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A B S T R A C T

Sensitivity of cultivar input parameters were characterised on the outputs of yield and growth variables using a
web based crop simulation model Web InfoCrop Wheat. The crop model was assessed for each combination of
seventeen input cultivar parameters tested under moisture and temperatures stress conditions in four different
ecological regions. Three model outputs, total dry matter at harvest, grain yield at harvest and duration of the
crop were chosen for subsequent evaluation. The most dominant cultivar parameters were identified to be TPOPT
(Optimum Temp), TTVG (Thermal time for germination to 50% Flowering), KDFMAX (Extinction coefficient of
leaves at flowering), GNOCF (Slope of storage organ number/m2 to dry matter during storage organ formation),
POTGWT (Potential storage organ weight) and PHOTOSENS (Photoperiod sensitivity) which were associated with
growth, thermal time accumulation, leaf area index, grain number and photosensitivity. Comparison of crop
simulations with all the cultivar parameters incorporated from the experimental observations and those with only
the most sensitive cultivar parameters incorporated was performed. Outputs of the crop simulation were signif-
icantly correlated with results from the field experiments. The present study could save time and effort in
generating all the cultivar parameters required to perform the crop simulation under moisture and temperature
stress conditions. The most significant cultivar parameters (TPOPT, TTVG, KDFMAX, GNOCF, POTGWT and
PHOTOSENS) identified through the sensitivity analysis conducted in this study could significantly simulate the
crop growth and yield of wheat.
1. Introduction

Computer based agronomic crop models are useful tools for the
quantitative examination of the growth and yield of crops (Dzotsi et al.,
2013; Krishnan and Aggarwal 2017; Krishnan et al., 2016). The execu-
tion of crop models usually involves huge data sets. Crop growth models
include a number of model parameters as input data, the measurement of
which is a great difficult task as they are not identified with certainty (Jin
et al., 2018; Jones et al., 2012). These parameters are challenging to
measure mainly because of the erraticism and inconsistency in natural
phenomenon, price and time required in measuring, or mistakes in their
determinations (Jabloun et al., 2018; Richter et al., 2010). Another way
out is to generate the parameters from related reports and findings,
however the discrepancy of these parameters owing to cultivars, weather
changes, agro-ecological region variations etc. are not considered (Liu
et al., 2019; DeJonge et al., 2012). Ultimately the model estimates using
these imprecise parameter values are unreliable and are not regarded. It
is principally difficult to measure all the unknown parameters of a model
P. Krishnan).
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instantaneously (Wang et al., 2013). Therefore, having a greater number
of parameters in an intricate model offers a tough decision. Thus, an
operative technique to decrease the number of input parameter is
obligatory. In fact, a limited number of model parameters might be
appropriate for the maximum variability in the model outputs, even
though several of the parameters could have least effect on the outputs
(He et al., 2011).

The parameter sensitivity analysis (SA) technique can have a crucial
role to identify sensitive parameters, and users can concentrate more
efforts on calibrating the sensitive parameters (Krishnan and Aggarwal
2017; Saltelli and Annoni, 2010). Input parameters which have less in-
fluence on the output variables can be given a default value. In addition
to this, sensitivity analysis is beneficial to understand, improve and
employ models for several applications (Dzotsi et al., 2013). Similarly,
based on the SA, the performance and weakness of the model can be
scrutinized for the evolution and improvement (Krishnan and Aggarwal
2017; Richter et al., 2010). It has been recognized that identifying the
probabilities of outputs with a quantifiable uncertainty analysis and
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evaluating their likelihood can assist decision makers with more
important proof to generate or evaluate simulation judgements (Haan
and Skaggs, 2003; Ogle et al., 2003). Further several modelling groups
agree with the fact that having an extensive choice of cultivar parameters
in generic models would upsurge the use of the models, nevertheless add
to establishing a mutual understanding among these cultivar parameters
(Saltelli and Annoni, 2010). Therefore, sensitivity analysis can assist in
scrutinizing the main causes of model prediction uncertainty.

The main aim of this investigation is to determine the performance of
the Web InfoCrop - wheat model outputs to cultivar parameter uncer-
tainty in different moisture and temperature stress conditions. The ob-
jectives of the present study were (i) to characterize the influence of
variations in cultivar parameters within their choices of uncertainty, on
total dry matter at harvest, grain yield and duration of wheat crop; (ii) to
identify with utmost accuracy the cultivar parameters in Web InfoCrop -
wheat that have the maximum significant effect on model outputs, (iii) to
examine the variations in the effects of cultivar parameter uncertainty on
model outputs simulated in different agro-ecological conditions and at
potential, moistures stress, high temperature and combined moisture and
high temperature stress conditions.

2. Materials and methods

2.1. Web based InfoCrop – wheat model: Web InfoCrop - wheat

In this study we have employed the crop model Web InfoCrop - wheat
implemented into a web-based system by means of ASP.net (version 4.5)
platform. We have used the integrated development Environment (IDE)
provided by visual studios (Express) (Krishnan et al., 2016). In general,
this web model had C# in the front-end language and SQL at the backend
language. InfoCrop-Wheat is a dynamic crop growth model developed by
Aggarwal et al. (2006). It is less complicated in its parameterization. It
offers a collective assessment of the effect of weather, soil, pests, man-
agement and cultivar on crop growth processes and yield. The model
incorporates essential processes like impacts of water, frost and tem-
perature stress, flood, crop-pest interrelation, nitrogen management, soil
water and nitrogen balance and soil carbon dynamics on crop growth.
The InfoCrop -Wheat crop model is established on the modelling meth-
odologies adopted by SUCROS - abbreviated for Simple and Universal
Crop growth Simulator, sequences. Dry matter is considered on the basis
of canopy photosynthesis. The crop development is calculated from
photoperiod vernalisation and temperature. Dry matter partitioning and
specific leaf area are exercised to estimate the alterations in leaf area.
Table 1. List of Web InfoCrop - wheat model cultivar parameters and definitions.

