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CD301bþ dendritic cells stimulate tissue-resident
memory CD8þ T cells to protect against genital
HSV-2
Haina Shin1,w, Yosuke Kumamoto1, Smita Gopinath1 & Akiko Iwasaki1,2

Tissue-resident memory CD8þ T (CD8 TRM) cells are an essential component of protective

immune responses at barrier tissues, including the female genital tract. However, the

mechanisms that lead to the initiation of CD8 TRM-mediated protective immunity after viral

infection are unclear. Here we report that CD8 TRM cells established by ‘prime and pull’

method confer protection against genital HSV-2 infection, and that IFN-g produced by CD8

TRM cells is required for this protection. Furthermore, we find that CD8 TRM-cell restimulation

depends on a population of CD301bþ antigen-presenting cells (APC) in the lamina propria.

Elimination of MHC class I on CD301bþ dendritic cells abrogates protective immunity,

suggesting the requirement for cognate antigen presentation to CD8 TRM cells by CD301bþ

dendritic cells. These results define the requirements for CD8 TRM cells in protection against

genital HSV-2 infection and identify the population of APC that are responsible for activating

these cells.
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M
emory CD8þ T cells can be divided into at least three
major subsets: effector memory (TEM); central memory
(TCM); and tissue-resident memory (TRM) cells1.

CD8 TRM cells are a newly described subset that survey both
lymphoid and non-lymphoid tissues independently of circulating
populations of memory CD8 T cells1. Owing to their stable
localization in most barrier tissues such as the genital tract, CD8
TRM are uniquely suited for rapid immune responses to
pathogens that invade the host through those tissues. A strong
correlation exists between enhanced pathogen control and CD8
TRM-cell activity both at the site of previous infection2 as well as
distal sites within the same organ3. CD8 TRM cells are seeded
within tissues during the effector phase of the T-cell response,
and arise from precursors that are similar in phenotype to
precursors that differentiate into other memory subsets4. During
the course of differentiation, CD8 TRM cells become adapted to
their tissue microenvironment and may rely on survival signals
distinct from those of circulating memory CD8þ T cells4–7. CD8
TRM cells stimulated in situ by cognate antigen can rapidly recruit
and activate other immune cells and lead to the induction of an
antiviral state within the surrounding tissue8,9. However, within
the context of a viral challenge, the events that lead to activation
of CD8 TRM cells, and the antigen-presenting cell (APC) that
stimulates the CD8 TRM cell, are unknown.

Along with CD8 TRM cells, barrier surfaces are also populated
by a network of resident innate immune cells such as
macrophages and dendritic cells (DCs) that survey the tissue
for invading pathogens10–12. These cells have an important
role in regulating T-cell responses in barrier tissues, whether
against pathogens, allergens or commensals1,13,14. Resident
APC in tissues such as the skin are well-characterized
and can be stratified by their localization within the tissue
microenvironment. For example, the epidermal layer is patrolled
by Langerhans cells, whereas the dermal layer has a
heterogeneous population of DCs. This dermal DC population
includes cells that express CD301b, also known as macrophage
galactose-type C-type lectin 2 (Mgl2)15, and those that express
CD103 (ref. 13). CD301bþ DCs are an important driver of type 2
T helper responses after skin immunization13,16,17. Studies have
expanded the role of CD301bþ DCs beyond the type 2 T helper
differentiation programme, by demonstrating that they are
required for interleukin-17 production by type 17 T helper cells
after epidermal infection with Candida albicans, or with
intranasal infection with Streptococcus pyogenes18,19. CD301bþ
DCs reside in multiple barrier tissues, including dermis, lung,
intestine and vagina13,20. Multiple subsets of APCs reside within
the vaginal tissue and can also be distinguished by their
localization within the epithelium and the lamina propria.
Within the epithelial layer, vaginal epithelial DC can be further
subdivided into at least three distinct subsets, by the expression of
F4/80 and CD11b (ref. 21), none of which express CD301b. The
vaginal lamina propria contains CD11bþCD11cþ DCs that
express CD301b, as well as CD301b�CD11cþ DCs13. After a
primary infection with herpes simplex virus (HSV)-2, migrant
CD11bþCD205þ DC from the vagina stimulate naive T-cell
responses within the draining lymph node (dLN)22,23. In
immunized mice, both DCs and B cells contribute to the
activation of memory CD4þ T cells in the vagina24. However,
the subset of APC responsible for activating memory CD8þ T
cells within the vagina is unknown, and it is unclear whether
these APC can stimulate CD8 TRM cells in situ without migration
to the dLN.

