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Abstract

High circulating level of homocysteine (Hcy), also known as hyper-homocysteinemia, is a risk 

factor for Alzheimer’s disease (AD). Previous studies showed that elevated Hcy promotes brain 

amyloidosis and behavioral deficits in mouse models of AD. However, whether it also directly 

modulates the development of tau neuropathology independently of amyloid-beta in vivo is 

unknown. Herein we investigate the effect of diet-induced elevated levels of brain Hcy on the 

phenotype of a relevant mouse model of human tauopathy. Compared with controls, tau mice fed 

low folate and B vitamins diet, had a significant increase in brain Hcy levels and worsening of 

behavioral deficits. The same mice had a significant elevation of tau phosphorylation, synaptic 

pathology and astrocytes activation. In vitro studies demonstrated that Hcy effect on tau 

phosphorylation was mediated by an upregulation of the 5-lipoxygenase via cdk5 kinase pathway 

activation. Our findings support the novel concept that high Hcy levels in the central nervous 

system is a metabolic risk factor also for neurodegenerative diseases specifically characterized by 

the progressive accumulation of tau pathology, namely tauopathies.

INTRODUCTION

Besides amyloid beta (Aβ) peptides deposition, the accumulation of intracellular aggregates 

of hyper-phosphorylated microtubule associated protein tau is the second principal hallmark 

feature of Alzheimer’s disease (AD) (1, 2). Interestingly, this very type of neuropathology 

characterizes other neurodegenerative disorders, which for this reason are called tauopathies. 

Among them, Progressive Supranuclear Palsy, Pick’s disease, and Cortico-basal 
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degeneration are probably the most common and most investigated (3). Since the majority of 

tauopathies are sporadic and no precise etiological factors have been identified, emerging 

data support the hypothesis that a combination of genetic and environmental risk factors by 

interacting with each other could ultimately be responsible for the onset of these diseases 

(4). High circulating levels of homocysteine, also known as hyper-homocysteinemia (HHcy), 

is a known modifiable risk factor for AD independently from other variables (5, 6). Studies 

performed in animal and cellular models of AD demonstrated that HHcy modulates both Aβ 
and tau metabolism (7–10). However, no data are available on the direct effect of high Hcy 

levels on tau phosphorylation and related neuropathology in a mouse model of pure 

tauopathy devoided of any Aβ pathology.

Recently, we have demonstrated that HHcy promotes upregulation of the 5-Lipoxygenase 

(5LO) enzymatic pathway in the brain of an AD mouse model and in AD cell model through 

a de-methylation-dependent effect on its promoter, and that this is functional importance for 

the development of their amyloidotic phenotype (11). However, whether high Hcy can also 

specifically affect in vivo tau phosphorylation and neuropathology via a 5LO-dependent 

activation mechanism remains to be investigated.

For this reason in the current studies, we tested the effect of brain high Hcy levels on the 

development of tau pathology in a relevant tau transgenic mouse model, the human tau (h-

tau) mouse (12). We reached this goal by a chronic dietary approach known to induce a 

significant increase in Hcy in vivo and then assessed its effect on learning and memory, tau 

phosphorylation, synaptic integrity and neuroinflammation in this model.

MATERIALS and METHODS

Animal and treatments

All animal procedures were approved by the Animal Care and Usage Committee, in 

accordance with the U.S. National Institutes of Health guidelines. The h-tau mice used in 

this study have been already fully described and characterized (12). At the beginning of the 

study, mice were randomized to two groups. The control CTR group mice (n = 8 [4 males 

and 4 females]) were given the standard rodent chow, whereas the DIET group mice (n = 10 

[5 males and 5 females]) a standard rodent chow deficient in folate (<0.2 mg/kg), vitamin 

B6 (<0.1 mg/kg) and B12 (<0.001 mg/kg), which is known to induce HHcy in mice (13). 

The diets were custom-made, prepared by a commercial vendor (Harlan Teklad, Madison, 

WI), and always matched for calories.

Starting at 4 months of age, mice received the diets for 8 months until they were 12 month-

old. A separate group of animals was later randomized to receive regular chow (CTR) (n = 7 

[3 males and 4 females]) or the DIET (n = 9 [4 males and 5 females]) from 4 to 8 months of 

age. During the study, mice in both groups gained weight regularly, and no significant 

differences in weight were detected between the two groups by the end of the study (data not 

shown). No macroscopic effect on the overall general health was observed in the animals 

receiving the DIET when compared with control group. No macroscopic differences were 

observed when at sacrifice we compared major organs such as liver, spleen, heart and 

kidneys between the 2 groups. After euthanasia, brains were removed and dissected in two 
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halves by a mid-sagittal dissection: one for biochemistry assays, the other for 

immunohistochemistry studies.

Behavioral tests

All animals were always pre-handled for 2–3 days prior testing. They were assessed in a 

randomized order by an experimenter blinded to the treatment.

