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Abstract

Plants regulate gene expression at the transcriptional and post-transcriptional levels to produce a variety of functionally diverse cells and
tissues that ensure normal growth, development, and environmental response. Although distinct gene expression patterns have been char-
acterized between different plant tissues, the specific role of transcriptional regulation of tissue-specific expression is not well-characterized
in plants. RNA-seq, while widely used to assay for changes in transcript abundance, does not discriminate between differential expression
caused by mRNA degradation and active transcription. Recently, the presence of intron sequences in RNA-seq analysis of libraries
constructed with total RNA has been found to coincide with genes undergoing active transcription. We have adapted the intron RNA-
sequencing analysis to determine genome-wide transcriptional activity in 2 different maize (Zea mays) tissues: husk and V2-inner stem
tissue. A total of 5,341 genes were predicted to be transcriptionally differentially expressed between the 2 tissues, including many genes
expected to have biological activity relevant to the functional and developmental identity of each tissue. Correlations with transcriptional
enhancer and transcription factor activity support the validity of intron RNA-sequencing predictions of transcriptional regulation. A subset
of transcription factors was further analyzed using gene regulatory network analysis to determine the possible impact of their activation.
The predicted regulatory patterns between these genes were used to model a potential gene regulatory network of transcription factors
and regulatory targets.
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Introduction
Gene expression affects the development, physiology, and envi-

ronmental responsiveness of a plant and is regulated to ensure

normal growth and development. Regulation of gene expression

can occur at the transcriptional and the post-transcriptional lev-

els to produce a variety of functionally diverse cells and tissues.

Transcriptional regulation controls the production of pre-mRNA

via mechanisms that include transcription factor (TF) binding,

enhancers, and the manipulation of chromatin states. Post-

transcriptional regulation often involves changes in mRNA stabil-

ity and degradation. Collectively, different regulatory mecha-

nisms will determine the abundance and persistence of a specific

mRNA across tissues and developmental stages.
RNA-seq is widely used for analyzing gene expression. This

approach assays for relative changes in transcript abundance

based on the presence or absence of sequencing reads repre-

senting exons within a gene model, and therefore does not dis-

criminate between differential expression caused by mRNA

degradation and active transcription. In eukaryotes, most

protein-coding genes are transcribed by RNA polymerase II (Pol

II) into pre-mRNA, which are nascent RNA molecules that in-

clude both introns and exons. Post-transcriptional processing of

a pre-mRNA results in a mature mRNA that has been spliced to

only include exons and includes a poly(A) tail and 50-cap. The
level of post-transcriptional regulation that impacts steady-
state transcript levels vary for different gene products. Recently,
it was discovered that the presence of intronic sequence reads
in RNA-seq analysis of total cellular RNAs corresponds with
genes undergoing active transcription (Gaidatzis et al. 2015),
while other approaches to analyzing RNA-seq data assay ex-
pression based on exons only. This observation forms the basis
of the intron RNA-sequencing (iRNA-seq) analysis pipeline,
which assesses intron coverage as a surrogate for active tran-
scriptional and post-transcriptional changes in total RNA-rRNA
depleted sequencing datasets to identify changes in gene ex-
pression (Madsen et al. 2015).

Differences in the regulation of gene expression can vary be-
tween genes within gene families (Teichmann and Babu 2004;
Atkinson and Halfon 2014; Zhong et al. 2019). Genome duplica-
tion produces and expands gene families, which are sets of simi-
lar genes formed by the duplication of an original gene.
Duplicated genes can often evolve different expression patterns
related to a variation in function. These different expression
patterns can be due to different promoter elements, which can
influence gene expression across tissues or cell types, giving rise
to the various gene functions (Guschanski et al. 2017; Zhong
et al. 2019).
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In modern maize (Zea mays), the genome structure has been
altered by several genome duplication events. The first major
event occurred approximately 70 million years ago in a cereal
ancestor (Paterson et al. 2004). Another genome duplication
occurred 11.9 million years ago, and this duplication is estimated
to have occurred at the same time as the divergence between
maize and its closest ancestor, Sorghum bicolor (Blanc and Wolfe
2004; Swigonová et al. 2004). Two subgenomes of maize were
identified because of this duplication and have been designated
as Maize1 and Maize2 (Schnable et al. 2011). These 2 subgenomes
are distinguished by the expression of retained duplicate genes
and the rate of gene loss. Maize1 contains a greater proportion of
genes orthologous to rice and sorghum, and thus the tetraploid
ancestor of maize, compared to Maize2 (Schnable et al. 2011).
Maize1 also has experienced less gene loss and Maize1 genes are
typically found to be expressed at higher levels in modern maize
(Schnable and Freeling 2011). In addition to general differences in
level of expression, there can be tissue- and developmental-
stage-specific changes in expression of duplicate genes.

Here, we have adapted the iRNA-seq analysis pipeline to eval-
uate transcriptional activity genome-wide in 2 different tissues of
maize, B73 husk tissue and B73 V2-inner stem tissue (IST), by
utilizing a previously published total RNA-rRNA depleted
sequencing dataset (GSE94252; Oka et al. 2017). We demonstrate
that iRNA-seq analysis is an effective way to predict the relative
contribution of transcriptional changes to gene expression and
regulation in these 2 tissues, thus improving our understanding
of developmental gene regulation in maize.

Methods
Adding the maize genome to the iRNA-seq
pipeline
The maize genome annotation gff3 file (Ensembl AGPv4 release
38 genome; contigs included; Kersey et al. 2018) was converted us-
ing the gff3ToGenePred tool in the Blat program suite (Kent 2002)
to GenePred format. Minor edits to column format were made in
the command line to produce a “refGene” table that matched the
tables available in the UCSC Genome Browser.

In addition, a Blat v.36x2 (Kent 2002) was performed between
the maize genome fasta file (Ensembl AGPv4 release 38 genome;
contigs included; Kersey et al. 2018) and a file containing all avail-
able maize mRNA sequences extracted from the NCBI GenBank
(Included 171,280 sequences) to produce an “all_mRNA” table in
psl format. The “all_mRNA” table was further refined by the
pslReps tool, included in the Blat program suite (Kent 2002).
Minor edits to column format were made in the command line to
produce an “all_mRNA” table that matched the tables available
in the UCSC Genome Browser.