Viral sexually transmitted infections, such as human
immunodeficiency virus 1 and HSV, are responsible for
substantial morbidity and mortality worldwide. Both animal
and human studies have strongly supported a role for memory

T cells in mediating protection against viral sexually transmitted
infections25. To date, clinical testing of vaccines that elicit
circulating cellular and humoral immunity has failed to yield an
efficacious prophylactic vaccine25. Control of infection at barrier
surfaces such as the genital tract requires local immune responses
at the tissue site to effectively limit spread of the pathogen.
However, tissues such as the genital tract restrict entry of
circulating CD8þ T cells, and depend on tissue-resident memory
T-cell populations for rapid responses to local infection1. In a
previous study, we designed a vaccine strategy called ‘prime and
pull’ that used a non-inflammatory stimulus, namely,
recombinant chemokines, to recruit circulating antigen-specific
effector T cells into the genital tract after they were primed with
thymidine-kinase mutant HSV-2 (TK� HSV-2) at a distal site.
Recruited CD8þ T cells established tissue-resident populations,
whereas CD4þ T cells did not. When tested against a lethal
intravaginal challenge with wild-type (WT) HSV-2, the prime
and pull vaccine protected against severe clinical symptoms,
weight loss and morbidity26. However, whether CD8 TRM cells
are required for protection and if so, how CD8 TRM cells confer
protection against HSV-2 infection is unclear.

Using the intravaginal immunization model with TK�
HSV-2, the contribution of vaginal CD8 TRM cells is difficult to
assess due to the dominance of the local CD4 TRM-cell response
against HSV-2. However, the prime and pull model leads to
formation of only CD8 TRM cells, thus facilitating studies that
specifically address the role of memory CD8þ T cells during
HSV-2 infection26. In this study, we take advantage of the prime
and pull system to selectively address the role of CD8 TRM cells in
antiviral protection against genital HSV-2 challenge. We
demonstrate that circulating memory CD8þ T cells are mostly
dispensable for protection against genital HSV-2 infection, and
that interferon-g (IFN-g) production is a crucial effector
mechanism by which the CD8 TRM cells control HSV-2.
Furthermore, we identify CD301bþ DCs in the lamina propria
of the vagina as the APCs responsible for driving CD8
TRM-mediated protection after HSV-2 infection, and that major
histocompatibility complex class I (MHC I) expression by
CD301bþ DCs is required for CD8 TRM-cell activation.

Results
Protection against HSV-2 by prime and pull requires CD8 T cells.
To better understand the role of memory CD8 T cells in pro-
tecting against genital HSV-2 infection, we used our previously
described ‘prime and pull’ vaccination strategy26. Congenically
marked gBT-I CD8þ T cells were adoptively transferred into
naive female C57BL/6 recipients. These recipients were then
subcutaneously (s.c.) immunized with 106 plaque-forming units
(p.f.u.) of TK� HSV-2. At day 5 post infection (p.i.), a group of
animals were treated intravaginally with 3 mg each CXCL9 and
CXCL10 (ref. 26) (Fig. 1a). As expected, a robust population of
CD8 T cells was detected in the spleen and the vagina at day 1
post pull in the prime and pull mice (Fig. 1b). A second group of
prime and pull mice was injected three times with a depleting
antibody against CD8a, twice before TK� HSV-2 immunization
and once after (Fig. 1a). In these mice, all CD8þ T-cell
populations were significantly decreased as very few CD8þ
T cells were observed in the spleen and vagina (Fig. 1b). A lethal
challenge of WT HSV-2 was administered intravaginally, and
mice were monitored for 2 weeks for signs of clinical symptoms,
weight loss and survival. We found that prime and pull mice
lacking memory CD8þ T cells had significantly worse disease
development and greater weight loss compared with intact prime
and pull mice (Fig. 1c,d). We also observed decreased survival in
prime and pull mice depleted of memory CD8þ T cells as
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compared with the intact prime and pull group (Fig. 1e). The
severity of clinical symptoms and weight loss in prime and pull
mice without memory CD8þ T cells was similar to prime only
mice treated intravaginally with phosphate-buffered saline (PBS)
(Fig. 1c,d). We also measured viral titres within the genital
mucosa, and found that absence of memory CD8þ T cells had
little effect on viral replication at this site of infection (Fig. 1f).
This is consistent with our previous findings that memory CD8þ
T cells protect against genital HSV-2 infection through a
neuroprotective mechanism, and not through control of
mucosal replication26. Together, these data demonstrate that
CD8þ T cells are required for the enhanced protection conferred
by prime and pull against genital HSV-2 challenge.