Y-maze

The Y-maze apparatus consisted of three arms 32 cm (long) 610 cm (wide) with 26-cm walls 

(San Diego Instruments, San Diego, CA). Testing was always performed in the same room 

and at the same time to ensure environmental consistency as previously described (14,15).

Morris water maze

Briefly, the apparatus used was a white circular plastic tank (122 cm in diameter), filled with 

water maintained at room temperature, which was made opaque by the addition of a 

nontoxic white paint, and inside had a removable, square (10 cm in side length) plexiglass 

platform. The tank was located in a test room containing various prominent visual cues. 

Mice were trained to swim to the platform submerged 1.5 cm beneath the surface of the 

water and invisible to the mice while swimming. The platform was located in a fixed 

position, equidistant from the center and the wall of the tank. Mice were subjected to four 

training trials per day (inter-trial interval, 15 minutes). During each trial, mice were placed 

into the tank at one of four designated start points in a random order. Mice were allowed to 

find and escape onto the submerged platform. If they failed to find the platform within 60 

seconds, they were manually guided to the platform and allowed to remain there for 10 

seconds. Mice were trained to reach the training criterion of 20 seconds (escape latency). 

They were assessed in the probe trial 24 hours after the last training session, which consisted 

in a 60-second free swim in the pool without the platform. Each animal’s performance was 

recorded for the acquisition parameters (latency to find the platform) and the probe-trial 

parameters (number of entries to the platform and time in quadrants) (14,15).

Cell line and treatment

Neuro-2 A neuroblastoma (N2A) cells stably expressing YFP-tagged human tau cDNA 

(N2A-tau) driven by the CMV promoter were prepared in house, as previously described 

(16). Cells were cultured in Dulbecco’s modified Eagle medium supplemented with 10% 

fetal bovine serum, 100 U/mL streptomycin (Cellgro, Herdon, VA) and 100 mg/mL 

Hygromycin B (Invitrogen, Carlsbad, CA) at 37°C in the presence of 5% CO2 as previously 

described (17). The cells were cultured to 80% to 90% confluence in six-well plates and 

then changed to fresh medium containing 50 μM DL-homocysteine (Sigma, St Louis, MO), 

40μM adenosine (Sigma, St. Louis, MO), and 10μM erythro-9-(2-hydroxy-3-nonyl)-adenine 

hydrochloride (Sigma, St. Louis, MO), or 100 μM zileuton (Sigma, St Louis, MO), as 

previously described (11, 13). After 24 hrs, cell lysates harvested and protein extracts used 

for Western blotting analyses.
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Biochemical analyses

Brain tissues were homogenized and sequentially extracted in RIPA and then formic acid 

(FA), where the RIPA fraction contains the soluble, whereas the FA fraction the insoluble 

form of tau protein, as previously described (13–17). Levels of Hcy, S-adenosyl-

homocysteine (SAH) and S-adenosyl-methionine (SAM) in brain tissue were assayed by 

high-performance liquid chromatography, as previously described (18). LTB4 levels were 

assayed by a specific and sensitive enzyme linked immunosorbent assay kit (Assay Designs 

Inc., Ann Arbor, MI), following the manufacturer’s instruction and as previously described 

(19,20).

Western Blot Analyses

RIPA fractions of brain homogenates were used for Western blot analyses as previously 

described (13–17). Briefly, samples were electrophoresed on 10% Bis–Tris gels or 3–8% 

Tris–acetate gel depending on the molecular weight of the protein of interest (Bio-Rad, 

Richmond, CA), transferred onto nitrocellulose membranes (Bio-Rad, Richmond, CA), and 

then incubated overnight with the appropriate primary antibodies as indicated in the Table. 

After three washings, membranes were incubated with IRDye 800CW-labeled secondary 

antibodies (LI-COR Bioscience, Lincoln, NE) at room temperature for 1 hr. Signals were 

developed with Odyssey Infrared Imaging Systems (LI-COR Bioscience, Lincoln, NE). β-

actin was used as internal loading control.

Quantitative Real Time RT-PCR

RNA was extracted and purified using the RNeasy mini-kit (Qiagen, Valencia, CA), as 

previously described (20,21). Briefly, 1μg of total RNA was used to synthesize cDNA in a 

20μl reaction using the RT2 First Strand Kit for RT-PCR (SuperArray Bioscience, Frederick, 

MD). The 5LO gene was amplified by using commercially available primers for Alox5 

(Qiagen, Valencia CA, cat # PPM28755C). β-Actin gene was amplified by using 

commercially available primers (Qiagen, Valencia CA, cat # PPM02945B) and used as an 

internal control gene to normalize for the amount of RNA. Quantitative real-time RT-PCR 

(qRT-PCR) was performed by using StepOnePlus Real-Time PCR Systems (Applied 

Biosystems, Foster City, CA). Two microliters of cDNA was added to 10μl of SYBR Green 

PCR Master Mix (Applied Biosystems, Foster City, CA). Each sample was run in duplicate, 

and analysis of relative gene expression was done by StepOne software v2.1.