The “refGene” and “all_mRNA” tables were renamed
“Gene.Dump” and “mRNA.Dump,” respectively, and added into
the “tmp” folder within the iRNA-seq pipeline.

The “Analyze.R” script, included in the iRNA-seq pipeline, was
modified to function with the maize gene ID length (gene ID no-
menclature is often unique to a genome).

The “AddGenome.sh” script, included in the iRNA-seq pipeline
(Madsen et al. 2015), was modified to include the genome designa-
tion (AGPv4_ctg) and used to create the maize exon and intron
lists needed to perform iRNA-seq analysis. These exon and intron
lists do not include any overlapping regions, thus taking into con-
sideration any possible differences due to alternative splicing.
The complete iRNA-seq pipeline is available on GitHub (https://
github.com/lmschulte/iRNA-seq).

Total RNA-rRNA depleted extraction, library
preparation, sequencing, and processing
Total RNA-rRNA depleted-seq data from B73 husk tissue and B73
V2-IST was previously generated (Oka et al. 2017; GSE94252). As de-
scribed previously (Oka et al. 2017), in brief, RNA was extracted
with TRIzol (ThermoScientific) with some modification to manu-
facturer’s instructions and further processed by the RNeasy kit
(Qiagen). Next, samples were treated with DNase I (DNA-free kit,
Ambion) according to the manufacturer’s instructions to remove
remanent DNA. Samples were extracted with 1 volume of phenol:
chloroform: isoamyl alcohol (25:24:1 v/v) and centrifuged. The
same step was repeated twice. Next, 80% of the aqueous phase
volume was transferred into a new tube and precipitated with
1/10th volume of 3 M Sodium Acetate pH 5.6, 2 volumes of 100%
ethanol and 1 ll of glycogen (10 mg/ml), followed by centrifuga-
tion. The pellet was subsequently washed twice with 70% ethanol
and finally resuspended in RNase-free water. The concentration
was measured with a Nanodrop spectrophotometer (Thermo
Scientific) and 1 lg of RNA was separated on a 1.2% agarose 1�
MOPS (3-N-morpholinol propane sulfonic acid) gel to assess RNA
quality. Ribosomal RNA was removed from 500 ng of total RNA us-
ing the Ribo-Zero rRNA Removal Kit (Plant Leaf, Epicentre). RNA-
seq libraries were prepared with the NEBNext Ultra Directional
RNA Library Prep Kit for Illumina sequencing (New England
Biolabs). Quality and quantity were assessed at all steps of the li-
brary preparation by capillary electrophoresis (Agilent Bioanalyzer
and Agilent Tapestation). Single-end 100 bp sequencing was per-
formed with TruSeq v3 chemistry on a HiSeq2500. Approximately
15–20 million reads were obtained for each library, except for 1
sample (Table 1). The total RNA-rRNA depleted-seq library data
was downloaded as SRA files from the NCBI gene expression omni-
bus (GEO) with 6 biological replicates per tissue type (GSE94252).
SRA files were converted to fastq files using the SRA Toolkit 2.9.6-1
(http://ncbi.github.io/sra-tools/). RNA-seq reads were aligned to
the maize genome (Ensembl AGPv4 release 38; contigs included)
index created with STAR 2.6 (Dobin et al. 2013) using default STAR
parameters.

iRNA-seq analysis
iRNA-seq analysis requires libraries that have not been fraction-
ated by poly-A selection, because this type of library would be
enriched for fully processed mature mRNAs and would lack the
nascent pre-mRNA transcripts mostly like to contain introns.
Suitable publicly available datasets were identified for this study,
including total RNA-rRNA depleted seq data obtained from B73
husk and V2-IST in maize (GSE94252; Oka et al. 2017). iRNA-seq
analysis of the processed total RNA-rRNA depleted-seq data from
B73 husk tissue and B73 V2-IST was performed using the iRNA-
seq pipeline to count introns and exons, producing 2 output files.
The output files were first filtered for an adjusted P-value (Padj)
< 0.05, and then genes with a Log2_FC> 1 were determined as
husk and genes with a Log2_FC<�1 were determined as IST.
Genes were further sorted as being intron only, exon only, or con-
taining both introns and exons. Genes with introns only and both
introns and exons were predicted to be transcriptionally differen-
tially expressed, while genes only containing exons were pre-
dicted to be post-transcriptionally differentially expressed
(Supplementary Files 1–4). In addition, genes predicted to be
post-transcriptionally differentially expressed were further
sorted to only include genes with multiple exons annotated in
the gene model, as these genes have the potential to be predicted
as transcriptionally differentially expressed and comparable
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(Supplementary Files 3 and 4). Genes predicted as multiple exon
post-transcriptionally differentially expressed were used in all fu-
ture analyses involving post-transcriptionally differentially
expressed genes. The complete iRNA-seq analysis pipeline is
available on GitHub (https://github.com/lmschulte/iRNA-seq).

Plant materials
Maize (Z. mays) plants of the B73 background were grown in a
greenhouse until they reached the V2 stage. IST was harvested,
and flash frozen in liquid nitrogen and stored at �80�C until use.
IST tissue was used for reverse transcription quantitative PCR
(RT-qPCR) analysis.