No. Parameters Unit Definition

1 TTGERM oC days Thermal time for germin

2 TTVG oC days Thermal time for germin

3 TTGF oC days Thermal time for 50% F

4 TPOPT oC Optimum Temp

5 TPMAXD oC Maximum Temp

6 PHOTOSENS 0.5–1.5 Photoperiod sensitivity

7 ZRTPOT mm/day Root Growth Rate

8 RUE g/MJ/day Radiation Use efficiency

9 SLA dm2/mg Specific leaf area

10 RGRPOT oC/d Relative growth rate of l

11 IndexGreen 0.8–1.2 Index of greenness of lea

12 KDFMAX ha soil/ha leaf fraction Extinction coefficient of

13 SensLowTemp 0–1.5 Sensitivity of storage org

14 SensHighTemp 0–1.5 Sensitivity of storage org

15 POTGWT mg/grain Potential storage organ w

16 GNOCF storage organ/kg/day Slope of storage organ n

17 NMAXGR fraction Nitrogen content of stora
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InfoCrop first considers the influence of weather, followed by soil factors,
and pests, respectively. InfoCrop has inbuilt checks on carbon, water and
nitrogen balance. These checks verify each day that the integral of all
fluxes into and out of the systems agree to the changes since the start of
simulation. InfoCrop is widely used to assess the impact of climate
change (Haris et al., 2013), characterise the moisture stress effects on
yield (Aggarwal et al., 2008) and comparative studies of crop yield
models (Kang et al., 2009; Krishnan et al., 2007).
2.2. Model description

Web InfoCrop-wheat model ponders to the following processes of
crop growth and development, soil water, nitrogen, carbon, and
crop–pest interactions (Aggarwal et al., 2006; Krishnan et al., 2016) (i)
Crop growth and development: phenology, photosynthesis, partitioning,
leaf area growth, number of storage organs, source: sink balance, tran-
spiration, and uptake, allocation and redistribution of nitrogen (ii) Effects
of moisture, nitrogen, temperature, flooding and frost stresses on crop
growth and development (iii) Crop–pest interactions: damage mecha-
nisms of insects and disease. (iv) Soil water balance: root water uptake,
inter-layer movement, drainage, evaporation, runoff, ponding (v) Soil
nitrogen balance: mineralisation, uptake, nitrification, volatilization,
interlayer movement, denitrification, leaching (vi) Soil organic carbon
dynamics: mineralisation and immobilization. (vii) Emissions of green-
house gases: carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O).

The plant growth model in Web InfoCrop -Wheat is capable of
simulating wheat cultivar, with each one having unique values for the
model parameters, e.g., harvest index (HI), Thermal time based on
Growing Degree days (GDD), and optimum and maximum temperature
for plant growth, photoperiod sensitivity, Root growth rate, Radiation
use efficiency, specific and relative growth rate of leaf area etc. (Table 1).
Plant growth is simulated by a Thermal unit scheme. Plant growth and
development is simulated by model on the basis of accumulated degree
days, which is based on the daily maximum and minimum temperature.
Potential crop growth and yield are usually not achieved because of
constraints imposed by the plant environment, such as moisture, nitrogen
or temperature stresses. Crop yield may be reduced through moisture-
stress-induced reductions in the harvest index. InfoCrop - Wheat re-
quires the user to input information on weather, soil, field management,
and agro-ecological region. The daily on-site weather data consists of
precipitation, maximum and minimum temperature, solar radiation,
relative humidity, and wind speed. The soil profile is divided into three
layers. InfoCrop - Wheat requires layer depth, bulk density (BD), wilting
Min Max

ation 60 70

ation to 50% Flowering 750 1085

lowering to Maturity 373 393

20 30

35 50

0.5 1.5

25 30

2.75 2.8

0.0017 0.0022

eaf area 0.005 0.008

ves 0.8 1.2

leaves at flowering 0.4 0.8

an setting to low temp 0 1.5

an setting to high temp 0 1.5

eight 41.9 54.5

umber/m2 to dry matter during storage organ formation 13300 30000

ge organ 0.01 0.03

http://ASP.net


Table 2. Detailed attributes of the locations used in the present study.

