potentiator Compounds

The majority of the compounds recovered contained
chemotypes that were the major component of the
training data sets (Figure 4a-c). Therefore, our results
demonstrate a powerful method for hit explosion, the
enumeration of compounds around scaffolds from a
HTS experiment. The results build a detailed picture of
structure-activity relationships for each of the scaf-
folds. In the early stages of drug discovery, time can
be saved through the acquisition of commercially avail-
able compounds to enumerate focused libraries around
confirmed HTS hit compounds. The results can help in
the planning of synthetic chemistry efforts.

Benzamides, Benzoxazepines, andMPEP-Like
Compounds Are Enriched in the Postscreen

The postscreen library of 824 compounds identified
232 compounds with potentiating activity; compounds
were analyzed with a clustering approach and yielded
five unique scaffolds at a cutoff of 25% simila-
rity (Figure 4). The majority of benzoxazepine and
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benzamide derivatives form a single cluster at this cutoff
containing 125 and 66 compounds, respectively. The
nontrivial scaffold modifications with mGluR5 PAM
activity were found in two separate clusters. Each non-
trivial scaffold modification was observed once in the
postscreen library. One cluster consisted of the only two
MPEP-derivatives found in the active compounds.Note
that while benzamides, benzoxazepines, andMPEP-like
compounds made up only 30% of active compounds in
the original HTS experiment, 99% of all active com-
pounds identified in the postscreen belong to one of
these three substance classes. We conclude that the
machine learning method excelled in recognizing these
three scaffolds while other active compounds might
have been predicted only at a reduced potency cutoff.

Inactive Compounds in the Postscreen Library
Contain 47% Benzamides

The remainder of the postscreen librarywas shown to
be inactive toward the receptor, and a clustering
approach was utilized to identify 18 unique scaffolds
at a cutoff of 25% similarity. The major scaffolds seen
throughout the training sets (Figure 4a-c) distributed
as follows: 24 compounds were identified as benzoxa-
zepines, benzamide derivatives yielded 278 compounds,
and 10 compounds structurally similar to MPEP were
observed in the compounds confirmed with inactivity
toward mGluR5. Derivatives of the nontrivial com-
pounds (Figure 4d-f) were represented among the
inactive compounds five times. We conclude that by
far not all benzamides, benzoxazepines, andMPEP-like
compounds are active PAMs of mGluR5. While the
ANN enriches for these scaffolds, it also collects a
number of inactive compounds that share this chemo-
type. In fact, in our original HTS experiment, a total of
42,588 compounds with these scaffolds were found
inactive and only 418 were found active, which mirrors
our overall rate of active compounds (0.97%). In the
postscreen library, we found 229 derivatives of these
scaffolds with activity and 312 without. The enrichment
of active compounds that share one of these scaffolds is
44 and is therefore somewhat higher than the overall
enrichment observed.Note that a naı̈ve similarity search
for these scaffolds would have failed to produce these
enrichment rates and therefore resulted in a lower rate of
active compounds.

Twenty-eight Percent of the Active Compounds
Are Nontrivial Modifications of Original HTS
Hits

While 99% of the newly identified mGluR5 PAM
compounds have a scaffold that has been previously
identified, only 72% of the 232 compounds were trivial
derivatives, i.e., have a single functional group added
or removed (Figure 4a-c). The remaining 28% had

multiple modifications with respect to any of the hit com-
pounds in the original HTS experiment (Figure 4d-f).
These compounds would have been difficult to identify
with a similarity search as discussed above.