Nuclear and cytoplasmic RNA extractions
Frozen IST tissue was finely ground into powder in liquid nitro-
gen and homogenized. To isolate nuclear and cytoplasmic RNA,
nuclei were isolated from 1 g of IST tissue as described previously
(Stroud and McGinnis 2017) with several modifications. Frozen,
ground IST tissue was added to ice-cold modified Apel buffer
(20 mM Tris-HCl pH 7.8, 250 mM sucrose, 5 mM MgCl2, 5 mM KCl)
and 0.1 M phenylmethylsulfonyl fluoride by gently stirring for
10 min on ice. While stirring, 2.5 M glycine was added for 5 min.
The cells were lysed by continuing to stir on ice for 5 min with
0.25% Triton X-100 (EMD Millipore) and 0.1% b-mercaptoethanol.
This mixture was then filtered through 2 layers of Miracloth
(EMD Millipore). Filtered samples were then centrifuged at
14,000 g for 10 min at room temperature in a Sorvall RC 6 Plus
centrifuge (with accelerate at 9 and decelerate at 9). Nuclei were
isolated in the pellet with cytoplasm in the supernatant. The nu-
clear pellet was resuspended in 1 ml of MNase digestion buffer
and the supernatant cytoplasm samples were directly aliquoted,
then all samples were flash frozen in liquid nitrogen and stored
at �80�C until use. Nuclear and cytoplasm RNA was extracted
from each sample using TRI Reagent according to the manufac-
turer’s instructions (Molecular Research Center, TR 118). RNA
samples were DNase treated (RQ1 RNase-free DNase, Promega,
M6101) and purified using the Zymo Research RNA Clean &
Concentrator -25 Kit (R1017). The RNA quality and quantity was
measured by a NanoDrop 2000c spectrophotometer.

Reverse transcription quantitative PCR (RT-qPCR)
analysis
RT-qPCR was performed for 3 nuclear RNA samples and 3 cyto-
plasmic RNA samples to confirm iRNA-seq analysis results in
IST. The U6 gene (Zm00001d017432) was used as a nuclear RNA
control, since U6 snRNA is only present in the nucleus, and
Ubiquitin conjugase (Zm00001eb203340) was used a cytoplasmic

RNA control, as it is a highly expressed gene across tissues.

Differentially expressed genes identified by iRNA-seq analysis

were randomly selected. Selected genes and primer information

can be found in more detail in Supplementary files

(Supplementary File 14).
First-strand cDNA synthesis and RT-qPCR were performed by

Florida State University’s Biology Molecular Core Facility. First-

strand cDNA synthesis was performed by reverse transcribing

160 ng of total RNA with random hexamers according to manu-

facturer’s instructions (SuperScript III Reverse Transcriptase,

Invitrogen, 18080-051). Reverse transcriptase quantitative PCR

(RT-qPCR) was performed using an Applied Biosystems

Quantstudio 7 Flex and SYBR Green reagents (Quantabio). The

generation of specific PCR products was confirmed by melting

curve analysis. Primers were designed using NCBI Primer BLAST

(https://www.ncbi.nlm.nih.gov/tools/primer-blast/index.cgi) and

Maize GDB (https://www.maizegdb.org/).

Gene ontology
Gene ontologies for biological process (P), molecular function

(F), and cellular component (C) were determined for genes

transcriptionally differentially expressed (2,573 husk genes

and 2,768 IST genes) using the online tool, agriGO v2.0 (Tian

et al. 2017). The singular enrichment analysis (SEA) tool was se-

lected and used with the following parameters: maize v4

(Maize-GAMER) reference genome, the Fisher statistical

method, the Yekutieli (FDR under dependency) multitest ad-

justment method, the Plant gene ontology (GO) Slim GO type,

0.01 significance level, and a minimum of 10 mapping entries.

The GO term enrichment heatmap was generated by hierarchi-

cally clustering the log10 of the total GO term percentage of a

set of genes that were transcriptionally differentially expressed

in either IST or husk tissue (Supplementary File 5).

Enhancer analysis
In a previous study, lists of tissue-specific genes linked to tissue-

specific enhancers were identified for IST and husk tissue (Oka

et al. 2017, Supplementary File 5). Any genes with only 1 exon,

and thus no introns, were removed. These modified lists were

compared to the iRNA-seq transcriptionally (5,341 genes) and

multiple exons post-transcriptionally differentially expressed

genes (2,747 genes). The percentage of tissue-specific genes

linked to tissue-specific enhancers transcriptionally and post-

transcriptionally differentially expressed were then determined

(Supplementary Files 6 and 7).

Table 1. Summary of RNA-seq libraries for IST and husk tissue.

Tissue Replicate Sample namea Total raw reads Mapped reads % Mapped reads Uniquely mapped reads % Uniquely mapped reads

Husk 1 Husk.rep1.MPI 18,019,379 17,889,371 99.28 17,069,922 94.73
Husk 2 Husk.rep1.UvA 1,730,157 1,716,575 99.21 1,641,331 94.87
Husk 3 Husk.rep2.MPI 17,513,029 17,385,239 99.27 16,608,229 94.83
Husk 4 Husk.rep2.UvA 18,692,557 18,559,542 99.29 17,769,401 95.06
Husk 5 Husk.rep3.MPI 16,368,453 16,252,861 99.29 15,520,416 94.82
Husk 6 Husk.rep3.UvA 14,895,265 14,776,948 99.21 14,115,411 94.76
IST 1 IST.rep1.MPI 16,626,209 16,420,079 98.76 15,023,528 90.36
IST 2 IST.rep1.UvA 15,881,040 15,775,278 99.33 15,018,425 94.57
IST 3 IST.rep2.MPI 15,830,192 15,594,675 98.51 14,094,774 89.04
IST 4 IST.rep2.UvA 16,260,713 16,147,099 99.30 15,368,002 94.51
IST 5 IST.rep3.MPI 14,684,139 14,506,790 98.79 13,287,765 90.49
IST 6 IST.rep3.UvA 15,625,655 15,477,981 99.05 14,748,193 94.38

a Included 100-bp single-end reads (GSE94252; Oka et al. 2017).
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TF analysis
The GO for molecular function (F) conducted by agriGO v2.0 (Tian
et al. 2017) identified transcriptionally differentially expressed
genes in IST (133 genes) and husk tissue (202 genes) with “TF ac-
tivity or sequence-specific DNA binding activity” (GO: 0003700).
These 2 lists of predicted TFs were converted into maize version 3
gene IDs (B73 AGPv3 genome; 5 bþ) using a Maize GDB gene ID
translation tool (Portwood et al. 2019) and processed by the Maize
Tissue gene regulatory network (GRN; https://www.bio.fsu.edu/
mcginnislab/mgrn/; Huang et al. 2018) to identify potential TF tar-
get genes (Supplementary Files 8 and 9). The Maize Tissue GRN
was designed to only use the AGPv3 genome, so the gene IDs
must be translated before use. All available tissues (leaf, root,
SAM, and seed) and the TSV file with all information were se-
lected for each TF. The resulting output gave predicted TF target
genes for the various TFs organized by tissue and included gene
details. The predicted target genes were then compared to the
genes identified by the iRNA-seq pipeline as transcriptionally dif-
ferentially expressed (5,341 genes) and multiple exons post-
transcriptionally differentially expressed (2,747 genes). The
VennPlex tool (Cai et al. 2013) was used to easily compare and
sort the various gene lists by transcriptional activity
(Supplementary Files 8 and 9).