Latitude Longitude Altitude
(m)

Agro ecological sub
region

Agro climatic region
(Planning commission)

Agro climatic zone
(NARP)

Soil-type Avg solar
radiation
(MJ m�2)

Avg max
temp
(oC)

Avg min
temp
(oC)

Total annual
rainfall
(mm)

(A) Delhi

28.38 77.12 238 hot, dry, semi-arid
ecological sub region
(4.1)

Trans Gangetic Plain
region (VI)

Western Zone (HR-2) Sandy Loam 16697 30.95 17.83 634.41

(B) Dharwad

15.43 75.11 678 hot dry sub humid (6.4) Southern Plateau and
Hills Region (X)

Northern Transitional
Zone (KA-8)

clay 21837 31.77 19.72 683.23

(C) Indore

22.61 75.83 557 Semi-arid ecological sub
region (5.2)

Central plateau (IX) Malawa plateau Agro
climatic Zone (MP-10)

clay 19051 32.10 18.48 900.49

(D) Ranchi

23.35 85.33 629 Hot Sub humid ecological
sub region (12.3)

Eastern Plateau And Hills
Region (VII)

Central And North
Eastern Plateau Zone (BI-
4)

clay loam 18806 29.42 16.43 1467.28
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point (WP), field capacity (FC), percentage of sand, silt and clay, pH, and
percentage of organic C content.
2.3. Uncertainty and sensitivity analysis

2.3.1. Agro- ecological region and analysis settings
Uncertainty and sensitivity analysis of the wheat crop characterised

in the present study encompassed a sum of 1440 treatments due to four
different ecological regions (Table 2), four production conditions (i)
Potential, (ii) moisture stress – one irrigation at CRI stage; (iii) high
temperatures stress – normal þ3 �C and (iv) high temperature and
moisture stress with 10 years of weather data at each agro-ecological
region, three planting dates and three seed rates. The investigation was
done for wheat (Triticum Aestivum L.) crop. Exact weather and soil con-
ditions at the four different agro-ecological regions are given in Figure 1
and Table 2, which reveals a pattern of decrease in maximum and
Figure 1. Map showing the locations used in this study.
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minimum temperatures with decrease in latitude. The planting dates
were adopted from Indian Institute of Wheat and Barley Research
(IIWBR, India) publication on usual planting dates in India (Anonymous,
2013). Planting densities were 120, 240 and 360 plants m�2, respectively
corresponding to a seed rate of 50, 100 and 150 kg/ha (Ram et al. 2013).
Soil characteristics and daily weather data were taken from the indi-
vidual research station for all the four locations (Delhi, Dharwad, Indore
and Ranchi) in different agro-ecological regions. Soil survey information
from the National Bureau of Soil Survey and Land Use Planning
(NBSS&LUP) and data from individual research station on properties of
soil profiles was used in the simulation model, for all the four
agro-ecological regions. Weather data were collected from the observed
meteorological weather station located in these agro-ecological regions.

2.3.2. Steps involved in uncertainty and sensitivity analysis
The uncertainty and sensitivity analysis focused on the influence of

cultivar parameter uncertainty on the ranking of cultivar parameters and
the variability in model outputs. This was executed by means of a Monte
Carlo method comprising four steps, reiterated for every treatment and
cultivar. The foremost step comprised of describing a probability distri-
bution for individual cultivar parameter. The triangular distribution was
assumed for all the seventeen cultivar parameters based on expert
judgment, due to the following reasons (Wang et al., 2005): (1) it is
challenging to define the authentic form of the probability distribution
function (PDF) since it is largely not possible to gather a huge, random
sample to test several PDFs for their capability to define the uncertainty
in parameters; (2) understanding the means and variances of the input
parameters is very much required than understanding the precise PDFs
(Haan et al., 1998). The succeeding section describes the approach for
creating synthetic data, using the probability distributions and ranges of
some of the cultivar parameters. In the next step, depending on the sta-
tistical distributions and the correlation construct outlined in the previ-
ous step, we acquired, a Latin Hypercube (LH) sample of the cultivar
parameters (McKay et al., 1979). For interrelated cultivar parameters
(Stein, 1987), a Stein's approach for attaining a LH sample for dependent
variables was adopted. In the succeeding step, the model was gauged for
every combination of cultivar parameter. For subsequent investigation
eight final outputs of the model were chosen namely, final total dry
matter (TDM), final grain yield (YIELD), crop duration (DAS), maximum
leaf area index (MAXLAI), crop growth rate (GCROP), grain number (G
No.), grain weight (WGRAIN), root weight (WRT). At the end, the un-
certainty in model outputs was measured, along with the sensitivity of
the model outputs to individual cultivar parameter (Figure 2).

Variances along with the means of the resultant distributions besides
the cumulative distribution functions (CDFs), were generally used to
categorize uncertainty in model outputs (Krishnan and Aggarwal 2017;



Figure 2. Steps involved in the uncertainty and sensitivity analysis.
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Helton et al., 2005). Sensitivity of a particular model output to a cultivar
parameter was estimated by means of a partial rank correlation coeffi-
cient (Marino et al., 2008). Greater the definite value of the Partial Rank
Correlation Coefficient (PRCC) the greater sensitive is the model output
to the parameter characterised. The PRCC was considered significantly
different from 0, when the p-value from the PRCC test was lesser than a
primary level of 0.01. Changes in PRCC due to cultivar parameter rank-
ings between any two treatments were determined by means of the
Table 3. Treatments considered for generating the synthetic data.

Treatments Details

Locations (India, 4 levels) Semi-arid region -Delhi (A),
Semi-arid region-Indore (C) a

Planting dates (3 levels)

Delhi

Dharwad

Indore

Ranchi

Seed rate (kg/ha) (3) 87.5, 100, 125

Year (10 levels) 2008 to 2017

Irrigation (2 levels) Potential, Moisture stress (Irr

Temperature stress (2 levels) stress Normal, þ2 �C

Total number of treatments (4 � 3 � 10 � 2 � 2) 1440

Total runs (1440 � 1000) 1440000
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top-down concordance coefficient (TDCC) (Savage, 1956; Iman and
Conover, 1987; Marino et al., 2008). When the p-value ensuing from the
top-down concordance coefficient (TDCC) test was lesser than a primary
level of 0.05, then rankings were taken in a top-down sense. Changes in
PRCC due to cultivar parameter rankings within two treatments were
examined by means of TDCC.