Protection by prime and pull depends mostly on CD8 TRM

cells. To further dissect the roles of circulating memory CD8þ T
cells and CD8 TRM cells in protecting against genital HSV-2
infection, we took advantage of the fact that unlike circulating
CD8 T cells, CD8 TRM cells are protected from antibody-
mediated depletion9. At 3 weeks post pull, prime and pull mice
were injected three times with either an isotype control or an
anti-CD8a antibody (Fig. 2a). On antibody treatment, there
was a significant decrease in the number of circulating gBT-I
memory CD8þ T cells in the spleen, while the gBT-I CD8
TRM-cell population in the vagina remained stable (Fig. 2b).
When challenged intravaginally with WT HSV-2, we found that
disease severity was similar between anti-CD8a antibody-treated
and isotype-treated mice (Fig. 2c). Depletion of circulating

memory CD8þ T cells also had minimal effect on weight loss
(Fig. 2d), survival (Fig. 2e) and control of mucosal replication
(Fig. 2f), suggesting that circulating memory CD8þ T cells were
not required for protection from disease. Furthermore, in the
prime and pull model, there is minimal increase in the number of
CD8þ T cells in the vagina after challenge for the first 40 h post
infection (Supplementary Fig. 1). Unlike previous studies, this
suggests that CD8 TRM cells in the vagina responding to HSV
do not recruit circulating CD8þ T cells9 in the first couple of
days of infection. Together, these results indicate that circulating
memory CD8þ T cells are largely dispensable for defence against
disease caused by genital HSV-2 infection, and that CD8 TRM

cells in the vagina are sufficient to mediate early protection.

Protection against HSV-2 requires CD8 TRM-cell-derived IFN-c.
Having established the importance of CD8 TRM cells for
immunity against genital HSV-2 infection, we next investigated
the mechanism by which CD8 TRM cells conferred protection.
Memory CD8þ T cells can exert effector function through
cytolysis as well as through cytokine production27. To
differentiate between these two mechanisms, we first examined
CD8 TRM-cell-mediated protection in mice lacking perforin, a key
cytotoxic molecule expressed by cytolytic cells. We observed no
significant difference in disease score (Supplementary Fig. 2a),
weight loss (Supplementary Fig. 2b) or survival (Supplementary
Fig. 2c) between WT and perforin-deficient mice receiving prime
and pull. As our data indicated that perforin-mediated cytolysis
was not critical for CD8 TRM-cell-mediated protection against
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Figure 1 | Protection against HSV-2 after prime and pull requires CD8þ T cells. (a) Experimental schematic. (b) Flow cytometry plots and graph

showing total CD8 T cells in the spleen and vagina 1 day post pull. Plots are gated on total lymphocytes from the spleen (top) and vagina (bottom).

Numbers in plots indicate percentage of lymphocytes that are CD3þCD8bþ . Graph shows total number of donor gBT-I CD8 T cells in the vagina 1 day

post pull. After lethal intravaginal challenge with WT HSV-2, all groups shown in a were monitored over 2 weeks for disease score (c), weight loss (d) and

survival (e). Viral titres in the vaginal mucosa were measured for the first 5 days post challenge by plaque assay (f). *Po0.05 by unpaired t-test for (b).

****Po0.0001 by repeated-measures analysis of variance for c,d. Data are representative of three independent experiments; n¼ 11 for all experimental