High Potency Cutoff Introduces Bias to Close
Derivatives of Original HTS Hits

Aspart ofour virtual screen, several different potency
cutoffs (300nM, 1 μM, 2 μM, 5 μM, and 10 μM) were
employed to identify a compound library size that was
tractable for experimental ordering and testing. Selec-
tionof apredicted potency cutoff of 1.0μMformGluR5
PAM activity might have biased the majority of the 824
compounds toward molecules with similar chemotypes
to the compound classes that represented themajority of
the known active compounds included in our training
data set (benzoxazepines, phenyl ethynyls, and benza-
mide-containing scaffolds) (Figure 4a-c). However,
with the identification of three nontrivial modifications
of known chemotypes having mGluR5 PAM activity
(EC50 > 2.5 μM), scaffold hopping appears to be
possible using this method (Figure 4d-f). The identifi-
cation of 158 compounds missed by a naı̈ve similarity
search demonstrates the complementary chemical space
sampled in a hit explosion setup. For this purpose, more
compounds should be selected from a lower potency
cutoff (10-30 μM) combined with filters to remove
compounds with chemotypes similar to those in the
trainingdata set.Wewould expect substantially reduced
enrichment factors in such a scenario. We included 11
compounds in the 824 compounds ordered from several
chemotypes that were identified from a cluster analysis
of our mGluR5 virtual screen at a lower potency cutoff
(10μM). This small subset of compoundswas chosen by
visual inspection. We did not discover mGluR5 PAM
activity in any of these compounds. The compounds
were either fluorescent or inactive in our experiments.
However, this result is inconclusive because of the very
small number of compounds selected according to these
criteria.

Fragment-Independent Numerical Description
Deals Efficiently with Multiple Scaffolds

Theobservationof three nontrivial chemotypemodifi-
cations underscores the ability of fragment-independent
numerical descriptions tomap the chemical structure of a
diverse compound library into a numerical fingerprint.
Different classes of compounds displaying mGluR5
PAM activity (phenylethynyls, benzoxazepines, benza-
mides, etc.) were used in training the ANN models, and
all of those same classes of compounds are recovered in
the library of 232 hit compounds. This emphasizes the
ability of our machine learning based QSAR model to
efficiently dealwith biologically complex and little under-
stood phenomena in a black-box-like fashion.
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Conclusions

In conclusion, machine learning methods (ANN)
were used to generate QSAR models from an HTS
experimental data set in virtual screens of an external
commercial compound collection for the purpose of
enrichment of our local library for compounds with
mGluR5 allosteric activity. A combination of 2D- and
3D-molecular descriptors spanning 35 categories was
implemented to encode a broad range of physical and
chemical data for each compound. Optimization of the
molecular descriptors used to encode chemical struc-
tures using oversampled data sets minimized noise by
excluding less sensitive descriptors from training inputs
to maximize the signal for mGluR5 and proved to be a
crucial step for increasing enrichment for active com-
pounds. Oversampling of active compounds was in-
cluded in data set generation to balance the training of
our models, and an independent data set representing a
randomly selected 10% of the experimental HTS data
was reserved formodel cross-validation purposes. Frag-
ment-independent numerical description deals effi-
ciently with multiple scaffolds and (potentially)
multiple allosteric sites at the mGluR5 receptor. Model
validity was assessed on the basis of multiple measures
including rmsd between predicted and experimental
activity, enrichment of active compounds in a virtually
screened compound library, and auc value of ROC
curves. The enrichment factor of 30 determined from
biological testing of 824 compounds prioritized from a
library of ∼450,000 substances demonstrates the pre-
dictive power of the method. This enrichment factor
also agrees with the theoretically predicted enrichment
of 38. While the majority of hit compounds share a
chemical scaffold with the previously identified
mGluR5 PAM compounds, a significant fraction of
these compounds are nontrivial modifications of hit
compounds in the original HTS screen. The high po-
tency cutoff used in the virtual screen might have
introduced the bias to close derivatives of hit com-

pounds in the original HTS screen. To attempt identi-
fication of novel scaffolds (scaffold hopping), lower
potency cutoffs should be combined with filters to
remove compounds with chemotypes similar to those
in the training data set. We would expect substantially
reduced enrichment factors in such a scenario.