Subgenome analysis
In a previous study, 2 maize subgenomes, Maize1 and Maize2,
were identified (Schnable et al. 2011; updated in Zhang et al. 2017).
Genes identified by iRNA-seq as transcriptionally differentially
expressed (5,341 genes) and multiple exons post-
transcriptionally differentially expressed (2,747 genes) were com-
pared to the maize subgenomes to determine subgenome identity
(Supplementary File 10).

Gene family analysis
The gene families of differentially expressed genes were identi-
fied using an online tool called GenFam (Bedre and Mandadi
2019; https://www.mandadilab.com/genfam/). To use the
GenFam gene IDs had to be converted into the maize version 3
gene ID (B73 AGPv3 genome; 5 bþ) using the Maize GDB gene ID
translation tool (Portwood et al. 2019). GenFam follows the
Phytozome v12.0 database format, which uses the AGPv3 ge-
nome, so the gene IDs must be translated before use. Default
parameters were used, and significant families have a P-val-
ue< 0.05.

TF hierarchical regulatory network
Promoter sequences of the genes comprising the TUBBY-like
(TLP) and Alfin-like (AL) gene families were taken as the 2,500 bp
before the first exon as determined on Ensembl Plants (Bolser
et al. 2017). These promoter sequences were then analyzed using
PlantPAN 3.0 (Chow et al. 2019). Default parameters were used for
the multiple promoter analysis.

TLP and AL TFs were converted into maize version 3 gene IDs
(B73 AGPv3 genome; 5 bþ) using the Maize GDB gene ID transla-
tion tool (Portwood et al. 2019) and were processed with the Maize
Tissue GRN (https://www.bio.fsu.edu/mcginnislab/mgrn/; Huang
et al. 2018) to identify potential regulatory targets. The Maize
Tissue GRN was designed to only use the AGPv3 genome, so the
gene IDs must be translated before use. All available tissues (leaf,
root, SAM, and seed) and the TSV file with all information were
selected for each TLP and AL TF. The resulting output gave pre-
dicted TF target genes for the various TFs organized by tissue and

included gene details. These targets were compared to genes
transcriptionally (5,341 genes) and multiple exon post-
transcriptionally differentially expressed (2,747 genes) between
the gene families to determine tissue-specific regulation and
pathways (Supplementary File 12).

GO for biological process was determined for all the TLP and
AL regulatory targets transcriptionally differentially expressed
(5,341 genes) using the online tool, agriGO v2.0 (Tian et al. 2017).
The SEA tool was selected and used with the following parame-
ters: maize v4 (Maize-GAMER) reference genome, the Fisher sta-
tistical method, the Yekutieli (FDR under dependency) multitest
adjustment method, the Plant GO Slim GO type, 0.01 significance
level, and a minimum of 10 mapping entries. The GO output is or-
ganized by TLP and AL gene name (Supplementary File 13).

Results
iRNA-seq analysis identifies differential
transcription in husk and IST
To investigate the relative contributions of transcriptional and
post-transcriptional regulation to gene expression in maize, a
computational method called iRNA-seq analysis (Madsen et al.
2015) was adapted for use with maize datasets and performed on
total RNA-rRNA depleted seq data obtained from B73 husk and
V2-IST in maize (GSE94252; Oka et al. 2017). A total of 10,358
genes were identified as differentially expressed between husk
and IST (Table 2), meaning that the transcript level for these
genes were higher in 1 tissue compared to the other at the estab-
lished thresholds. Of these genes, approximately 48% only had
exon coverage, 9% only had intron coverage, and 43% had both
exon and intron coverage, which enabled predictions of the level
of regulation leading to differential transcript abundance.
Differentially expressed genes with intron representation were
predicted to be pre-mRNAs, and thus indicative of a gene under-
going acute transcriptional activity. Differentially expressed
genes with only exon representation were predicted to be mature
mRNAs, suggesting that differential expression was related
mainly to post-transcriptional mechanisms. A total of 5,341
genes were predicted to be transcriptionally differentially
expressed, with 2,573 genes in husk tissue (Supplementary File 1)
and 2,768 genes in IST (Supplementary File 2), and 5,020 genes
were predicted to be post-transcriptionally differentially
expressed, with 2,663 genes in husk tissue (Supplementary File 3)
and 2,357 genes in IST (Supplementary File 4). These post-

Table 2. Transcriptional activity in IST and husk tissue
determined by iRNA-seq analysis.

Transcriptional activitya Husk IST Totald

Transcriptionally differentially
expressed genes

2,573 2,768 5,341

Post-transcriptionally differentially
expressed genesb

1,368 1,379 2,747

Inconclusive differentially expressed
genesc

1,295 978 2,273

a Differential transcriptional activity was predicted by iRNA-seq analysis
and classified as any genes with P< 0.05, log2_FC > 1 for husk genes, and
log2_FC < �1 for IST genes (Supplementary Files 1–4).

b Post-transcriptionally differentially expressed genes identified by
iRNA-seq analysis with multiple exons (Supplementary Files 3 and 4).

c Genes were originally identified as post-transcriptionally differentially
expressed by iRNA-seq analysis, but they only contain 1 exon and no introns
so it is inconclusive if they are undergoing active transcription and will not be
used in further analysis.