Immunohistochemistry

Immunostaining was performed as described in our previous studies (13–17). Briefly, serial 

coronal sections were mounted on 3-aminopropyl triethoxysilane (APES)-coated slides. 

Every eighth section from the habenular to the posterior commissure (6–8 sections per 

animal) was examined using unbiased stereological principles. Sections used for testing 

HT7, PHF13, AT180, synaptophysin, PSD95 and MAP2 were deparaffinized, hydrated and 

subsequently with 3% H2O2 in methanol, and then antigen retrieved with 10 mM sodium 

citrate buffer. Sections were blocked in 2% fetal bovine serum before incubation with the 

appropriate primary antibody overnight at 4°C. After washing, sections were incubated with 

biotinylated anti-mouse IgG (Vector Lab, Burlingame, CA) and then developed by using the 
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avidin-biotin complex method (Vector Lab, Burlingame, CA) with 3,3′-diaminobenzidine 

(DAB) as a chromogen. Light microscopic images were captured using software QCapture 

2.9.13 (Quantitation Imaging Corporation, Surrey, Canada) with the auto-exposure option. 

These images were used to calculate the area occupied the immunoreactivities using the 

software Image-ProPlus (Media Cybernetics).

Data Analysis

Data analyses were performed using Graphpad Prism for Windows version 5.00. Statistical 

comparisons were performed by Unpaired Student’s t-test or one way Anova test for 

experiments including more than two groups. Values in all figures and table represent mean 

± S.E.M. Significance was set at p<0.05.

RESULTS

Diet low in folate and B vitamins promotes behavioral deficits in h-tau mice

To investigate the effect of a low folate and B vitamins diet on cognition, CTR and DIET 

mice were assessed in the Y-maze and the Morris water maze test at 12 months of age. No 

significant differences were observed between the two groups of mice in the Y-maze test for 

the number of entries as well as percentage of alternations (Figure 1A, B). In the Morris 

water maze, no differences were noted in the average swimming speed and the cued phase of 

the test between the two groups of mice (Figure 1C, E). However, in the training phase 

DIET-receiving animals learned the platform position significantly slower compared to CTR 

mice (Figure 1D). In addition, mice on the DIET showed a significant decrease in the 

number of entries in the platform zone and time spent in the platform zone compared to 

CTR, as well as a trend towards increase in the time spent in the opposite zone compared to 

CTR (Figure 1F–H). No significant differences were observed when males and females in 

each group were analyzed separately for both paradigms (data not shown).

Diet-induced elevated homocysteine worsens tau neuropathology in h-tau mice

First, we wanted to confirm compliance with the dietary regimen chronically administered to 

the mice by assessing levels of Hcy in their central nervous system. As shown in figure 2, h-

tau mice receiving the diet had a statistically significant increase in levels of homocysteine 

(Hcy), and S-adenosyl-homocysteine (SAH), and a reduction in the levels of S-adenosyl-

methionine (SAM) which did not reach statistical significance. However, we observed that 

the same mice had a significant reduction in the ratio of SAM/SAH (Figure 2A).

Next, brain homogenates from the two groups of mice were assessed for levels of total 

soluble tau protein and its phosphorylated isoforms at specific epitopes by Western blot and 

immunohistochemistry. Compared with controls, h-tau mice receiving the DIET showed a 

significant increase in tau phosphorylation at Thr231/Ser235 and Ser396, as recognized by 

AT180 and PHF13 antibodies, respectively. No changes between the two groups were 

detected in the levels of total soluble tau, or its isoforms phosphorylated at Ser202/Thr205, 

Thr181, and Ser396/Ser404 as detected by HT7, AT8, AT270 and PHF1 antibodies, 

respectively (Figure 2B, C). These findings were confirmed by immunohistochemistry 

analysis of brain sections from the two groups of mice (Figure 3D). Next, we observed that 
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brain homogenates from the DIET group showed significantly higher level of formic acid-

soluble tau fraction when compared to the control group (Figure 2E, F). To investigate the 

mechanism responsible for the changes in tau phosphorylation, we assessed the levels of 

some of the enzymes involved in its post-transcriptional regulation in the same tissues. As 

shown in figure 2G and H, while no changes between the two groups were observed for the 

steady state levels of cdk5, mice receiving the DIET manifested a significant increase in p35 

and p25 levels, the activators of this very kinase when compared with controls. By contrast, 

no changes in total GSK3-α and GSK3-β, its phosphorylated forms, GSK3- α and -β 
(pGSK3-α/ β) and protein phosphatase 2A (PP2A) were observed between the two groups 

(Figure 2G, H). No significant differences were observed when males and females in each 

group were analyzed for any of these proteins separately (data not shown).