The total number of model runs was decided by executing the model
for wheat crop at one agro-ecological region (IARI, Delhi) for numerous
sample dimensions within 100 and 10,000 executions and characterising
the stability of model outcomes. For determining any statistically
important changes in rankings obtained at diverse sample sizes from the
TDCC investigation, the 10,000 model executions were considered as a
reference. In this study, it was observed that within 100 and 500 exe-
cutions, the sample size-caused increase in mean total dry matter of up to
7%. At the end to assure stability in the investigation a sample size of
1,000 model executions was selected that provided a sum of 1,440,000
model estimations (for the entire 1440 treatments) for wheat crop.

2.3.3. Cultivar data
Computer based test was generated to understand the interactions

within the cultivar parameters: TTGERM, TTVG, TTGF, TPOPT, TPMAXD,
PHOTOSENS, ZRTPOT, RUE, SLA, RGRPOT, IndexGreen, KDFMAX, Sen-
sLowTemp, SensHighTemp, POTGWT, GNOCF and NMAXGR. The com-
puter experiment considered inputs such as cultivar, agro-ecological
regions, and plant population as experimental factors (Table 3). The crop
simulations were planting date, performed at potential production con-
dition using web InfoCrop - Wheat model. The InfoCrop database (these
are not model generated but created by researchers as a database, from
different field observations) was used to get the extents for the genetic
coefficients of the cultivars given in Table 1. DAS, YIELD, TDM, MAXLAI,
ZRT, GCROP, GNO, WGRAIN and WRT were computed directly from the
outputs given by the computer test. Normality from the kutisis and
skewness of data was evaluated using the D'Agostino-Pearson's chi-square
test (Zar, 1999). Later it was used to examine the hypothesis of normality
in the cultivar parameters obtained from synthetic data.When the p-value
from the test was greater than 0.05, the parameters or their transformed
versions were considered as normal.

2.4. Application of sensitivity analysis to simulate wheat yield with the
most sensitive cultivar parameters

2.4.1. Field experiment
Results from the sensitivity analysis were used to simulate the wheat

yield with the most sensitive cultivar parameters among all the cultivar
parameters listed in Table 1. Out of the seventeen cultivar parameters
used in the web based InfoCrop model six parameters namely TPOPT,
Hot dry sub humid region -Dharwad (B),
nd Hot sub humid region -Ranchi (D)

Early Med Late

18-Oct 08-Nov 29-Nov

18-Oct 08-Nov 29-Nov

25-Oct 15-Nov 06-Dec

25-Oct 21-Nov 18-Dec

igation at CRI stage only)
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Figure 3. Calibration of Web-InfoCrop for (a) anthesis date, (b) LAI, (c) biomass and (d) yield.
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TTVG, KDFMAX, GNOCF, POTGWT and PHOTOSENS were concluded as
the most sensitive parameters. The web based InfoCrop model was then
run with ten wheat cultivars (HD-2987, HD-77, PBW-343, PBW-175, HD-
2967, HD-2781, HD-2985, HD-3043, C-306, PBW-502) grown under
irrigated condition (with five irrigations at CRI, Tillering, Jointing, Boot
leaf stage, Flowering and grain filling stages) and with recommended
dose of nitrogen (150 kg/ha equal split at sowing, CRI and Booting
stages). Field experiments were conducted during 2014–17 (for three
years) to characterise the grain yield for wheat crop, in the experimental
farm of Indian Agricultural Research Institute, New Delhi located at
28◦35 N latitude, 77◦12 E longitude and at an altitude of 228.16 m
above mean sea level.
Table 4. Parameters for the most sensitive cultivar parameters.

Parameters TTVG
oC days

TPOPT
oC

KDFMAX
ha soil/ha leaf fr

1 HD-2987 1012 25 0.52

2 HD-77 957 26 0.49

3 PBW-343 1067 26 0.55

4 PBW-175 883 26 0.45

5 HD-2967 975 26 0.5

6 HD-2781 1159 25 0.6

7 HD-2985 1030 26 0.53

8 HD-3043 883 26 0.45

9 C-306 1122 25 0.58

10 PBW-502 1178 26 0.61
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2.4.2. Calibration and validation
The model was calibrated (Figure 3) with the most sensitive

cultivar parameters namely TPOPT, TTVG, KDFMAX, GNOCF,
POTGWT and PHOTOSENS from the experiment conducted during
2014–15 for these cultivars. Other cultivar parameters were taken as
default with slight adjustments within the range. The cultivar pa-
rameters used in the model are as given in Table 4. The calibrated
model was then validated (Figure 4) for grain yield using the observed
wheat yield (2015–16 and 2016–17). During calibration all the pa-
rameters other than LAI were over simulated, but during validation
yield was better simulated than anthesis and biomass, this is because
we have considered the calibration and validation for ten different
action
POTGWT
(mg/grain)

GNOCF
storage organ/kg/day

PHOTOSENS

46.8 17100 1

47.5 13500 1

45 22400 1

47 14500 1

46 24000 1

48 12000 1

45 20000 1

47 13700 1

46.5 18500 1

47 22000 1
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wheat cultivars which differ considerably in their duration and
biomass.