d Three genes were included in multiple categories (Supplementary Files
1–4).
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transcriptionally differentially expressed genes were further
sorted to only include genes that had multiple exons, as iRNA-
seq analysis can only accurately categorize genes with at least 1
intron, which requires 2 or more exons. After this additional sort-
ing, a total of 2,747 genes were predicted to be post-
transcriptionally differentially expressed, with 1,368 genes in
husk tissue and 1,379 genes in IST (Table 2; Supplementary Files
3 and 4). Only the post-transcriptionally differentially expressed
genes with multiple exons were used in further analyses.
Additionally, 3 genes were predicted to be transcriptionally differ-
entially expressed in 1 tissue, but post-transcriptionally differen-
tially expressed in the other leading to these 3 genes being
included in multiple categories. To test the iRNA predictions, a
subset of genes were selected for qRT-PCR analysis of mRNA
abundance in nuclear and cytoplasmic fractions of RNA from
IST. Although some of the differences were subtle and not statis-
tically significant, mRNAs for genes predicted to be actively tran-
scribed in IST by iRNA-seq were found to be enriched in the
nuclear fraction of RNAs extracted from IST (Supplementary Fig.
1, a–c), and 1 gene of 2 genes that were predicted to be transcrip-
tionally active in husk were not enriched in the nuclear fraction
of IST (Supplementary Fig. 1e). Notably, we were able to detect a
slight enrichment in the nuclear fraction for at least 1 gene when
primers were used that spanned intron-exon junctions
(Supplementary Fig. 1, a, b, d, and e) or were completely within
an intron (Supplementary Fig. 1c).

Biological function of transcriptionally
differentially expressed genes in husk and IST
suggests transcriptional regulation is important
in tissue identity and function
To determine how transcriptional and post-transcriptional regu-
lation of gene expression may contribute to tissue-specific biolog-
ical function, genes predicted as transcriptionally differentially
expressed were categorized based on a GO analysis of biological
function using agriGO v2.0 (Tian et al. 2017). There were 25 signifi-
cant GO terms represented by husk tissue transcriptionally dif-
ferentially expressed genes and 36 significant GO terms
represented by IST transcriptionally differentially expressed
genes (Fig. 1; Supplementary File 5). For the genes with increased
transcriptional activity in husk tissue, the most common GO
terms included “response to stimulus,” “regulation of cellular
process,” “developmental process,” “multicellular organismal
process,” and “anatomical structure development” (Fig. 1), which
are genes that may support the biological function of the photo-
synthetically active husk tissue. Metabolic processes GO terms
were the most common for genes with increased transcription in
IST, but GO terms for genes related to reproductive development
were also included (Fig. 1), which could be representative of the
inclusion of undifferentiated shoot meristem tissues poised to
undergo development/differentiation in the sample. Additionally,
IST-transcribed genes also included GO terms involved with gene
expression, epigenetics, and translation (Fig. 1), which is consis-
tent with actively growing cells and tissues during early vegeta-
tive development.

Predicted enhancer activity corresponds with
transcriptional activity in IST and husk tissue
Enhancers mediate a dynamic form of transcriptional regula-
tion and often act in a tissue-specific manner, meaning that
tissue-specific enhancer activity would likely coincide with
tissue-specific active transcription. In the original study that
generated the dataset used herein, tissue-specific genes with

candidate enhancers were identified in IST and husk tissue
(Oka et al. 2017). An increase in IST-specific transcription was
identified by iRNA-seq analysis for 80.6% of the genes previ-
ously found to be associated with tissue-specific enhancers
(Table 3; Supplementary File 6). An increase in husk-specific
transcription was identified by iRNA-seq analysis for 79.6% of
the genes previously found to be associated with tissue-
specific enhancers (Table 3; Supplementary File 7). Biologically,
the association of tissue-specific enhancers with tissue-
specific transcription is expected, and the overlap between
these analyses supports the idea that iRNA-seq analysis is a ro-
bust way to identify transcriptional changes in maize.

TF activity appears to regulate transcriptional
activity in IST and husk tissue
TFs regulate transcription; consequently, genes demonstrating
transcriptional activation in IST and husk tissue might be regu-
latory targets of transcriptionally active TFs in these tissues.
Active TFs were identified as transcriptionally differentially
expressed genes by iRNA-seq and having the GO term for “TF
activity or sequence-specific DNA-binding activity”
(GO:0003700). A total of 133 putative TFs were identified as
having increases in transcription in IST, and 202 putative TFs
were identified as having increases in transcription in husk tis-
sue (Fig. 2). To identify potential regulatory targets of these
TFs, they were used to query the Maize Tissue GRN (https://
www.bio.fsu.edu/mcginnislab/mgrn/; Huang et al. 2018).
Although the Maize Tissue GRN does not include these specific
tissues and may not be able to predict all potential targets of
these TFs, it includes many datasets and allows for the predic-
tion of at least a subset of regulatory targets predicted for these
TFs. Of the putative TFs identified, 83 active TFs from IST and
157 active TFs from husk tissue were available for analysis in
the Maize Tissue GRN (Table 4; Supplementary Files 8 and 9).
The predicted regulatory effect of these TFs on regulatory tar-
gets correlates with a substantial subset of transcriptional dif-
ferences between husk and IST; 92.3% of the genes identified as
transcriptionally differentially expressed in IST and 89.9% of
the genes identified as transcriptionally differentially
expressed in husk tissue were predicted regulatory targets of
‘active’ TFs in the respective tissues. In comparison, of the
genes identified as post-transcriptionally differentially
expressed, 85.9% in IST and 78.1% in husk tissue were pre-
dicted to be TF targets (Table 4; Supplementary Files 8 and 9).
These results suggest that TF activity can be correlated with
some examples of active transcription within this dataset and
in these tissues.