High homocysteine levels affect synaptic integrity and neuroinflammation

Next, we assessed the effect of high Hcy levels on synaptic integrity by measuring levels of 

a pre-synaptic integrity marker, synaptophysin (SYP), and a post-synaptic marker, post-

synaptic protein 95 (PSD95), in the brains of the two groups of mice. Compared with 

controls, DIET-treated mice had a significant reduction in the steady state levels of PSD95, 

but no changes for the levels of SYP (Figure 3A, B). These results were confirmed by 

immunohistochemistry analysis (Figure 3C).

To measure neuroinflammation, brains from the two groups were assessed for levels of 

cluster of differentiation 45 (CD45), a marker of microglia activation, and the glial fibrillary 

acidic protein (GFAP), a marker of astrocyte activation. As shown in figure 3D and E, while 

no significant changes were observed between the two groups of mice for CD45 levels, we 

found that DIET-receiving mice had a statistically significant increment in the steady state 

levels of GFAP compared with control group. No significant differences were observed 

when males and females in each group were analyzed separately for both synaptic proteins 

and neuroinflammation (data not shown).

Elevated homocysteine levels upregulates 5LO pathway in the brain of h-tau mice

Since we previously demonstrated that high Hcy levels up-regulates the 5-lipoxygenase 

(5LO) pathway through demethylation of its promoter (11), next we wanted to see if this 

was also the case under our experimental condition. Compared with controls, mice with diet-

induced high Hcy levels had a significant increase in the steady state levels of 5LO protein 

(Figure 4A, B). This increase was associated with a significant elevation of the enzymatic 

activity of the protein as shown by higher levels of the leukotriene B4 (LTB4), the major 

metabolic product of its activation (Figure 4C). Finally, we also measured the levels of 5LO 

mRNA in the same tissues and found that compared with controls, DIET-treated mice had a 

significant increase in its levels (Figure 4D). Coincidental with the changes in 5LO mRNA, 

we found that levels of DNA methyltransferase 1 (DNMT1) and DNMT3β were 

significantly reduced, but no differences in DNMT3α levels were detected between the two 

groups (Figure 4E, F). No significant differences were observed when males and females in 

each group were analyzed separately for any of these parameters (data not shown).
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5LO upregulation precedes the high Hcy-dependent tauopathy phenotype

Next, we investigated whether 5LO upregulation occurred at the same time or before the 

tauopathy phenotype development upon diet-induced high Hcy levels in the same mice. To 

this aim, a separate group of tau transgenic mice was randomized to receive the DIET or 

regular chow for a shorter time period, from 4 to 8 months of age. Animals were later tested 

for cognitive performance, 5LO expression, and tau phosphorylation. After 4 months on the 

DIET, compared with controls h-tau mice did not manifest any significant changes in 

cognitive performance as assessed by Y-maze and Morris water maze test (data not shown). 

In a similar manner, we were not able to detect any significant changes in the levels of total 

soluble tau, its phosphorylated isoforms, and the insoluble fraction (Figure 5B–E). By 

contrast, the treatment resulted in higher levels of Hcy, and SAH and lower levels of SAM 

compared to controls (Figure 5A), and a significant increase in the steady state levels of 5LO 

proteins and its metabolic product, LTB4, compared to controls (Figure 5F–H).

Hcy-dependent 5LO activation regulates tau phosphorylation

To further support the direct role of Hcy in modulating tau phosphorylation via activation of 

the 5LO pathway, we treated neuroblastoma cells stably expressing human tau (N2A h-tau) 

with vehicle (CTR) or homocysteine (Hcy) (50 μM) in the presence or the absence of 

zileuton (100 μM), a specific 5LO inhibitor (20). This concentration of zileuton used is 

known to significantly suppress 5LO activation in vitro (20, 21). After 24hrs incubation, cell 

lysates were harvested for biochemistry analyses. A shown in figure 6, we observed that 

cells incubated with Hcy had a significant increase of tau phosphorylated at Thr231/Ser235 

and Ser396, as recognized by AT180 and PHF13 antibodies, respectively. However, no 

changes were detected in the levels of total tau or its phosphorylated isoform at Thr181, as 

detected by HT7 and PHF1 antibodies respectively. Moreover, Hcy-treated cells showed 

higher levels of p35 and p25 but no change in total levels of cdk5 compared to CTR cells 

(Figure 6C, D). While zileuton alone di not induce significant changes in any of the different 

parameters described above, we found that it was able to completely prevent the effects that 

Hcy had on tau phosphorylation as well as p35 and p25 levels (figure 6A–D).

DISCUSSION

In the current study we report for the first time on the biological effect that diet-induced high 

Hcy levels in vivo has on the development of the entire tau pathological phenotype in a 

transgenic mouse model of human tauopathy. In particular, we demonstrate that chronic 

administration of a diet low in folate and B vitamins by increasing Hcy levels within the 

central nervous system directly up-regulates the 5LO enzymatic pathway which then 

promotes tau phosphorylation, synaptic pathology, neuroinflammation, and behavioral 

deficits in the h-tau transgenic mice.