3. Results

3.1. Uncertainty analysis

3.1.1. General influence of cultivar parameter uncertainty
Cultivar parameter uncertainty caused potential model output ranges

to vary: for total dry matter 0.5 t ha�1 to 20.327 t ha�1, for grain yield
0.012 t ha�1 to 10.31 t ha�1 and crop duration 59–171 days, when all
agro-ecological regions and years were considered. Under moisture stress
condition maximum total dry matter reached 14.48 t ha�1, 14.29 t ha�1,
13.44 t ha�1 and 17.266 t ha�1 respectively in Delhi, Dharwad, Indore
and Ranchi respectively. Under High moisture stress conditions, limited
total dry matter values were simulated in Ranchi due to the high mean
annual rainfall at this agro-ecological region (Table 2), which implied
that the soils besides the distribution of rainfall possibly supported more
influence on the effects of moisture stress. In general, uncertainty in
cultivar parameters alone resulted in the inconsistency in model outputs.
In the subsequent sections, we have explained the variations in the in-
fluence of cultivar parameter uncertainty as determined by cultivar and
treatments.

3.1.2. Evaluation at potential level among years
Depending on the agro-ecological region, the means of potential total

dry matter distributions ranged within 15.42 t ha�1 (Indore) and 20.327 t
ha�1 (Delhi) (Table 5). This variation was within 3.5 t ha�1 and 8.85 t
ha�1 at the similar respective agro-ecological regions, for the standard
deviations of the distributions of total dry matter. Dissimilarities among
the years were more distinct in agro-ecological regions at higher lati-
tudes. The variation, (with increasing latitude) between the mean po-
tential total dry matter in the maximum and minimum productive year
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Figure 4. Validation of Web-InfoCrop model for (a)
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was observed to be 1.5 t ha�1, 1.8 t ha�1, 2.4 t ha�1 and 2.8 t ha�1 in
Delhi, Ranchi, Indore and Dharwad respectively. Uncertainties in the
allocations of total dry matter, as quantified by the standard deviations,
related with parameter uncertainty were also greater at higher latitudes.
This shows that, total dry matter levels were actually stable, in spite of
being low in Dharwad. The standard deviation of potential total dry
matter for the year with maximum variability contrasted from the most
stable year was 1.4 t ha�1, 1.9 t ha�1, 2.1 t ha�1, and 2.3 t ha�1, in
Dharwad, Indore, Ranchi and Delhi respectively. Although inter-annual
changes in the standard deviations and means of the distributions of
potential total dry matter were obviously dependent on latitude, their
distributions were least influenced by agro-ecological region (Figure 5).
Irrespective of the year under consideration, the coefficient of variation
(CV) of potential total dry matter was nearly 42% in Dharwad, Indore and
Ranchi. Delhi showed the highest CV range, 31–45% (subjected to the
year).

3.1.3. Effect of growth conditions
As anticipated, the simulation of temperature stress, moisture stress

and combination of both (moisture and temperature stress) lead to a
significant decrease in the total dry matter and greater variability
within the different years (Figure 5C and D). At all agro-ecological
regions, potential cumulative distribution functions (CDFs) were more
similar than moisture stress or high temperature stress and their com-
bination of both moisture and high temperature CDFs, recommending
that in the occurrence of stress whether moisture or temperature stress,
final total dry matter uncertainty was much related to the year of study.
Similarly, for potential production, among the years considered in this
study, the mean total dry matter gap increased with the increase in
latitude. This indicate that throughout the years of study, total dry
matter under moisture stress was correspondingly more stable in
Dharwad but highly variable in Delhi. Dissimilarities in mean total dry
matter between the years with minimum and maximum rainfall were
0
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Table 5. Values of grain yield, total dry matter and crop duration, based on 1440000 simulations (over 10 years of the study) for wheat.

Delhi Dharwad Indore Ranchi

Max Min Max Min Max Min Max Min

DAS (days)

P 171 70 140 63 147 67 155 80

W 163 66 135 59 132 66 153 81

PT 163 65 153 62 149 63 150 71

WT 156 63 146 59 136 62 148 72

Yield (kg/ha)

P 10310.2 395.39 6640.7 335.95 7747.2 451.02 9148.1 117.43

W 6950.7 42.41 6089.3 182.65 6405.4 238.04 8930.6 169.91

PT 9184.4 311.46 3604.7 7.49 6600.4 181.80 8226.0 147.75

WT 6545.9 80.23 3462.1 12.00 5675.6 86.31 7956.1 317.37

TDM (kg/ha)