Methods

Experimental High-Throughput Screen for mGluR5
Potentiators and Hit Validation

In the initial HTS experiment, 144,475 compounds were
tested for allosteric potentiation of mGluR5 using full auto-
mation in conjunction with the Vanderbilt HTS facility
(manuscript in preparation). The Vanderbilt screening library
is composed of commercially available compounds selected
for maximum structural diversity from ChemBridge and
ChemDiv vendors. Receptor-induced intracellular release of
calcium in response to agonist treatment was measured in a
fluorometric assay by utilizing an imaging-based plate reader
(FDSS6000, Hamamatsu, Japan) that makes simultaneous
measurements of calcium levels in each well of a 384 plate
(Figure 5a). HEK 293A cells stably expressing mGluR5 were
plated in black-walled, clear-bottomed, poly-D-lysine coated
384-well plates (BDBiosciences, San Jose, CA) in 20 μL assay
medium (DMEM containing 10% dialyzed FBS, 20 mM
HEPES, and 1 mM sodium pyruvate) at a density of 20K
cells/well. The cells were grown overnight at 37 �C in the
presence of 6%CO2. The next day, the mediumwas removed
and the cells incubated with 20 μL of 2 μM Fluo-4, AM
(Invitrogen, Carlsbad, CA) prepared as a 2.3 mM stock in
DMSO andmixed in a 1:1 ratio with 10% (w/v) pluronic acid
F-127 and diluted in assay buffer (Hank’s balanced salt
solution, 20 mM HEPES, and 2.5 mM Probenecid (Sigma-
Aldrich, St. Louis,MO)) for 45m at 37 �C.Dyewas removed,
20 μL assay buffer was added, and the plate was incubated
for 10 m at room temperature. Ca2þ flux was measured
using the functional drug screening system. As a result,
1,382 compounds were confirmed as potentiators of the
mGluR5glutamate response andused tobuildQSARmodels.
Interestingly, several scaffolds with substantial differences
in their chemical structures resulted from this experimental

Figure 5. FDSS measurement of intracellular Ca2þ release in response to mGluR5 activation and potentiation by allosteric modulator
compounds. (a) Agonist induced Ca2þ transients were quantified on the basis of the fluorescence change observed in cells treated with an EC20

concentration of glutamate plus candidate allosteric potentiator compounds (dashed line trace) versus with glutamate alone (solid line trace).
(b) Putative primary screen hits showed potentiation of the glutamate response and were confirmed by testing for concentration-dependent
activity on mGluR5 over a range of 4 log units with 10 point concentration response curves (30 μM-1 nM final concentration).
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screen including benzoxazepine (Figure 5a), phenylethynyl,
and benzamide derivatives (Figure 4a-c; manuscript in
preparation).

For further analysis, the mGluR5 PAM library of active
compounds in the original HTS screen as well as the com-
pounds selected for postscreening were clustered using the
Mathematica package (72). The Tanimoto coefficient based
on the number of atoms in the maximum common substruc-
ture served as distance metric:

Tðmolecule1,molecule2Þ

¼ no: of atomssubstructure

no: of atoms1 þ no: of atoms2 - no: of atomssubstructure

ð2Þ
In an initial primary screen of ANN selected compounds,
single concentrations of compounds (30 μM final) were
transferred to daughter plates using the Echo acoustic plate
reformatter (Labcyte, Sunnyvale, CA). Compounds were
diluted into assay buffer to a 2� stock using a Thermo Fisher
Combi (ThermoFisher,Waltham,MA),whichwas applied to
cells at t=3 s. Cells were incubated with test compounds for
140 s, stimulated for 74 s with an EC20 concentration of
glutamate, and then stimulated for 32 s with an EC80 con-
centration of glutamate. Data were collected at 1 Hz. Agonist
induced Ca2þ transients were quantified on the basis of the
fluorescence change observed in cells treated with an EC20

concentration of agonist (glutamate) ( concentrations of
candidate allosteric potentiator compounds. Putative hits
from the primary screen were confirmed by testing for con-
centration-dependent activity on mGluR5 over a range of 4
log units (Figure 5b). Compounds were serially diluted 1:3
into 10 point concentration response curves (30 μM-1 nM
final), transferred to daughter plates using the Echo acoustic
plate reformatter, and tested as described in the primary
screen. Concentration response curves were generated using
a four point logistical equation with XLfit curve fitting soft-
ware for Excel (IDBS, Guildford, UK). Within this software
suite, equation number 200 under the category “Dose Re-
sponse One Site” with the formula a þ b/[1 þ (x/c)d] was
utilized.