In recent years, despite some conflicting results several epidemiological studies and cross-

sectional clinical investigations have reported on the association between elevated Hcy levels 

and AD, suggesting that high Hcy is a metabolic risk factor for the disease and that its effect 

on AD pathogenesis is independent from other confounders (22–26). In support of these 

findings, experimental studies using mouse models of neurodegeneration and AD-like brain 
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amyloidosis have all shown that genetic or diet-induced high Hcy level results in a 

worsening of the AD-like phenotype, by promoting Aβ accumulation in the brain 

parenchyma and the vasculature (27–29). Interestingly, we reported that besides Aβ a 

condition of elevated HCy levels can also influence tau phosphorylation suggesting a 

possible role of this risk factor in tau metabolism (30). Although in vitro we showed that 

blocking Aβ production with a gamma-secretase inhibitor did not influence tau 

phosphorylation, considering the data showing that in vivo Aβ can influence tau pathology, 

in those studies we could not rule out that the in vivo effect seen on tau was secondary to the 

changes in Aβ levels (13, 30).

To prove a direct role of Hcy on tau phosphorylation in vivo we embarked in the current 

study in which we used a well-established dietary approach, consisting in the chronic 

administration of a diet low in folate and B vitamins, which is known to result in higher Hcy 

levels. The diet was administered to a relevant mouse model of pure tauopathy, which 

displays age dependent memory impairments, synaptic dysfunction and pathology, as well as 

progressive accumulation of hyper-phosphorylated tau protein and importantly devoided of 

any Aβ pathology (31).

Initially, we observed that after 6 months on the diet the tau transgenic mice had significant 

impairments of their spatial and learning abilities in the Morris water maze as demonstrated 

by the longer time during the training phase that took them to reach the platform when 

compared with controls. This impairment was also evident during the probe phase of the test 

in which we observed that compared with controls the DIET-treated mice had a lower 

number of entries and time spent in the platform zone, and a higher time spent in the 

opposite quadrant. Having observed significant memory and learning impairments resulting 

from the DIET, we next assessed whether the same experimental treatment had an effect on 

tau phosphorylation. First, we found that there were no differences in the levels of soluble 

tau protein when we compared the two groups of mice, suggesting that the treatment did not 

have any effect on the tau transgene. By contrast, DIET-treated h-tau mice showed a 

significant increase in the levels of phosphorylated tau isoforms at two specific epitopes, 

Thr231/Ser235 and Ser396, when compared with the control group. Since in this mouse 

model it is known that with age the mice develop also discrete deposits of the insoluble 

forms of the tau protein, we were every interested in assessing their brains for this aspect of 

the tau pathological phenotype. At the end of the treatment we observed that mice with diet-

induced high Hcy levels in the central nervous system had a significant elevation of the 

insoluble tau fraction in their brain tissues.

In an effort aimed at elucidating potential mechanisms responsible for these changes in tau 

phosphorylation and solubility, we assessed some of the recognized kinases as important 

modulators of this aspect of tau neurobiology. While we did not observe any changes in 

levels of total and phosphorylated GSK3α and GSK3β, we found that the diet group had a 

significant increase in the two major activators of the cdk5 kinase when compared with 

control mice, supporting a functional role for this kinase pathway in the biological effect on 

tau. In addition, analysis of biochemical markers of synaptic integrity revealed that mice 

chronically receiving the DIET had significant reduction in the levels of PSD95, which is in 
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line with the behavioral deficits we observed during the execution and analysis of the Morris 

water maze results.

Since our recent work has demonstrated that high Hcy levels by reducing the levels of the 

major enzymes responsible for the de novo DNA methylation promotes 5LO upregulation, 

we wanted to see if this was also the case under our experimental conditions (32). Analyses 

of brain tissues from h-tau mice receiving the DIET showed that indeed they had a 

significant increase in the steady state levels of 5LO protein as well as its enzymatic activity 

and its mRNA levels. Confirming our previous work, these changes were associated with a 

significant reduction in the methyl transferase enzymes in the same samples, supporting an 

epigenetic modification of the 5LO pathway secondary to the elevated Hcy condition.

To investigate whether the changes in the 5LO were primary or secondary to the 

development of the tau neuropathological phenotype, we treated a separate group pf h-tau 

mice for a shorter time: 4 months. At the end of this trial, we observed no significant 

changes in terms of behavior, tau phosphorylation, and astrocyte activation between the 

DIET-treated and controls. By contrast, we found that compared with the control group 

transgenic mice receiving the DIET had a significant increase in brain Hcy levels together 

with an up-regulation of the 5LO enzymatic pathway. Taken together these data support the 

novel hypothesis that 5LO activation is an earlier event in the elevated Hcy-dependent 

development of the tau neuropathological phenotype in this model of tauopathy.