groups, and 9 for unimmunized controls. Error bars show s.e.m.
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HSV-2, we focused on the role of cytokines. IFN-g is a key
cytokine for the control of HSV infection in both the genital
mucosa24,28,29 and the peripheral nervous system30. To determine
whether IFN-g production by CD8 TRM cells was essential for
protection against HSV-2 infection, we transferred either WT or
IFN-g knockout (IFN-g KO) CD8þ T cells to CD8-deficient
recipients. Mice were then immunized s.c. with TK� HSV-2 and
treated intravaginally with chemokine at day 5 p.i. (Fig. 3a).
Autocrine IFN-g was not important for CD8 TRM-cell
establishment in the vagina as there was no difference in the
frequency or number of CD8 TRM cells between recipients of WT
and IFN-g KO CD8þ T cells at 4 weeks post pull (Fig. 3b).
Autocrine IFN-g was also not essential for mounting a robust
circulating CD8þ T-cell response (Fig. 3b). Yet, when challenged
intravaginally with WT HSV-2 (Fig. 3a), we found that IFN-g KO
CD8þ T-cell recipients receiving prime and pull developed more
severe disease than WT CD8þ T-cell recipients receiving
prime and pull (Fig. 3c). Furthermore, IFN-g KO CD8
T-cell-reconstituted mice receiving prime and pull lost more
weight (Fig. 3d) and had a lower survival rate than those
reconstituted with WT CD8þ T cells (Fig. 3e). In contrast, there
was no difference in disease score (Supplementary Fig. 3a), weight
loss (Supplementary Fig. 3b) or survival (Supplementary Fig. 3c)
between WT and IFN-g KO CD8þ T-cell recipients in the prime
only groups, further supporting the idea that circulating memory
CD8þ T cells are not important for protection against genital
HSV-2 infection. There was also no difference in mucosal viral

titres of WT and IFN-g KO CD8þ T-cell prime and pull
recipient mice (Fig. 3f), confirming our previous results showing
that CD8 TRM do not play a critical role in controlling mucosal
viral replication26. Notably, prime and pull mice reconstituted
with IFN-g KO CD8 TRM developed disease that was similar in
severity to mice without CD8 TRM (Supplementary Fig. 3),
suggesting that CD8 TRM cells confer protection primarily
through the production of IFN-g.

Prime and pull protection against HSV-2 requires CD301bþ
DCs. The vaginal lamina propria contains a substantial popula-
tion of APCs bearing the lectin CD301b, or Mgl2 (ref. 13). We
confirmed that CD301b expression is restricted to the vaginal
lamina propria in WT mice13 (Fig. 4a), and that these cells are
MHC class IIþ (MHC IIþ ) and CD11cþ , consistent with the
DC phenotype (Supplementary Fig. 4). To determine whether
CD301bþ DCs play a role in activating CD8 TRM, we used a
mouse model in which CD301bþ cells bear the human
diphtheria toxin (DT) receptor fused to green fluorescent
protein (GFP) (Mgl2DTR/GFP)13. In these mice, CD301bþ

cells can be selectively eliminated through administration of
DT. Indeed, DT treatment of Mgl2DTR/GFP mice resulted in a
significant decrease in the total number of MHCIIþ cells in the
vagina (Fig. 4a,b). The decrease was due mainly to the loss of
CD301bþ cells in the lamina propria, as there was minimal
change in the number of epithelial DC in the vagina (Fig. 4b).
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Figure 2 | Circulating memory CD8þ T cells are dispensible for protection against HSV-2. (a) Experimental schematic. (b) Graphs showing total

number of donor gBT-I CD8 T cells in the spleen and vagina 1 day after final antibody injection in the indicated groups. After a lethal intravaginal challenge

with WT HSV-2, mice in the indicated groups were monitored over 2 weeks for disease score (c), weight loss (d) and survival (e). Viral titres in the vaginal
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Although CD8 TRM cells localize to the epithelial layer in multiple
tissues, they can also be found in the lamina propria of mucosal
barriers31–33 (Fig. 4c). As the majority of CD301bþ DCs are
situated in the lamina propria, we examined whether CD8 TRM

cells and CD301bþ DCs could interact in the event of an HSV-2
infection. At 24 h post challenge with WT HSV-2, CD8 TRM cells
in the vaginal lamina propria engaged with CD301bþ MHCIIþ

DCs within the lamina propria, while CD8 TRM cells in the
epithelium did not (Fig. 4c).