P 20327.6 3090 15921.1 1212.9 15420.3 2445.0 18140.3 4814.8

W 14484.4 2562.3 14291.6 1058.7 13440.1 2006.3 17266.9 6023.1

PT 18600.8 991.71 10698.4 500.07 14438.9 819.7 16644.2 4581.6

WT 13436 776.19 10901.4 505.28 12647.2 731.39 16208.7 5224.7
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about 3.6 times more than at potential production. Similarly, greater
variability was observed in every individual distribution (Fig. 5C and
D), Dharwad, had a high (82%) Coefficients of variations. Under
moisture-stress conditions most CVs in total dry matter were higher
than the observed (42%) at potential production. Inconsistency in
Figure 5. Cumulative distribution functions of wheat total dry matter over the 10 yea
Dharwad (B), Semi-arid region-Indore (C) and Hot Sub humid region -Ranchi (D). T
signifies one of the 10 years). P ¼ Potential, W ¼ water-limited, T ¼ high temperat
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rainfall at each agro-ecological region and soil variability within agro-
ecological regions might be the main cause for the interactions between
growth condition and agro-ecological region. In general, wheat grain
yield at all agro-ecological regions showed parallel changes in uncer-
tainty outcomes (Figure 5).
rs of the study in hot, dry, semi-arid region -Delhi (A), hot dry sub humid region-
he influence of crop parameter uncertainty is represented by each line (which
ure WT ¼ combined water and high temperature stress conditions.



Figure 6. Cumulative distribution functions of wheat total crop duration over the 10 years of the study in hot, dry, semi-arid region -Delhi (A), hot dry sub humid
region-Dharwad (B), Semi-arid region-Indore (C) and Hot Sub humid region -Ranchi (D). Each line represents one of the 10 years and shows the effect of crop
parameter uncertainty. P ¼ Potential, W ¼ water-limited, T ¼ high temperature WT ¼ combined water and high temperature stress conditions.
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3.1.4. Crop duration uncertainty
This study showed that, for the simulation of wheat crops, growth

condition did not influence the crop duration uncertainty outcomes, as
the influence of moisture stress on growth period was not significantly
modelled (Figure 6). In addition, uncertainty in crop duration was more
evident in Delhi and Ranchi than in Dharwad due to the stability in crop
duration both across and within years. By means of the yearly distribu-
tions of crop duration, the minimum and maximum duration differed by
1 day in Dharwad and Indore. On the other hand, this difference was 16
days, in Delhi. The yearly distributions were depicted by CVs stretching
from 14 to 16% in Dharwad and 7–20% in Delhi.
3.2. Sensitivity analysis

3.2.1. Influence of year on parameter ranking
For all model outputs at all agro-ecological regions, ranking of

cultivar parameters was not influenced by the year of study. This infer-
ence indicates that variations in the yearly distributions of model outputs
(Figure 5) did not reveal considerable differences in ranking of cultivar
parameters. For each combination of agro-ecological region and crop
growth condition, the TDCC test of differences within parameter rank-
ings in various years gave a p-value predominantly lesser than 0.05.
Thus, in this study the stability of parameter rankings showed that model
output sensitivity to cultivar parameter uncertainty was orthogonal to
weather variability among the different years considered.

3.2.2. Association between cultivar parameter and yield
PRCC values for the most statistically significant cultivar parameters

for final grain yield, for all the ten years of the simulation at all the four
8

crop growth conditions and four agro-ecological regions is given in
Figure 7. At all the agro-ecological regions considered in this study,
under moisture stress condition, KDFMAXwas the most essential cultivar
parameter for yield, with the maximum PRCC of 0.82, on the basis of two
important causes. First, KDFMAX defines the amount of leaf canopy cover
and it also decides the amount of solar radiation available for canopy
photosynthesis, therefore had an important role in the estimation of crop
moisture stress. But in case of the crop temperature stress, the important
parameter is TTVG and not KDFMAX. The order of the remaining pa-
rameters, TPMAXD, RGRPOT, RUE, SensHighTemp, TTGERM, Sen-
sLowTemp, TTGF, ZRTPOT, IndexGreen varied with agro-ecological
region. In general TPOPT seemed to be more influential at lower latitudes
(Dharwad and Indore) while PHOTOSENS was more significant at high
latitudes (Delhi and Ranchi). Rankings for grain yield and total dry
matter were analogous. The main contrast within these two model out-
puts was that for grain yield, an important cultivar parameter, GNOCF,
appeared with maximum PRCC values of 0.70 in Ranchi (Figure 7), this
was anticipated as the storage organ is an important component of grain
yield. This reveals the fact that irrespective of the agro-ecological region
and growth condition TPOPT, TPMAXD, RGRPOT and NMAXGR were
negatively associated with grain yield while TTVG, KDFMAX, POTGWT,
and GNOCF were positively associated.
3.2.3. Association between cultivar parameter and total dry matter
At all the crop growth conditions namely, potential, moisture stress,

high temperature and moisture & high temperature stress conditions,
TTGERM, IndexGreen, SensLowTemp, SensHighTemp were not signifi-
cant (less than 0.02 p-value from PRCC test) on total dry matter at harvest
in all four agro-ecological regions (Figure 8). In Delhi and Ranchi, the
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sequence of preference of the parameters at potential production con-
dition was TTVG, PHOTOSENS, TPOPT, GNOCF, NMAXGR, KDFMAX,
SLA, POTGWT, TPMAXD, RGRPOT, RUE, SensHighTemp, TTGERM,
SensLowTemp, TTGF, ZRTPOT, and IndexGreen. An analogues ranking
was perceived in Indore and Dharwad. Total dry matter showed a posi-
tive relationship with TTVG, KDFMAX and GNOCF. However, was
negatively related to TPOPT and PHOTOSENS (Figure 8).