Generation of Numerical Descriptors for the Training
of QSAR Models

For input to machine learning methods, the chemical
structure of each molecule needs to be described numerically
(see Figure 6a). Initially, 3D models of all 144,475 small
molecules are generated using the CORINA software package
(73). From the 3D structural models, a set of 1,252 numerical
descriptors is computed using the ADRIANA software (57,
74). The descriptors can be classified into 35 categories includ-
ing eight scalar descriptors, eight 2D and eight 3D autocorre-
lation functions, eight radial distribution functions, and three
surface-autocorrelation functions (see Table 1).

Oversampling Was Used for Balanced Training
As detailed above, 1,382 compounds were confirmed to be

active potentiators of the mGluR5 glutamate response
(0.94% hit rate). Of these, only 1,356 compounds were used
as actives in model generation because of the difficulty in
encoding chargedmolecules withADRIANA (see Figure 6a).
We refer to the active data set as these 1,356 compounds. All

other compounds were classified as inactive. In order to
maximize the information content of the final prediction
method, the data set needs to contain an equal number of
active and inactive compounds when training, i.e., its entropy
is maximized. Otherwise, a method that would predict all
compounds as inactive would be right 99% of the time but
completely useless. Balancing was achieved through over-
sampling (Figure 6b).Active compoundswere used in training
the ANNs 106 times more frequently to account for their
smaller number compared to the inactive set of compounds
(0.94% hit rate, see Figure 6b-d).

In principle, balancing of the training data can be achieved
by two approaches: oversampling of active compounds or
undersampling of inactive compounds. Oversampling ap-
proaches avoid the removal of part of the inactive compounds,
hence utilize all available information for model development,
and should therefore yield better results. However, undersam-
plinghas the advantage thatmodels canbe trainedmorequickly
as only a fraction of the data needs to be fitted. To validate that
oversampling gives optimal QSAR models for the present
application, twomodelswere developedwith different strategies
of undersampling inactive compounds and the optimized de-
scriptor set (276descriptors). The independent data setwas kept
identical to the oversampling scenario to enable direct compar-
ison. For training and monitoring data sets, (1) a random
selection of inactive compounds was selected, and (2) the
inactive compounds most similar to active compounds were
chosen using MACCS fingerprint keys (75) and Tanimoto
coefficient as a similarity measure.

Monitoring Data Set Was Introduced to Terminate
ANN Training Early

The natural logarithm of the experimentally determined
EC50 value of each compound i was used as output for the

Figure 6. Overall model generation workflow: (a) active and
inactive molecules were retrieved as MDL SD files from experi-
mental collaborators; 3D structures were generated with CORINA
and used as input for the calculation of molecular descriptors using
ADRIANA; (b) active molecules were oversampled 106 times to
balance data sets; (c) molecules were randomly included in the
training data set (80%), monitoring data set (10%), and indepen-
dent data set (10%); (d) iterative training of ANN models coupled
with (e) input sensitivity analysis was used to reduce and optimize
the descriptor set until no further improvement in the quality
criteria for the independent data set was achieved.
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ANN models (expi = ln EC50,i). Compounds classified as
inactive were assumed to have an EC50 g 1mM. The
root-mean-square deviation (rmsd) between experimental
activity expi and predicted activity predi (see eq 1) is used as
the objective function when training the ANN models.

For training ANNs, the data set is split. Of the total
experimental data set, 115,581 (80%) data points were used
for the ANN training (Figure 6c,d); 14,448 (10%) data points
were set aside for monitoring during ANN training and
initiating early termination (Figure 6c,d). After each training
iteration, the rmsd of the monitoring data set was computed.
Training was terminated once the rmsd value of the monitor-
ing data set was minimized. The final 14,448 data points
(10%)were reserved for independent testing of QSARmodels
(see Table 2). Care was taken to avoid any overlap between
training, monitoring, and the independent data set. All results
reported were obtained for the independent data set unless
noted differently.

Artificial Neural Network (ANN) Architecture and
Training

ANNs are machine learning algorithms that reflect char-
acteristics of biological neural systems in a much simplified
fashion. The simplest ANN consists of several layers j =
1,2, ..., n containing Nj neurons each. No corresponds to the
number of inputs. In a pairwise fashion, neurons in neighbor-
ing layers are interlinked by weighted connections wkl

(Figure 1b). These connections represent the degrees of free-
dom of the ANN which are optimized during the training
procedure. The input data xk to every neuron are summed up
according to their weights and modified by the activation
function K:

flðxkÞ ¼ K
X
l

wklxk

 !
ð3Þ

The output fl(xk) then serves as input to the l-th neuron of the
next layer (Figure 1b).