To test whether CD301bþ APCs are required for CD8
TRM-cell-mediated protection against HSV-2, we treated WT or
Mgl2DTR/GFP prime and pull groups with DT just before
challenge with a lethal dose of HSV-2 (Fig. 5a). Despite similar
numbers of CD8 TRM cells in the vagina after DT injection
(Fig. 5b), prime and pull mice lacking CD301bþ DCs developed
significantly worse clinical symptoms than intact mice receiving
prime and pull (Fig. 5c). In the absence of CD301bþ DCs, prime
and pull immunization failed to prevent weight loss (Fig. 5d) or
rescue mice from death (Fig. 5e), with no impact on mucosal viral

titres (Fig. 5f). The difference in disease severity was not due
to an inherent susceptibility of Mgl2DTR/GFP mice to HSV-2, as
PBS-treated Mgl2DTR/GFP mice receiving prime and pull and
WT mice receiving prime and pull were similarly protected from
disease (Fig. 5c–e). Rather, the difference in protection correlated
with a 10-fold increase in the amount of replicating virus within
the peripheral nervous system of DT-treated Mgl2DTR/GFP mice
(Supplementary Fig. 5), suggesting that in the absence of
CD301bþ DC, CD8 TRM-cell-mediated neuroprotection is
abrogated. Furthermore, the loss of protection resulting from a
lack of CD301bþ DCs was most likely due to their role in
stimulating the antiviral function of vaginal CD8 TRM cells, as
depletion of CD301bþ DCs in prime only controls had minimal
impact on disease severity and weight loss (Supplementary Fig. 6).
Previous reports have shown that CD8 TRM cells in other tissues
such as the dorsal root ganglia (DRG) are activated by recruited
monocyte-derived DC34. However, examination of Ly6C and
CD301b expression on DC in the vagina and dLN show that these
populations are distinct (Supplementary Fig. 7). Thus, our data
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reveal an essential role for CD301bþ DCs in defence against
genital HSV-2 infection through activation of CD8 TRM cells, and
indicates that other DC populations, such as epithelial DC, are
not sufficient for stimulating CD8 TRM-cell-mediated protection
against genital HSV-2 infection.

CD301bþ DCs require MHC I for CD8 TRM-cell activation.
The classical route of memory CD8þ T-cell activation is through
stimulation of the T-cell receptor (TCR) with cognate peptide–
MHCI complex. However, a wide array of inflammatory cyto-
kines can also induce production of antiviral cytokines such as
IFN-g from memory CD8 T cells35,36. To address the mechanism
by which CD301bþ DCs support CD8 TRM-mediated
protection, we made mixed bone marrow chimeric mice using
Mgl2DTR/GFP and MHCI KO donor bone marrow. Female WT
recipients were lethally irradiated and reconstituted with a
combination of bone marrow cells from Mgl2DTR/GFP and
MHCI KO donors or Mgl2DTR/GFP and WT donors (Fig. 6a).
To protect MHCI KO donor cells from deletion by natural killer
cells, all recipients were treated with a natural killer cell-depleting
antibody every 4 weeks. After 8 weeks of reconstitution, mice
were subjected to prime and pull vaccination (Fig. 6b). Animals

with similar levels of Mgl2DTR reconstitution were used for
experiments (Fig. 6a). At 4 weeks post pull, all groups were
injected with DT. After DT treatment, CD301bþ DCs expressing
MHCI were eliminated in the Mgl2DTR/MHCI KO mixed
chimeric mice, and all remaining CD301bþ DCs lacked MHCI.
On a lethal intravaginal challenge with WT HSV-2, we found that
the Mgl2DTR/MHCI KO mixed chimeric mice developed more
severe disease (Fig. 6c) and exhibited greater weight loss than the
Mgl2DTR/WT controls, in which a population of CD301bþ DC
expressing MHCI remain after DT treatment (Fig. 6d).
Furthermore, Mgl2DTR/MHCIKO bone marrow (BM)
chimeras had a lower survival rate compared with the
Mgl2DTR/WT controls (Fig. 6e). Together, our data show that
MHCI expression on CD301bþ DCs are required for CD8 TRM-
mediated protection against challenge with HSV-2, and that
inflammatory cytokines alone are likely not sufficient for full
activation of CD8 TRM responding to genital HSV-2 infection.

Discussion
In this study, we demonstrate that CD8 TRM mediate protection
against genital HSV-2 infection in mice that received prime and
pull. CD8 TRM-cell-mediated protection against HSV-2 primarily
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through production of IFN-g rather through the perforin/
granzyme cytolytic pathway. We have also identified the
CD301bþ subset of DCs in the vaginal lamina propria as a
key APC population responsible for the reactivation of CD8 TRM

cells in the genital tract. On depletion of CD301bþ DCs by DT
injection in Mgl2DTR mice, we find that that protection mediated
by CD8 TRM cells is abrogated. Our data suggest that these
CD301bþ DCs are activating CD8 TRM cells in situ, as CD8 TRM

cells in the vaginal tissue can be observed engaging CD301bþ DC
within 24 h of infection. Furthermore, elimination of CD301bþ

DC has no effect on disease development in mice in the prime
only control group, again supporting the idea that circulating
memory CD8þ T cells are insufficient for protection against
HSV-2. Finally, we demonstrate that MHCI is required for
activation of CD8 TRM cells by CD301bþ DCs, as CD301bþ

DCs lacking MHCI fail to protect against HSV-2 challenge, most
likely due to their inability to directly stimulate CD8 TRM cells.