3.2.4. Association between cultivar parameter and crop duration
Growth condition did not affect crop duration sensitivity because as

stated before for uncertainty analysis, Web InfoCrop - wheat even though
accounts for the influence of moisture stress on growth duration, results
were not significant. Even though the sensitive parameters were not
influenced by agro-ecological region, but their rankings were. Cultivar
parameters with PRCC values greater or equal to 0.1 (Figure 9) were
PHOTOSENS, TTVG, TPOPT, GNOCF, POTGWT, TPMAXD, SLA,
NMAXGR, RGRPOT, KDFMAX, SensHighTemp, SensLowTemp, Index-
Green, ZRTPOT, RUE, TTGERM, TTGF in this order in Delhi. However at
Indore and Dharwad, TTVG was ranked second instead, underlying the
influence of TTVG in warmer regions. For example, in Delhi and Ranchi,
TTVG had a PRCC of 0.33 while PHOTOSENS had a PRCC of 0.434. In
Dharwad, the order of significance of the PRCC was opposite with 0.29
for PHOTOSENS and 0.33 for TTVG. Likewise, TOPT, TPMAXD and
PHOTOSENS were negatively related to crop duration while TTVG,
POTGWT, GNOCF and NMAXGRwere positively related to crop duration
Figure 7. Partial rank correlation coefficients among potential (P), water-limited (W)
wheat grain yield and InfoCrop-cultivar parameters in semi-arid region -Delhi (A),
humid region - Ranchi (D) (P < 0.05 ¼ 0.051, P < 0.01 ¼ 0.066).
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(Figure 9). The uniformity of these associations across agro-ecological
regions was an evidence, to prove that they revealed the model struc-
ture rather than a particular agro-ecological region. The intensity of these
associations differed, yet, significance of each parameter in the sensi-
tivity analysis was characterized based on agro-ecological region, growth
condition and model output.
3.3. Simulation of wheat yield with the most sensitive cultivar parameters

Crop simulations for ten cultivars of wheat were conducted in two
ways. First crop simulation by incorporating all the cultivar parameters
of the model and second by incorporating only the most sensitive
cultivar parameters namely TPOPT, TTVG, KDFMAX, GNOCF, POTGWT
and PHOTOSENS, with the model based default values for the rest of the
cultivar parameters. In both the cases the model was initialized prior to
wheat sowing in the cropping season of 2014–15. The cultivar param-
eters used for the simulation of Web InfoCrop - wheat are given in
Table 4. In both the cases for calibrating the Web InfoCrop - wheat
model, the parameters were adjusted for the dataset of 2014–15 for all
cultivars. The calibrated model was implemented to generate data on
wheat yield.

After calibration of the model for wheat 2014–15, it was validated for
2015–16 and 2016–17, in both sets of simulation (First case: incorpo-
rating all the cultivar parameters of the model and second case: by
, temperature elevated (T), water limited and temperature elevated (WT) among
hot dry sub humid region-Dharwad (B), Semi-arid region - Indore (C) Hot Sub



Figure 8. Correlation of cultivar parameters with Biomass (P < 0.05 ¼ 0.051, P < 0.01 ¼ 0.066).
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incorporating only the most sensitive cultivar parameters). Comparisons
of observed and model simulated results with respect to yield are shown
in the Figure 10. Evaluation of model performance was also carried out
by using different statistical tools.

The model responded well to both types of simulation with significant
R2 (~0.9) values between observed and predicted. Also, other statistical
tools, viz., RMSE (<8%), MAE (~6%) andMBE (~6%) were much higher
under both simulation using all cultivar parameters and with only the
sensitized cultivar parameters (Table 6). RMSE for grain yield was 5.3
and 7.3% of the observed mean. These low values of RMSE indicated that
the Web InfoCrop - wheat model when simulated using most sensitized
cultivar parameters is still accurate at predicting wheat yield. Also, the
higher R2 values (~0.9) for yield indicate that the model is fit for pre-
dicting yield when it is simulated using the most sensitive cultivar
parameters.

4. Discussion

Sensitivity analysis outcomes showed that TTGERM (applied to esti-
mate time of germination and emergence) did not have a substantial
function in the simulation of total dry matter, grain yield or crop duration
within their magnitude of uncertainty. These results were in agreement
with the observations made by previous researchers (Dzotsi et al., 2013)
where thermal time methodology did not simulate germination properly.
Within the operative cultivar parameters selected, they could be classified
into three types: parameters directly associated to total dry matter accu-
mulation (PHOTOSENS, GNOCF, POTGWT, NMAXGR, IndexGreen,
ZRTPOT, RUE), LAI parameters (KDFMAX, SLA, RGRPOT), and temper-
ature parameters (TTVG, TTGERM, TTGF, TPMAXD, SensHighTemp,
10
SensLowTemp, TPOPT). Further, some parameters, on account of their
precise role in defining targeted growth conditions ormodel outputs, they
were always important in those growing conditions. Restricted model
uncertainty and sensitivity of this kind was very much confirmed by Jin
et al. (2018) and by Jones et al. (2012), in their study on uncertainties in
simulating crop performance under low input production systems.