To further prove the biological link between HHcy-induced tau phosphorylation and 5LO 

upregulation we implemented an in vitro cellular system which recapitulates our mouse 

model, neuronal cells stably expressing all six human tau isoforms. Cells incubated with 

Hcy had a significant increase in 5LO as well as tau phosphorylation at the same epitopes as 

in the in vivo and an activation of the cdk5 kinase pathway. However, these biological effects 

were competed prevented if together with the Hcy cells were incubated with a specific and 

irreversible 5LO inhibitor, suggesting a necessary role of this enzyme for the Hcy-dependent 

effect on tau phosphorylation.

While there is an apparent discrepancy between the timeline of the in vivo versus the in vitro 

results, with the former taking up to 8 months to observe the effect on the tau pathological 

phenotype and the latter only 24 hrs, we need to consider that it is always very difficult to 

simply compare these two settings. We believe that the complexity of the whole animal 

biology system, which contains a combination of different cell types and biological 

environment in most of the cases should be considered responsible for those apparent 

differences.

In conclusion, our studies represent the first experimental evidence showing that elevated 

HCy levels within the central nervous system directly modulates tau phosphorylation, 

synaptic pathology, behavioral deficits and neuroinflammation by an up-regulation of the 

5LO enzymatic pathway in a relevant mouse model of human tauopathy. They support the 

novel concept that high HCy levels should be considered as a metabolic risk factor also for 

human tauopathies, a group of neurodegenerative diseases characterized primarily by the 

progressive accumulation of highly phosphorylated tau protein.
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Figure 1. Diet low in folate and B vitamins induces behavioral deficits
Starting at 4 month of age h-tau mice were randomized to receive a low folate and B 12 

vitamin diet (DIET), or regular chow diet (CTR) for 8 months then assessed in the Y-maze 

and the Morris water maze. A. Number of total arm entries for mice receiving the DIET or 

regular chow (CTR). B. Percentage of alternations between h-tau mice receiving the DIET 

or regular chow (CTR). C. Morris water maze cued response of h-tau mice receiving DIET 

or controls (CTR). D. Four days training for the same two groups of mice. E. Average swim 

speed for the two groups of mice, DIET and CTR. F. Number of entries to the target 

platform zone for h-tau receiving the DIET or chow diet control (CTR). G. Time in the NE 

target platform zone for the same two groups of mice, DIET and CTR H. Time spent in the 

opposite zone for the same two groups of mice, DIET and CTR (* p < 0.05) (n=8 CTR, 

n=10 DIET). Values represent mean ± sem.
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Figure 2. Diet-induced HHcy in brain affects tau phosphorylation and pathology
A. Brain cortex homogenates from h-tau mice receiving the low folate and B vitamins diet 

(DIET) or chow diet controls (CTR) from 4 to 12 months of age were assayed by HPLC for 

levels of Hcy, SAM, SAH, and the ratio SAM/SAH calculated (*p<0.05) (n=5 per group). B. 

Representative Western blots of soluble total tau protein (HT7), phosphorylated tau at 

residues Ser202/Thr205 (AT8), Thr231/Ser235 (AT180), at Thr181 (AT270), Ser396/Ser404 

(PHF1) and Ser396 (PHF13) in brain cortex homogenates from h-tau mice receiving the 

DIET or regular chow from 4 to 12 months of age. C. Densitometric analyses of the 

immunoreactivities to the antibodies shown in the previous panel. D. Representative images 

of brain sections from DIET-treated or controls (CTR) h-tau mice immunostained with HT7, 

AT180, and PHF13 antibodies (Scale bar: 100μm). E. Representative Western blot for 

formic acid soluble (insoluble) total tau (HT7) protein in brain cortex homogenates from the 

same two groups of h-tau mice. F. Densitometric analyses of the immunoreactivities to the 

antibody shown in the previous panel. G. Representative Western blots of cdk5, p35, p25, 

GSK3α, GSK3β, p-GSK3α, p-GSK3β, and PP2A in brain cortex homogenates from the 

same two groups of h-tau mice, CTR ad DIET. H. Densitometric analyses of the 

immunoreactivities to the antibodies shown in the previous panel (* p< 0.05), (n=4 CTR, 

n=4 DIET). Values represent mean ± sem.
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Figure 3. Diet-induced HHcy affects synaptic integrity and neuroinflammation
A. Representative Western blot analyses of post-synaptic density protein 95 (PSD95) and 

synaptophysin (SYP) in brain cortex homogenates of mice receiving the DIET or regular 

chow from 4 to 12 months of age. B. Densitometric analyses of the immunoreactivities to 

the antibodies shown in the previous panel. C. Representative images of brain sections from 

the same two groups of h-tau mice, CTR ad DIET, immunostained with PDS95 and 

synaptophysin antibodies (Scale bar: 100μm). D. Representative Western blots of GFAP and 

CD45 in brain cortex homogenates from the same two groups of h-tau mice, CTR ad DIET. 