More genes are transcriptionally differentially
expressed from Maize1 than from Maize2
The evolutionary history of the maize genome includes a tetra-
ploidy associated with 2 subgenomes, commonly referred to as
Maize1 and Maize2 (Schnable et al. 2011). In genomes with such
duplications, there are frequently fractionation events that
lead to the loss of 1 copy of a gene (Langham et al. 2004;
Schnable et al. 2011; Brohammer et al. 2018). Genes that are
retained as duplicates might also be released from some level
of selective pressure, allowing specialization of 1 gene that
might include limitation of expression to a subset of tissues. In
maize, genes included in Maize1 are typically expressed at a
higher level (Schnable and Freeling 2011). To determine if tran-
scriptional activity in tissues is correlated with duplication-as-
sociated specialization, genes with differential expression in
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husk and IST were classified by their subgenome assignments.

Overall, Maize1 genes were overrepresented for both transcrip-

tionally and post-transcriptionally differentially expressed

genes within IST and husk tissue. When comparing the subge-

nomes, 54.99% and 55.67% of the genes being transcriptionally

differentially expressed in husk tissue and IST identified as

Maize1, and 29.89% and 32.26% of the genes being transcrip-

tionally differentially expressed in husk and IST identified as

Maize2 (Table 5; Supplementary File 10). A detectable differ-

ence in representation exists even if these values are normal-

ized to account for the �1.6x larger size of the Maize1

subgenome, which includes 15,146 genes compared to the

9,476 genes in Maize2. The post-transcriptionally differentially

expressed genes had similar trends in subgenome identifica-

tion (Table 5; Supplementary File 10). These results suggest

that genes exhibiting transcriptional activity are more likely to

belong to the Maize1 subgenome and that Maize1 genes are

more transcriptionally active and more likely to be differen-

tially expressed than Maize2 genes in IST and husk tissue.

Fig. 1. Enriched biological processes GO terms found in transcriptionally differentially expressed genes in husk and IST. Hierarchical clustering of log10

(% genes) of significant GO terms enriched in each tissue (FDR < 0.01; P-value <0.05; minimum of 10 mapping entries; Supplementary File 5). GO terms
and GO accession numbers are labeled for each row.

Table 3. Transcriptional and post-transcriptional regulatory
activity predicted by iRNA-seq analysis in IST and husk tissue.

IST Husk

Tissue-specific genes linked to
tissue-specific enhancersa

31 225

Transcriptionally
differentially expressed genes
predicted by iRNA-seqb

25 (80.6%) 179 (79.6%)

Multiple exon post-tran-
scriptionally differentially
expressed genes predicted by
iRNA-seqc

6 (19.4%) 46 (20.4%)

a Tissue-specific genes linked to tissue-specific enhancers were defined in
previous study (Oka et al. 2017) and used for comparison. Those not identified
by iRNA-seq analysis were not included.

b The number of tissue-specific genes linked to tissue-specific enhancers
that are transcriptionally differentially expressed in either IST or husk tissue
as predicted by iRNA-seq, represented as a percentage in parentheses.

c The number of tissue-specific genes linked to tissue-specific enhancers
that are multiple exon post-transcriptionally differentially expressed in either
IST or husk tissue as predicted by iRNA-seq, represented as a percentage in
parentheses.
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Early regulation in TLP and AL gene families
illustrates differences in gene expression
between these 2 tissues
Gene duplication events can result in groups of highly similar
genes that can be identified as gene families. The genes compris-
ing a gene family do not always exhibit the same expression pat-
tern, creating the potential for functional specification and
distinct expression patterns between genes with highly similar
sequences. To further understand tissue-specific gene expression
and the diversification of gene families, we investigated the regu-
latory mechanisms of gene families that were found for genes
that were transcriptionally differentially expressed in both IST
and husk tissue (Supplementary File 11). Of the 870 gene families
identified, 24 gene families were shared between transcription-
ally differentially expressed genes in IST and husk tissue. From
this list of shared gene families, we chose to focus on the TLP and
AL gene families, because each of these gene families included 1
or more transcriptionally differentially expressed genes in each
of the 2 tissues examined. In the TLP family, there was 1 gene
that was transcriptionally differentially expressed in each tissue,
while in the AL family, 2 genes were transcriptionally
differentially expressed in IST and 1 in husk tissue (Table 6). In
addition, these 2 gene families are known to act as TFs, giving
them the potential to influence gene expression and regulation in
these 2 tissues.

Divergent expression patterns of duplicated genes might be
explained by emergent variation in cis-regulatory sequences. A
promoter analysis was performed to identify potential regulatory
elements that may drive tissue-specific expression of these genes

within the same gene family. The promoter analysis revealed a
10% or more difference between IST and husk tissue in WRKY
and bHLH binding factors in the promoters of the TLP and AL
gene families. While WRKY and bHLH factors were predicted to
act on TLP genes, only bHLH factors were predicted for AL genes
(Fig. 3; Supplementary File 12). This suggests that the activation
of TLP and AL genes may be related to the activity of distinct
types of TFs in these 2 tissues.

Because the TLP and AL gene families themselves include pre-
dicted TFs, differential expression of genes within these families
might have led to altered transcriptional activity at other loci. To
determine the impact of tissue-specific activation of each distinct
family member, regulatory targets of each TLP and AL TF were
predicted with the Maize Tissue GRN (https://www.bio.fsu.edu/
mcginnislab/mgrn/; Huang et al. 2018). The predicted regulatory
targets for each AL and TLP family member were compared to
the genes identified as differentially expressed and undergoing
transcriptional changes via iRNA-seq analysis (Table 7;
Supplementary File 12). For all 5 of the TFs analyzed, more than
half (�64%–76%) of the genes that were predicted targets of one
of these TFs were transcriptionally differentially expressed rather
than post-transcriptionally differentially expressed (Table 7). The
2 AL TFs that were transcriptionally differentially expressed in
IST were found to share 36 transcriptionally and 14 post-
transcriptionally differentially expressed regulatory targets. This
suggested that a hierarchical regulatory network consisting of
multiple tiers of TFs may be interacting to create tissue-specific
transcription patterns, and the predicted regulatory and coex-
pression patterns between these genes were used to model a

Fig. 2. Molecular function GO for transcriptionally differentially expressed husk genes determined using agriGO v2.0 (Tian et al. 2017; FDR< 0.01; P-
value< 0.05; minimum of 10 mapping entries; Supplementary File 5). Color denotes the level of significance with a higher level being more significant
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potential GRN for the TLP and AL gene families in husk and IST

(Fig. 3).
To predict the biological implications of transcriptional

regulation by these TFs, a GO analysis was performed for biological

function with the TLP and AL TF regulatory targets using agriGO

v2.0 (Tian et al. 2017). One of the most prevalent GO terms for the

tubtf5 regulatory targets was “response to stimulus” (GO: 0050896;

FDR¼ 8.10E-06; Supplementary File 13), which includes a variety of

stimuli including external, abiotic, stress, endogenous, and biotic.