For the present setup, the input vector Æxæ to the first layer
consists of the chemical descriptors introduced above. The
single output number of the last layer that contains only one
neuron is the experimentally determined biological activity
expi. The present ANNs have up to 1,252 inputs (Figure 1a), 8
hidden neurons (Figure 1b), and 1 output (Figure 1c). The
sigmoid function shown in eq 4 is applied as activation
function K of the neurons.

KðxÞ ¼ 1

1þ e-x
ð4Þ

The training method used is resilient back-propagation of
errors (76), a supervised learning approach. The difference
between the experimental activity expi and predicted activity
predi determines the change of each weight within the back-
propagationof errors.Ultimately, the root-mean-square devia-
tion (rmsd, eq 1) between experimental andpredicted biological
activity isminimized.TheANNswere trainedwithup to40,000
iterations of resilient propagation. However, training was
terminated early when the monitoring data set achieved its
minimum rmsd. The training took up to 13 h per network using
8 cores of a core2 quad 2.33GHz Intel Xeonmicroprocessor in
parallel on the 64-bit version of Red Hat Enterprise Linux 5.2.

Selection of the Optimal Set of Descriptors of
Chemical Structure

Optimization of the descriptor set was achieved by sys-
tematic removal of molecular descriptor groups that were the
least significant for the prediction of PAM activity (Figure 6e
andFigure 1a). The objective of this procedure is to reduce the
total number of inputs and therefore the total number of
weights of the ANN (Figure 6d,e and Figure 1a). It is
advantageous to remove obsolete descriptors in order to
minimize the number of degrees of freedom (weights) that
need to be determined. In the process, training and prediction
ofANNs are accelerated. Furthermore, noise is reducedwhile
the ratio of data points versus degrees of freedom increases.

To determine the significance of each input, the ANN is
first trained using the complete set of 1,252 descriptors
(Table 1). After the completion of training, the ANN repre-
sents a multidimensional function with input values x1,x2,...,
xN0

and output y:

y ¼ f ðx1, x2, :::, xN0
Þ ¼ f ðÆxæÞ ð5Þ

The partial derivative of each input with respect to the output
can be determined numerically and is introduced as input
sensitivity:

input sensitivity ¼ Dky
Dxk

 !
xl 6¼k

≈ 1

100

X100
i¼1

Δy

Δxk
ð6Þ

For this purpose, each input value xk is altered by a smallΔxk
in an independent experiment, and the change Δy is mon-
itored. Following this procedure, the input sensitivity is
determined for each input k by randomly selecting 100
compounds from the independent data set. The input xk is
perturbed by a small numberΔxk=( 5%of the input range.
The output changeΔy is recorded(77) . The input sensitivity of
input k is the average ratio observed (eq 6).

The input sensitivity of each of the 27 nonscalar descriptor
categories was determined as norm over the individual input
sensitivity values within this category. The descriptor cate-
gorieswere sortedby input sensitivity.All 3Dautocorrelation,
radial distribution function, and surface autocorrelation de-
scriptors with an input sensitivity above 0.06 were used to
train an oversampled model with 428 descriptors, while
descriptors with a smaller input sensitivity were removed.
Approximately 2/3 (65%) of the total input sensitivity were
maintained by implementing approximately 1/3 (34%) of the
total number of descriptors. This reduction sped up the
training process by a factor of 3. The least significant descrip-
tor category was removed in subsequent iterations of descrip-
tor optimization (see Figure 1a). This procedure was repeated
until further removal of descriptors did not result in an
increase of prediction accuracy for the independent data set
(see Figure 6c-e and Figure 1a).