E. Densitometric analyses of the immunoreactivities to the antibodies shown in the previous 

panel (* p < 0.05), (n=4 CTR, n=4 DIET). Values represent mean ± sem.
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Figure 4. Diet-induced HHcy upregulates 5LO enzymatic pathway
A. Representative Western blot analysis of 5LO protein in brain cortex homogenates from h-

tau mice receiving regular chow (CTR), or folate and B vitamins deficient diet (DIET) from 

4 to 12 months of age. B. Densitometric analysis of the immunoreactivity to the antibody 

shown in the previous panel. C. Levels of LTB4 measured by a specific and sensitive ELISA 

assay in brain cortex homogenates from the same two groups of h-tau mice. D. Quantitative 

real time Reverse Transcription Polymerase Chain Reaction (q RT-PCR) analysis of 5LO 

mRNA in brain cortices of same two groups of h-tau mice, CTR ad DIET. E. Representative 

western blot analyses for DNMT1, DNMT3α, and DNMT3β in brain cortices of the same 

two groups of mice. F. Densitometric analyses of the immuno-reactivity to the antibodies 

shown in the previous panel (* p < 0.05) (n=4 CTR, n=4 DIET). Values represent mean± 

s.e.m.
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Figure 5. Diet induced HHcy-dependent 5LO upregulation precedes tau pathological phenotype
A. Brain cortex homogenates from h-tau mice receiving the low folate and B vitamins diet 

(DIET) or chow diet controls (CTR) from 4 to 8 months of age were assayed by HPLC for 

levels of Hcy, SAM, SAH, and the ratio SAM/SAH. B. Representative western blot analysis 

of soluble total tau protein (HT7), phosphorylated tau at residues Thr231/Ser235 (AT180) 

and Ser396(PHF13), post-synaptic density protein 95 (PSD95) and GFAP in brain cortex 

homogenates from h-tau mice receiving the DIET or regular chow from 4 to 8 months of 

age. C. Densitometric analysis of the immunoreactivity to the antibody shown in the 

previous panel. D. Representative western blot for formic acid soluble (insoluble) total tau 

(HT7) protein in brain cortex homogenates from the same two groups of h-tau mice, CTR ad 

DIET. E. Densitometric analyses of the immunoreactivities to the antibody shown in the 

previous panel. F. Representative western blot analysis of 5LO protein in brain cortex 

homogenates from the same two groups of h-tau mice, CTR ad DIET. G. Densitometric 

analysis of the immunoreactivity to the antibody shown in the previous panel. H. Levels of 

LTB4 measured by a specific and sensitive ELISA assay in brain cortex homogenates from 

the same two groups of h-tau mice (*p < 0.05 (n=4 CTR, n=4 DIET). Values represent mean

± s.e.m.
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Figure 6. HHcy effect on tau phosphorylation is 5LO-dependent
N2A neuronal cells stably expressing human tau were incubated for 24hrs with Hcy (50μM) 

in the presence or absence of zileuton (100μM), then cells harvested for biochemistry 

analyses. A. Representative western blots of total tau (HT7), phosphorylated tau at residues 

Thr231/Ser235 (AT180), Ser396/Ser404 (PH1), and Ser396 (PHF13) in lysates from cells 

incubated with Hcy (HCY), vehicle (CTR), zileuton, or zileuton plus Hcy. B. Densitometric 

analyses of the immunoreactivities to the antibodies shown in the previous panel. C. 

Representative western blots of cdk5, p35, and p25 in lysates from cells incubated with Hcy 

(HCY), vehicle (CTR), zileuton alone, or zileuton plus Hcy. D. Densitometric analyses of 

the immunoreactivities to the antibodies shown in the previous panel (*p < 0.05)(n=4 per 

codition). Values represent mean ± sem.

Di Meco et al. Page 17

Mol Psychiatry. Author manuscript; available in PMC 2019 October 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Di Meco et al. Page 18

Ta
b

le
 1

A
nt

ib
od

ie
s 

us
ed

 in
 th

e 
st

ud
y.

A
nt

ib
od

y
Im

m
un

og
en

H
os

t
A

pp
lic

at
io

n
So

ur
ce

C
at

al
og

 N
um

be
r

H
T

7
aa

 1
59

-1
63

 o
f 

hu
m

an
 ta

u
M

ou
se

W
B

, I
H

C
T

he
rm

o
M

N
10

00

A
T

8
Pe

pt
id

e 
co

nt
ai

ni
ng

 p
ho

sp
ho

-S
20

2/
T

20
5

M
ou

se
W

B
T

he
rm

o
M

N
10

20

A
T

18
0

Pe
pt

id
e 

co
nt

ai
ni

ng
 p

ho
sp

ho
-T

23
1/

S2
35

M
ou

se
W

B
, I

H
C

T
he

rm
o

P1
06

36

A
T

27
0

Pe
pt

id
e 

co
nt

ai
ni

ng
 p

ho
sp

ho
-T

18
1

M
ou

se
W

B
T

he
rm

o
M

N
10

50

PH
F1

3
Pe

pt
id

e 
co

nt
ai

ni
ng

 p
ho

sp
ho

-S
er

39
6

M
ou

se
W

B
, I

H
C

C
ST

96
32

PH
F1

Pe
pt

id
e 

co
nt

ai
ni

ng
 p

ho
sp

ho
-S

er
39

6/
S4

04
M

ou
se

W
B

D
r. 