Tubtf8 regulatory targets only illustrated “response to abiotic stim-

ulus” (GO:0009628; FDR¼ 0.0028; Supplementary File 13). In

addition, tubtf8 regulatory targets included numerous GO terms

involved in developmental processes, like “anatomical structure

morphogenesis” (GO:0009653; FDR¼ 1.40E-09; Supplementary File

13), “post-embryonic development” (GO:0009791; FDR¼ 1.70E-11;

Supplementary File 13), and “flower development” (GO:0009908;

FDR¼ 1.60E-13; Supplementary File 13). The most prevalent GO

term for the alf4 regulatory targets was the cellular process

“photosynthesis” (GO:0015979; FDR¼ 9.00E-16; Supplementary File

13). Like the tubtf8 regulatory targets, the alf18 regulatory targets

had GO terms associated with developmental processes, like

“anatomical structure morphogenesis” (GO:0009653; FDR¼ 7.80E-

05; Supplementary File 13), “post-embryonic development”

(GO:0009791; FDR¼ 5.10E-07; Supplementary File 13), and “flower

development” (GO:0009908; FDR¼ 9.30E-09; Supplementary File 13).

No significant GO terms were found for the alf1 regulatory targets

(Supplementary File 13). These functions suggest that the TLP TF

regulatory targets may be involved in a stimulus or stress response

pathway. Interestingly, there were numerous GO terms found to be
involved in developmental processes for both tubtf8 and alf18 regu-
latory targets, which are undergoing active transcription in IST.
These regulatory targets may play a role in an IST-tissue-specific
developmental response.

Discussion
iRNA-seq analysis has been used previously to predict genome-
wide transcriptional activity in various model systems, including
human (Schmidt et al. 2015; Kolovos et al. 2016; Nacht et al. 2016;
Madsen et al. 2018; Zirkel et al. 2018), mouse (Marcher et al. 2015;
Siersbæk et al. 2017; Sustarsic et al. 2018), rat (Schmidt et al. 2016),
and rice (Zhang et al. 2018) to address a variety of experimental
questions. This study demonstrates that iRNA-seq analysis is an
effective way to predict the relative contribution of transcrip-
tional changes to gene expression in maize. Using iRNA-seq
analysis, different levels of regulation of gene expression were
predicted in IST and husk tissue, leading to insights into possible
gene regulatory pathways at the transcriptional and post-
transcriptional level. Genes that were identified as being tran-
scriptionally differentially expressed correlated strongly with
transcriptional regulatory mechanisms involving TFs and en-
hancer sequences, which supports the predictions of the iRNA-
seq approach. IST and husk tissue are 2 developmentally impor-
tant tissues in maize, so any insight into the regulation of gene
expression in these tissues will increase our understanding of tis-
sue function and tissue differentiation.

The relationship between transcriptional activity and genome
duplication was also explored. The modern maize genome is
characterized by several genome duplication events, including a
relatively recent duplication that is thought to have resulted in 2
distinct subgenomes with characteristic expression levels:
Maize1 and Maize2 (Schnable et al. 2011; Schnable and Freeling
2011). By comparing subgenome identity to genes exhibiting tran-
scriptional activity, transcriptional activity was found to occur
more frequently in the Maize1 subgenome, which supports the
previous findings about the subgenomes.

Since genome duplication followed by divergence can create
the potential for functional specification between genes with
highly similar sequences, we investigated the TLP and AL gene
families found in IST and husk tissue for potential expression
patterns and regulatory mechanisms. The TLP gene family can
be found in all eukaryotes (Liu 2008) and contain a highly con-
served tubby domain. In Arabidopsis, molecular analysis of the
TLP genes found that the TLP genes participate in ABA signaling,
a stress response pathway (Lai et al. 2004). Another study in
maize, also illustrated that the TLP gene family functions in
some stress responses, like ABA, temperature, and PEG stress
(Yulong et al. 2016). This is consistent with the predicted func-
tions of the TLP TF regulatory targets within the gene regulatory
model built in this analysis (Fig. 3, Supplementary File 13). The
AL gene family is a TF family and has also been shown to play a
role in plant abiotic stress responses (Zhou et al. 2017).
Interestingly, the 2 AL genes found in IST were previously identi-
fied as the same subfamily (Zhou et al. 2017), which could illus-
trate some tissue-specificity amongst the gene subfamilies.
While other studies examined expression of the TLP and AL
genes, the expression analysis did not include IST and husk tis-
sue (Yulong et al. 2016; Zhou et al. 2017). However, similar tissues
were available for comparison. Tubtf5 was found to be expressed
in leaves, which is similar to husk tissue, and tubtf8 was found to
be expressed in immature leaves, stem, and SAM, which are

Table 4. Transcriptional activity related to transcription factors
in IST and husk tissue.