A previous study using transplanted DRG showed that
activation of CD8 TRM cells after reactivation of latent HSV-1
in nervous tissue requires DC derived from recruited inflamma-
tory monocytes34. Our data show that monocyte-derived DC
populations are intact (or even enhanced) after depletion of
CD301bþ DC, suggesting that monocyte-derived APCs are
insufficient to activate CD8 TRM cells in the vaginal tissue. These

results raise an intriguing question as to whether different APC
populations are responsible for activating CD8 TRM cells in
different tissues. While CD301bþ cells may also be present in the
ganglia, it is unclear whether these cells have the same CD8 TRM

cell-activating capacity as those in the vaginal lamina propria.
Resident satellite, neuronal and glial cells may also be inefficient
at presenting viral antigen, thus necessitating the recruitment of
inflammatory monocytes for CD8 TRM cell activation within the
DRG. The nature of infection that CD8 TRM cells are responding
to may also dictate the requirements for stimulation. Considering
the essential role of CD8 TRM cells in defending barrier and non-
barrier tissues against invading pathogens1, it will be important to
understand their partner APCs and the requirements for their full
activation in the multiple different tissues where CD8 TRM cells
reside.

Our data indicate that IFN-g produced by CD8 TRM cells is
essential for protection against HSV-2. IFN-g is well established
as a crucial antiviral factor in defence against HSV-2, although
much focus has been centred on IFN-g produced by type 1 T
helper (Th1) cells24,28. Both CD4 and CD8 TRM-cell populations
are established in models of intravaginal immunization with
TK� HSV-2, and data suggest that IFN-g derived from Th1
cells is the primary driver of protective immunity against HSV-2
(refs 24,28). These studies show that IFN-g from Th1 cells protect
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mainly by controlling mucosal replication of virus. Here, by using
prime and pull to establish only the CD8 TRM cells, we were able
to selectively study the importance of IFN-g secreted from these
cells in antiviral protection. Our data indicate that IFN-g from
CD8 TRM cells protects the host from disease but not through
control of viral replication in the vaginal epithelium. It is unclear
why exposure to IFN-g produced by memory Th1 or CD8 TRM

cells would lead to such different outcomes. One possibility is that
CD8 TRM cells are present in much fewer numbers following
prime and pull than CD4 TRM cells after intravaginal
immunization24,26, they are therefore unable to control viral
replication within the vaginal tissue. Another possibility is that
differences in localization between memory CD4 and CD8 TRM

cells dictate the different outcomes. Memory CD4 T cells are
found within and beneath infected epithelium after genital
challenge with HSV-2, indicating that these cells can produce
IFN-g in proximity of infected target cells. Our data suggest that
CD8 TRM cells are activated by CD301bþ DC in the lamina
propria, and these activated CD8 TRM cells may not migrate into
the epithelium. Furthermore, CD8 TRM cells in human genital
tissue have been found to localize to nerve endings that traverse
the lamina propria and abut the basement membrane of the
epithelium37. On the basis of these data, we hypothesize the
following scenario. IFN-g produced by CD8 TRM cells stimulated
by peptide presented on MHC I by the CD301bþ DCs within
the lamina propria acts on the nearby sensory nerve
endings, inducing antiviral gene expression and mediating
neuroprotection. Future studies are needed to interrogate such
a model.