D
av

ie
s

G
if

t

cd
k5

C
yc

lin
-d

ep
en

de
nt

 k
in

as
e 

5
M

ou
se

W
B

Sa
nt

a 
C

ru
z

sc
-2

49

p3
5/

25
C

yc
lin

-d
ep

en
de

nt
 k

in
as

e 
5 

ac
tiv

at
or

 1
R

ab
bi

t
W

B
Sa

nt
a 

C
ru

z
sc

-8
20

G
SK

3α
/β

G
ly

co
ge

n 
Sy

nt
ha

se
 K

in
as

e 
3 

al
ph

a/
be

ta
M

ou
se

W
B

Sa
nt

a 
C

ru
z

sc
-5

69
13

p-
G

SK
3α

/β
ph

os
ph

o-
G

ly
co

ge
n 

Sy
nt

ha
se

 K
in

as
e 

3 
al

ph
a/

be
ta

R
ab

bi
t

W
B

C
ST

93
31

PP
2A

Pr
ot

ei
n 

Ph
os

ph
at

as
e 

2A
R

ab
bi

t
W

B
T

he
rm

o
PA

5-
17

51
0

PS
D

95
Pu

ri
fi

ed
 r

ec
om

bi
na

nt
 r

at
 P

SD
-9

5
M

ou
se

W
B

, I
H

C
T

he
rm

o
M

A
1-

04
5

SY
P

aa
 2

21
-3

13
 o

f 
SY

P 
of

 h
um

an
 o

ri
gi

n
M

ou
se

W
B

, I
H

C
Sa

nt
a 

C
ru

z
sc

-5
55

07

G
FA

P
sp

in
al

 c
or

d 
ho

m
og

en
at

e 
bo

vi
ne

 o
ri

gi
n

M
ou

se
W

B
Sa

nt
a 

C
ru

z
sc

-3
36

73

C
D

45
aa

 1
07

5-
13

04
 o

f 
C

D
45

 h
um

an
 o

ri
gi

n
R

ab
bi

t
W

B
Sa

nt
a 

C
ru

z
sc

-2
55

90

5L
O

H
um

an
 5

-L
ip

ox
yg

en
as

e 
aa

. 4
42

-5
90

M
ou

se
W

B
B

D
 T

ra
ns

du
ct

io
n 

L
ab

or
at

or
ie

s
61

06
95

D
N

M
T

1
aa

 1
31

7-
16

16
 m

ap
pi

ng
 n

ea
r 

th
e 

C
-t

er
m

in
us

 o
f 

D
nm

t1
 o

f 
hu

m
an

 o
ri

gi
n

R
ab

bi
t

W
B

Sa
nt

a 
C

ru
z

sc
-2

07
01

D
N

M
T

3α
aa

 1
-2

95
 o

f 
D

nm
t3
α

 o
f 

hu
m

an
 o

ri
gi

n
R

ab
bi

t
W

B
Sa

nt
a 

C
ru

z
sc

-2
07

03

D
N

M
T

3β
aa

 1
-2

30
 m

ap
pi

ng
 n

ea
r 

th
e 

N
-t

er
m

in
us

 o
f 

D
nm

t3
β 

of
 h

um
an

 o
ri

gi
n

R
ab

bi
t

W
B

Sa
nt

a 
C

ru
z

sc
-2

07
04

A
ct

in
gi

zz
ar

d 
A

ct
in

 o
f 

av
ia

n 
or

ig
in

M
ou

se
W

B
Sa

nt
a 

C
ru

z
sc

-4
77

78

W
B

: W
es

te
rn

 b
lo

t; 
IH

C
: i

m
m

un
oh

is
to

ch
em

is
tr

y.

Mol Psychiatry. Author manuscript; available in PMC 2019 October 26.


	Abstract
	INTRODUCTION
	MATERIALS and METHODS
	Animal and treatments
	Behavioral tests
	Y-maze
	Morris water maze
	Cell line and treatment
	Biochemical analyses
	Western Blot Analyses
	Quantitative Real Time RT-PCR
	Immunohistochemistry
	Data Analysis

	RESULTS
	Diet low in folate and B vitamins promotes behavioral deficits in h-tau mice
	Diet-induced elevated homocysteine worsens tau neuropathology in h-tau mice
	High homocysteine levels affect synaptic integrity and neuroinflammation
	Elevated homocysteine levels upregulates 5LO pathway in the brain of h-tau mice
	5LO upregulation precedes the high Hcy-dependent tauopathy phenotype
	Hcy-dependent 5LO activation regulates tau phosphorylation

	DISCUSSION
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Table 1