IST Husk

Transcription factorsa 83 157
Predicted transcription factor targets

identified as differentially expressed by
iRNA-seqb

3,739 3,382

Transcription factor targets identified by
iRNA-seq as transcriptionally differentially
expressedc

2,554 2,314

Percentage of transcriptionally differentially
expressed genes that are transcription
factor targetsd

92.3% 89.9%

Transcription factor targets identified by
iRNA-seq as multiple exon post-transcrip-
tionally differentially expressede

1,185 1,068

Percentage of multiple exon post-transcrip-
tionally differentially expressed genes that
are transcription factor targetsf

85.9% 78.1%

a Transcription factors predicted as transcriptionally differentially
expressed by iRNA-seq and defined by inclusion in GO:0003700 in agriGO v2.0
and Maize Tissue GRN (Supplementary Files 8 and 9).

b Predicted transcription factor targets that were identified as differentially
expressed by the iRNA-seq pipeline. The total number of predicted targets
identified by the Maize Tissue GRN when all tissues and TSV file with all
information are selected were 25,172 for IST transcription factors and 26,469
for husk transcription factors (Supplementary Files 8 and 9).

c Predicted transcription factor targets that are transcriptionally
differentially expressed in either IST or husk tissue as predicted by iRNA-seq;
of which, 2,768 genes were in IST and 2,573 genes were in husk tissue
(Supplementary Files 8 and 9).

d The percentage of genes that are transcriptionally differentially
expressed, as predicted by iRNA-seq analysis, and are predicted transcription
factor targets.

e Predicted transcription factor targets that are multiple exon post-
transcriptionally differentially expressed in either IST or husk tissue as
predicted by iRNA-seq; of which, 1,379 genes were in IST and 1,368 genes were
in husk tissue (Supplementary Files 8 and 9).

f The percentage of genes that are multiple exon post-transcriptionally
differentially expressed, as predicted by iRNA-seq analysis, and are predicted
transcription factor targets.
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Fig. 3. Predicted hierarchical regulatory network for the TLP and AL gene families. Transcription factors in TF Level 1 were predicted through PlantPAN
to interact with TLP and AL gene promoters (denoted with dotted line arrows). Regulatory targets of TLP and AL genes were predicted using the Maize
Tissue GRN (denoted with solid line arrows) with the number of predicted targets depicted. All genes depicted were predicted transcriptionally
differentially expressed (Supplementary File 12) with differential gene expression for husk (red) and IST (blue) illustrated. Gene symbols and B73 AGPv4
gene IDs for the TLP and AL genes at the TF level 2 are noted.

Table 7. Transcriptional activity of TLP and AL genes regulatory targets in husk and IST.

Gene symbol Tissuea Gene regulatory targets

Transcriptionally
differentially
expressedb

Post-transcriptionally
differentially
expressedc

Total number of
differentially

expressed
targets

Total number of
targets identified
by maize tissue

GRN

tubtf5 Husk 230 (71.2%) 93 (28.8%) 323 3,207
tubtf8 IST 847 (72.9%) 315 (27.1%) 1,162 5,874
alf1 Husk 50 (64.1%) 28 (35.9%) 78 996
alf4 IST 263 (72.9%) 98 (27.1%) 361 2,963
alf18 IST 359 (75.7%) 115 (24.3%) 474 2,429

a The tissue identity of the transcriptionally differentially expressed gene according to iRNA-seq analysis.
b The percent of gene regulatory targets that are transcriptionally differentially expressed in relation to the total number of targets differentially expressed is in

parentheses (Supplementary File 12).
c The percent of gene regulatory targets with multiple exons post-transcriptionally differentially expressed in relation to the total number of targets

differentially expressed is in parentheses (Supplementary File 12).

Table 5. Subgenome identity of genes undergoing different levels of transcriptional activity.

Transcriptional activity Husk IST

Maize 1 Maize 2 No subgenome Maize 1 Maize 2 No subgenome

Transcriptionally differentially expresseda 1,415 (54.99%) 769 (29.89%) 389 (15.12%) 1,541 (55.67%) 893 (32.26%) 334 (12.07%)
Post-transcriptionally differentially expressedb 638 (46.64%) 393 (28.73%) 337 (24.63%) 727 (52.72%) 420 (30.46%) 232 (16.82%)

a The number of transcriptionally differentially expressed genes in either IST or husk tissue as predicted by iRNA-seq in the subgenome, represented as a
percentage in parentheses (Supplementary File 10).

b The number of multiple exon post-transcriptionally differentially expressed genes in either IST or husk tissue as predicted by iRNA-seq in the subgenome,
represented as a percentage in parentheses (Supplementary File 10).

Table 6. AL and TLP genes transcriptionally differentially expressed in IST and husk tissue.

Gene family Gene IDa Gene name Gene symbol Tissueb Subgenomec

AL Zm00001d037537, GRMZM2G148810 AL-transcription factor 1 alf1 Husk Maize1
Zm00001d041767, GRMZM2G153087 AL-transcription factor 4 alf4 IST Maize 2
Zm00001d049007, GRMZM2G008259 AL-transcription factor 18 alf18 IST No subgenome

TLP Zm00001d038691, GRMZM2G435445 TUB-transcription factor 5 tubtf5 Husk Maize 1
Zm00001d015485, GRMZM2G472945 TUB-transcription factor 8 tubtf8 IST Maize 1

a B73 AGPv4 and AGPv3 genome (also known as 5 bþ) gene IDs.
b The tissue identity of the transcriptionally differentially expressed gene according to iRNA-seq analysis.
c The subgenome identity of the gene (Schnable et al. 2011; updated in Zhang et al. 2017; Supplementary File 10).
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developing tissues like IST (Yulong et al. 2016). Alf1 was found to
be expressed in leaf tissue, which is like husk tissue, alf4 was
found to be expressed in endosperm and alf18 was found to be
expressed in stem and SAM, all of which are developing tissues
like IST (Zhou et al. 2017). The model for a tissue-specific regula-
tory network created in this analysis, may therefore, also be rele-
vant to plant stress responses.

In conclusion, iRNA-seq analysis can be used to determine
transcriptional activity and changes. Identifying genes transcrip-
tionally differentially expressed has allowed for greater insights
into gene expression as well as the prediction of possible GRNs.
Additionally, the approach and various tools used in this study
could be used to study other pathways, mutants, or tissues in the
future.

Data availability
iRNA-seq analysis pipeline can be found on GitHub (https://
github.com/lmschulte/iRNA-seq). This pipeline includes the fol-
lowing plant genomes: maize [AGPv3; AGPv4_ctg (contigs in-
cluded); AGPv4 (no contigs)] and Arabidopsis thaliana (TAIR10).
Instructions on how to add additional plant genomes is available
on the GitHub page (https://github.com/lmschulte/iRNA-seq).

Supplemental material is available at G3 online.
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