Enrichment and Area under the Curve (auc) As
Quality Measures

As mentioned before, the rmsd between predicted and
experimental ln EC50 was used as the objective function for
training the ANNs. EC50 values for compounds classified as
inactivewere assumed to be 1mM.Analysis of the rmsdproved
to be a poor indicator for model quality (see Table 2) as the
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correlation coefficients between experimental and predicted
ln EC50 values are typically smaller than 0.5 (see Figure 7).
Note that for the application of these models as tools in
virtual screening (read below) binary classification is the
important criteria, as in the end, a binary decision for
compound acquisition is made. Hence, all models were also
assessed in terms of the binary classification power using
enrichment and area under the curve (auc) quality mea-
sures. Receiver operating characteristic (ROC) curves were
generated as a measure to evaluate the predictive power of
the machine learning approaches. ROC curves plot the rate
of true positives TP or sensitivity= TP/P versus the rate of
false positives FP or (1 - specificity) = 1 - TN/N= FP/N
of a binary classifier. TP represents the number of true
positives and FP the number of false positives within this
subset. P represents the total number of positives andN the
total cases known to be negative. Here, biological activity
was used as the binary classifier (Figure 2). The diagonal
represents the performance expected from a random pre-
dictor. The larger the auc of a ROC curve, the larger is the
predictive power of the model.

For the prediction of biological activity, often only the very
initial part of the ROC curve is of interest. This is the area
containing the compounds with the highest predicted biolo-
gical activity. As after a virtual screen of a compound library,

only a small percentage (typically 0.1-1.0%) of compounds
predicted to be maximally active will enter biological tests
(only this fractionof theROCcurvewill be actually used in the
virtual screen). The auc value is a poor measure of predictive
power in this region of the ROC curve as it measures overall
performance.

Therefore, often the initial slope of the ROC curve is
analyzed using so-called enrichment values. Enrichment mea-
sures the factor by which active compounds (positives) are
increased relative to inactive compounds (negatives) when
selecting a subset of data predictedwith the highest confidence
levels by a model:

enrichment ¼ TP

TPþFP
=

P

PþN
ð7Þ

When computed for the independent data set, the enrichment
represents the expected factor by which the fraction of active
compounds is increased in an in silico virtual screen when
compared to the chance of finding active compounds in an
unbiased data set (here 0.94%). Note that enrichment values
are always coupled to a certain cutoff, the fraction of mole-
cules retained after filtering. The enrichments reported in
Table 2weredetermined for a cutoff of 0.35%.Asan example,
this would correspond to filtering 1,000 compounds out of a
library of about 300,000.

Figure 7. Correlation plot between measured and predicted lnEC50 values shows only weak correlation (R= 0.4805, y= 0.305x - 6.8251).
Inactive compounds were set to an EC50 of 1 mM (lnEC50=-6.9). The solid lines represent the cutoff used for the acquisition of compounds
(EC50 of 1 μM/lnEC50 = -13.82).
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As themodels were trained with continuous ln EC50 values
but largely applied in a binary classification setting, we tested
if training of the models as pure binary classifiers offered any
advantages. A model was trained where all active compounds
were given an activity of 1, and all inactive compounds were set
to 0. For the independent data set, an auc of 0.744 and an
enrichment of 26 were calculated. However, this procedure did
not yield an improvement overmodels trainedwith continuous ln
EC50values (seeTable 2).This approachwasnotpursued further.

Implementation
The ANN algorithm was implemented in the BioChemis-

tryLibrary (BCL). The training method used is resilient
propagation, a supervised learning approach (76). Further
detail is given above.TheBCL is an inhousedevelopedobject-
oriented librarywritten in theCþþprogramming language. It
consists currently of approximately 400 classes and 300,000
lines of code. ADRIANA (57, 74) was used for the generation
of chemical descriptors. CORINA (73) was used for the
generation of three-dimensional structures.

Supporting Information Available

A summary of fit statistics and a concentration response
curve for one example of each of the major scaffolds identi-
fied. Furthermore, a correlation plot between XlogP and
EC50 for the independent data set. This material is available
free of charge via the Internet at http://pubs.acs.org.
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modulator; c log P, calculated log of n-octanol/water parti-
tion coefficient; CMR, calculated molecular refractivity;
TPSA, topological polar surface area; CoMFA, comparative
molecular field analysis; CoMSIA, comparative molecular
similarity analysis; FEPOPS, feature point pharmacophores;
ROC, receiver operating characteristic; BCL, BioChemistry-
Library.
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