The actual mechanism behind IFN-g-mediated protection also
remains a mystery. Previous studies have shown that stimulation
of CD8 TRM cells by peptide or virus in situ can induce activation
of other immune cell populations in proximity and lead to an
antiviral state in the surrounding tissue8,38. In this scenario, CD8
TRM cells secrete IFN-g, which in turn leads to expression of
chemokines such as CXCL9 within the surrounding tissue9.
Chemokine production then leads to the robust recruitment of
circulating immune cells9. Our data suggest that any antiviral
state that is being induced by prime and pull is most likely
affecting the peripheral nervous system rather than the genital

tissue. This is in contrast to previous studies that have suggested
that CD8 TRM cells established by an nonoxynol-9 are capable of
controlling HSV-1 replication in the mucosa39. It is possible that
this discrepancy in CD8 TRM-cell function is due to differences in
viral strain or the use of inflammatory stimuli that may have
altered the surrounding tissue microenvironment. While
circulating memory CD8þ T cells do not appear to be
required in our model, we cannot rule out a role of circulating
CD8þ T cells later in the response. It is also possible that CD8
TRM-cell-derived IFN-g is leading to recruitment of other cell
populations that help in protecting against genital HSV-2
infection in a manner similar to stimulated CD8 TRM cells in
the upper female reproductive tract (FRT)8.

The memory CD8þ T-cell population is heterogeneous, and
subsets of memory CD8þ T cells were originally defined based
on their circulation through different tissue environments,
namely lymphoid or non-lymphoid40,41. Many of the tissues in
which CD8 TRM cells can be established are composed of multiple
microenvironments, which raises the question as to whether the
CD8 TRM-cell population in a single tissue can be further refined
into subpopulations. Our study and others have shown that CD8
TRM cells can be distributed through both the epithelium and the
lamina propria of mucosal surfaces31–33,42. Intraepithelial CD8
TRM cells and lamina propria CD8 TRM cells in the gut can be
differentiated by their expression of CD103 and dependence on
transforming growth factor b (refs 31,32). Furthermore, a study
using oral bacterial infection showed that effector CD8þ T cells
that localized to the gut lamina propria, not the epithelium, were
primarily responsible for controlling bacterial load. We show that
CD8 TRM cells in the vagina may be similarly subdivided, as the
interaction between CD8 TRM cells and CD301bþ DCs appears
to occur predominantly in the lamina propria. As stimulation by
antigen-presenting haematopoietic cells is necessary for cytokine
production by CD8þ T cells in peripheral tissues43, it is likely
that CD8 TRM cells in the vaginal lamina propria are the main
producers of IFN-g, and thus the main drivers of protection
against HSV-2. While the function of the intraepithelial CD8
TRM cells in the vagina remain unclear, other reports have
demonstrated that CD8þ T cells interacting with MHCI on non-
haematopoietic cells engage cytolytic pathways to directly kill any
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infected target cells that they encounter43,44. Thus, CD8 TRM cells
may divide the burden of patrolling peripheral tissues into two
main tasks that are carried out by the epithelial and lamina
propria subsets—one to limit spread of infection by directly
eliminating infected cells, and the other to secrete IFN-g to
induce an antiviral state in select populations of local cells, in this
case, the DRG neurons. It will be important to understand how
CD8 TRM cells delegate their primary functions and how these
subsets may be most effectively engaged to limit peripheral
infections when considering their use in prophylactic vaccines
and immunotherapies.

Methods
Mice. Six-week-old female C57BL/6 mice were purchased from NCI or Charles
River Laboratories. B6.129S2-CD8atm1Mak/J(CD8-deficient), B6.129S7-Ifngtm1Ts/J
(IFN-g-deficient) and C57BL/6-Pfptm1Sdz (perforin-deficient) mice were purchased
from Jackson Laboratories. B6.129P2-H2-Kbtm1H2-Dbtm1N12 (MHCI-deficient)
mice were purchased from Taconic. gBT-I TCR transgenic mice specific for the
glycoprotein B epitope gB(498–505)45 were provided by F.R. Carbone and W.R.
Heath and bred in our facility to C57BL/6-Ly5.2Cr mice (CD45.1þ ) (NCI).
Mgl2þ /DTR-GFP (Mgl2DTR/GFP) animals have been previously described13. All
procedures used in this study complied with federal and institutional policies of the
Yale Animal Care and Use Committee.

