
RESEARCH ARTICLE

Alterations in metabolic biomarkers and their potential role
in amyotrophic lateral sclerosis
Jin-Yue Li1 , Li-Ying Cui1,2 , Xiao-Han Sun1, Dong-chao Shen1, Xun-Zhe Yang1, Qing Liu1 &
Ming-Sheng Liu1

1Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College,

Beijing, China
2Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, 100730, China

Correspondence

Li-Ying Cui, Department of Neurology,

Peking Union Medical College Hospital,

Chinese Academy of Medical Science &

Peking Union Medical College, Beijing

100730, China. Tel: +86 13701017357; Fax:

+86 01069156371; E-mail:

pumchcuily@yahoo.com

Funding Information

This work was supported by CAMS

Innovation Fund for Medical Sciences (Grant

number: 2021-I2M-1-003), Strategic Priority

Research Program of the Chinese Academy

of Sciences “Biological basis of aging and

therapeutic strategies” (Grant number:

XDB39040100), Chinese Academy of Medical

Science Neuroscience Center Fund “Molecu-

lar diagnosis and pathogenesis of ALS”

(Grant number: 2014xh0601_A322102), and

“Molecular diagnosis and neural network of

ALS” (Grant number: 20141001_A322104).

Received: 10 February 2022; Revised: 5 May

2022; Accepted: 6 May 2022

Annals of Clinical and Translational

Neurology 2022; 9(7): 1027–1038

doi: 10.1002/acn3.51580

Abstract

Background: Metabolic dysfunction has been suggested to be involved in the

pathophysiology of amyotrophic lateral sclerosis (ALS). This study aimed to

investigate the potential role of metabolic biomarkers in the progression of ALS

and understand the possible metabolic mechanisms. Methods: Fifty-two

patients with ALS and 24 normal controls were included, and blood samples

were collected for analysis of metabolic biomarkers. Basal anthropometric mea-

sures, including body composition and clinical features, were measured in ALS

patients. The disease progression rate was calculated using the revised ALS

functional rating scale (ALSFRS-R) during the 6-month follow-up. Results:

ALS patients had higher levels of adipokines (adiponectin, adipsin, resistin, and

visfatin) and other metabolic biomarkers [C-peptide, glucagon, glucagon-like

peptide 1 (GLP-1), gastric inhibitory peptide, and plasminogen activator inhibi-

tor type 1] than controls. Leptin levels in serum were positively correlated with

body mass index, body fat, and visceral fat index (VFI). Adiponectin was posi-

tively correlated with the VFI and showed a positive correlation with the

ALSFRS-R and a negative correlation with baseline disease progression. Patients

with lower body fat, VFI, and fat in limbs showed faster disease progression

during follow-ups. Lower leptin and adiponectin levels were correlated with fas-

ter disease progression. After adjusting for confounders, lower adiponectin

levels and higher visfatin levels were independently correlated with faster disease

progression. Interpretation: The current study found altered levels of metabolic

biomarkers in ALS patients, which may play a role in ALS pathogenesis. Adipo-

nectin and visfatin represent potential biomarkers for prediction of disease pro-

gression in ALS.

Introduction

Amyotrophic lateral sclerosis (ALS) is a lethal neurodegen-

erative disease characterized by progressive loss of motor

neurons. Most patients present with dysarthria, dysphagia,

or muscle weakness at the beginning, which progresses to

paralysis, severe disability, and eventual death within 2–
5 years. There are many studies and hypotheses on the

pathophysiological process of this disease, but the underly-

ing mechanism remains unclear. Accumulating evidence

suggests defective energy metabolism in ALS patients,

including hypermetabolism, mitochondrial dysfunction,

and insufficient energy supply,1–3 which contributes to

weight loss and a poor prognosis.2,4

Animal experimental studies have demonstrated the

crucial role of energy metabolism disturbance in the

pathogenesis of ALS.5–8 Transgenic ALS mice showed

impaired glucose homeostasis due to altered glucose

uptake in skeletal muscle and impaired glucose toler-

ance,5,6 along with increased lipolysis and lipid peroxida-

tion.7,8 Based on these findings, dietary therapy, such as a

high-energy/high-fat diet and intake of medium-chain

fatty acids or beta-hydroxybutyrate, has shown therapeu-

tic potential in animal models and ALS patients.9,10
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Lipid metabolism disorders have been widely reported