Total dry matter and grain yield were much sensitive to TTVG as this
cultivar parameter structured the transformation of accumulated degree
days into dry matter in the model. Total dry matter and grain yield were
also extremely sensitive to LAI parameters because they demarcated the
maximum ability of the canopy to harness light (KDFMAX). The sensi-
tivity of crop duration to PHOTOSENS and TTVG was primarily because
of the maximum correlation between TPOPT and SLA. In general, crop
duration has been observed to be sensitive to crop growth parameters in
crop models (Pathak et al., 2007). Similarly, in this investigation, accu-
mulation of thermal time and the temperature parameters were largely
dominant on crop duration. Confalonieri et al. (2010) observed TTVG to
be the most important cultivar parameters, in their study. The large
sensitivity of thermal time by means of the base temperature was simi-
larly emphasized in the sensitivity analysis by Dzotsi et al. (2013);
Richter et al. (2010), they described the parameter to define the thermal
time to be of significant prominence in a wheat crop model.

This investigation based on Sensitivity Analysis, clearly indicate that
a small number of parameters in crop model are extremely sensitive, on
the other hand many of the parameters have a sensitivity that is two or
three orders of degree lesser (Jing et al., 2013; Liu et al., 2019; Jabloun
et al., 2018). We also identified the most salient activities such as leaf
area dynamics and phenological growth for healthy and sustained plant
development. Physiological and morphological parameters were low in



Figure 9. Correlation of cultivar parameters with yield (P < 0.05 ¼ 0.051, P < 0.01 ¼ 0.066).
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the rank but were sensitive to environmental modifications on account of
agro-ecological region and stress effects. In the four dissimilar
agro-ecological regions characterised in this study, the outcomes of SA
are obviously diverse for the same crop however in different growing and
stress conditions.

This agrees with the inference of Jabloun et al. (2018) and Francos
et al. (2003) that sensitivity denotes to particular conditions and is not
a common feature of a model, despite, whether a specific or common
technique is used to determine the parameter sensitivity. Nevertheless,
both the environmental and the methodological effects on the SA did
not produce a significant difference in the ranking of the parameters in
this study, therefore conforming the statement that specific parameter
classes and particular parameters are the most crucial for a particular
wheat cultivar in the four diverse tested agro-ecological regions and
Figure 10. Validation of observed yield in simulation by inputting (A) all t
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varied stress conditions. The results obtained from executing the
model for simulating the wheat yield clearly showed that the simu-
lation of wheat yield using sensitive cultivar parameters are compa-
rable to those of the simulation results using all the cultivar
parameters.

Present investigation focused mainly on cultivar parameter uncer-
tainty and examined the effects of growth conditions and environmental
conditions on model outputs. Uncertainty in model inputs owing to lo-
cations was not quantified by us owing to spatial variations in soil
properties and tremendously varying weather inputs like rainfall. Effects
of these inputs to the model output uncertainty in general could be
estimated only when they were deemed to be uncertain. Besides, the
influence of longer period weather variability demonstrated the impor-
tance of the year on the outcomes of uncertainty and sensitivity analysis
he cultivar parameters (B) only the most sensitive cultivar parameters.



Table 6. Evaluation of yield simulation outputs using different statistical tools.

All cultivar
parameter

Sensitised cultivar
parameter

1 Observed mean (t ha�1) 4.449

2 Predicted mean (t ha�1) 4.543 4.379

3 MAE (t ha�1) 0.261 0.289

4 MAE (%) 5.8 6.6

5 R2 0.938 0.895

6 RMSE (t ha�1) 0.241 0.319

7 RMSE (%) 5.3 7.3

8 ME (%) 8.92 9.43

9 MBE (t ha�1) 0.681 0.657

10 MBE (%) 1.5 1.6
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(Jing et al., 2013; Liu et al., 2019; Jabloun et al., 2018). Results of this
study reinforced the identification of parameters for which precise
measurement is required for dependable simulation of crop performance.
Future work will be on analysing the sensitivity of weather and soil in-
puts within the range of variation characteristic for the study region.
Additional investigation is required on the issues pertaining to sensitivity
analysis (a) the variation of the parameters that are too small in relation
to the mean value; or (b) parameters that are not considered due to a
priori neglection of a process. At the end, parameter selection should not
result in the over-parameterisation of the model. SA should be explored
on the possibility of omitting parameters that are closely linked, com-
plementary, like sequential growth stages, partitioning or phenology.

5. Conclusions

Inconsistency in total dry matter, crop yield and crop duration
simulated by Web InfoCrop - wheat was significantly related to uncer-
tainty in cultivar parameter. While the model adopts basic associations to
characterize dry matter production and LAI, the type and degree of the
associations within cultivar parameters and model outputs were reliable
with characteristic responses of crop growth processes to the environ-
ment. Outcomes of the sensitivity analysis showed that the model's out-
comes to cultivar parameter uncertainty were not influenced by the year
under consideration however was dependent on growth conditions and
agro-ecological regions. A huge number of cultivar parameters were
observed to be prevailing on the model outputs considered with their
relative importance varying with the state considered. As common
practice of crop model involves one or a combination of these conditions,
it is adequate to infer that all 15 significant cultivar parameters are
necessary and vital for accurate crop evaluations. Likewise, inconsistency
in model outputs may be dependent on how the cultivar parameters'
depictions signify the precise parameters' uncertainty. Evaluating
parameter uncertainty extents is usually complicated by the discrepancy
in quantification techniques adopted, may increase measurement and
quantification errors. The representation of cultivar parameter uncer-
tainty through a more multifarious crop model not only increased the
statistical relationships acquired but also assist in the determination of
correlations within cultivar parameters employed in this investigation.
These correlations ascertain, the need for precise combinations of
cultivar parameters for better crop simulations.
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