Adoptive transfer and infection. Spleens were collected from naive CD45.1þ
gBT-I TCR transgenic mice, and CD8 T cells were magnetically purified by CD8a
microbeads or CD8 aþ T-cell isolation kits (Miltenyi Biotec). Donor cells (105)
gBT-I CD8 T cells were adoptively transferred into Depo-Provera-treated
(Pharmacia Upjohn)46, 7- to 8-week-old C57BL/6 recipients retro-orbitally. Mice
were then immunized intravaginally or s.c. with 105 or 106 p.f.u. of 186TKDkpn
HSV-2 (TK� HSV-2)47. At 5 days p.i., the vaginal cavity of mice was swabbed
with a Calginate swab (Fisher) and topically treated with PBS or a solution of
CXCL9 and CXCL10 (3 mg each, Peprotech). For challenge, unimmunized or
previously immunized mice were infected intravaginally with 5,000 PFU WT
HSV-2 186 synþ (ref. 48). For CD8 depletion experiments, mice were injected
intraperitoneally with 200mg anti-CD8a (53–6.72, BioXCell) antibody either at day
� 3, � 1 and þ 1 relative to TK� HSV-2 immunization or day � 3, � 1 and þ 1
relative to WT HSV-2 challenge. For experiments with DT depletion, animals
were injected intraperitoneally with 0.5 mg of DT (List Biological) 1 day before WT
HSV-2 challenge13.

Flow cytometry. At various time points, single-cell suspensions from the spleen
and vagina were prepared for analysis as described24. Briefly, vaginas were treated
with Dispase II (Roche) for 15 min and then collagenase D for 30 min and
mechanically disrupted. Peripheral blood mononuclear cells were isolated from
blood collected into 4% sodium citrate and isolated with Histopaque 1083
according to the manufacturer’s instructions (Sigma). Cells from the spleen were
counted by haemocytometer, and vagina cell numbers were quantified using
CountBright absolute counting beads from Molecular Probes. Dead cells were
excluded from analysis using the LIVE/DEAD Fixable Aqua Dead Cell Stain kit
(Life Technologies). All samples were acquired on an LSRII equipped with a
532 nm green laser (BD Biosciences). All data were analysed with FlowJo
(Treestar).

Immunofluorescent microscopy. Vaginas were excised and then fixed in
PLP fixative (0.01 M NaIO4, 0.075 M lysine, 0.0375 sodium phosphate and 2%
paraformaldehyde) and frozen in OCT Compound (Tissue-Tek). Frozen tissues
were cut into 7 mm sections on a cryostat (Leica) and mounted onto Colorfrost Plus
slides (Fisher). MHC II was detected using a directly conjugated primary antibody,
while CD8 and Mgl2 or GFP were detected using the tyramide signal amplifcation
labelling kits (Molecular Probes). Slides were stained with 4,6-diamidino-2-
phenylindole (Molecular Probes) and mounted with Prolong Gold Antifade
Mountant (Molecular Probes). All slides were analysed on a Leica TCS SP8
confocal microscope with a � 40 objective lens. Inset images were taken at a � 2
zoom and cropped to focus on areas of interest with Photoshop.

Antibodies. Antibodies against the following markers were used for this study:
CD3 (17A2, 5 mg ml� 1); CD8a (53–6.7, 0.25 mg ml� 1); CD8b (53–5.8,
0.4 mg ml� 1); CD44 (1M7, 5 mg ml� 1); CD45.1 (A20, 1.67 mg ml� 1); CD45.2
(104, 1.67 mg ml� 1) and MHC II (M5/114.15.2, 0.5 mg ml� 1). Antibodies were
interchangeably purchased from BD Biosciences, Biolegend, eBioscience and
Invitrogen. The anti-CD301b antibody (11A10-B7-2, 2.5 mg ml� 1) was produced
by hybridoma13.

Measurement of disease read-outs and viral titres. Vaginal secretions were
collected days 1–5 post challenge using PBS and Calginate swabs. Titres from
vaginal wash samples were measured on Vero cell monolayers by standard plaque
assay with a liquid overlay containing human IgG (2 mg ml� 1). Weight loss was
measured daily and normalized to body weight on day 0 of challenge. Disease was
monitored daily and scored as follows: (0) no disease; (1) genital inflammation;
(2) genital lesions and hair loss; (3) hunched posture and ruffled fur; (4) hind limb
paralysis; and (5) premoribund49. Mice were killed before the moribund state due
to humane concerns.

Statistical methods. Weight loss data and disease score data were analysed
statistically by two-way repeated-measures analysis of variance. Survival curves
were measured by log-rank test. Analysis of data between two groups at one time
was performed by unpaired Student’s t-test. For all statistical tests, *Po0.05,
**Po0.01, **Po0.001, ***Po0.0001, NS¼ not significant. All statistical analyses
were done with Prism software.

Data availability. The data that support the findings of this study are available
from the corresponding author on request.
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