in patients with ALS, presenting with hypercholes-

terolemia, hypertriglyceridemia, and other mixed dyslipi-

demias.11,12 Genome-wide association studies also

suggested the contribution of low-density lipoprotein

cholesterol and total cholesterol risk alleles in the occur-

rence of ALS,13 but controversy still exists concerning the

prognostic role of dyslipidemia in ALS patients.3,14,15

Adipokines are a group of factors released or secreted

by adipose tissue and have many physiological functions,

such as fat distribution, energy expenditure, appetite and

satiety regulation, insulin secretion and sensitivity, and

inflammation.16 Given that some adipokines, such as lep-

tin and adiponectin, can cross the blood–brain barrier

and function in the brain, understanding the role of

adipokines in the pathophysiology of ALS may illustrate

the mechanism of metabolic dysfunction in ALS.17

Adipokines may not only play a pivotal role in the energy

metabolism of neurodegenerative disorders,18,19 but also

impact brain function and homeostasis through neuroin-

flammation or other signaling pathways.17,20

As impaired energy homeostasis is one of the major

features of ALS, understanding the underlying mechanism

might provide potential therapeutic directions and strate-

gies. Thus, we aimed to measure the levels of specific

adipokines (adiponectin, adipsin, leptin, resistin, and vis-

fatin) and other metabolic factors in ALS patients. We

further explored the correlation between metabolic factors

and clinical features and the potential impact on disease

progression, hoping to understand the underlying meta-

bolic mechanism in ALS.

Methods

Participants

Fifty-two subjects were recruited between October 2020

and January 2022 among patients newly diagnosed with

ALS in the Neurology Department of Peking Union Med-

ical College Hospital. All the patients met the revised El

Escorial diagnostic criteria of clinically definite, probable,

or laboratory-supported probable ALS21 and underwent

neuropsychological assessments to exclude cognitive or

behavioral dysfunction. The study also included 24

healthy participants to compare adipokines and other

metabolic biomarkers. All the participants denied a his-

tory of malignant disease, acute infection, acute or severe

metabolic disease, or dieting. This study was approved by

the ethics committees of Clinical Research of Peking

Union Medical College Hospital (Beijing, China) and was

conducted according to the ethical guidelines of the Dec-

laration of Helsinki. All the participants gave their written

informed consent.

Demographic data and a medical history of metabolic

disorders, such as diabetes or dyslipidemia, were obtained

from all participants during the first visit. Clinical features

were also obtained from ALS patients at diagnosis,

including the age of onset, disease duration, site of onset,

and revised ALS functional rating scale (ALSFRS-R) score.

The reduction in ALSFRS-R since symptom onset was

also calculated by the formula DFRS = (48 � baseline

ALSFRS-R)/disease duration (months; time since disease

onset). Appetite was measured using the Council on

Nutrition Appetite Questionnaire (CNAQ), with a score

≤28 defined as loss of appetite.22 Anthropometric charac-

teristics were obtained at baseline, including body weight,

height, body mass index (BMI), waist-hip ratio (WHR),

and body composition. Parameters of body composition

were measured by a body composition analyzer (Tong-

Fang Health Technology, Beijing, China)23 with the direct

segmental multifrequency bioelectrical impedance analysis

method, providing detailed information on fat-free mass

(FFM), fat mass (FM), visceral fat index (VFI), and fat in

limbs (subcutaneous fat).

All patients with ALS were followed up for 6 months in

outpatient clinics or by telephone. Adverse events, includ-

ing tracheostomy, ventilator dependence, and death, were

recorded. Neurological function at the 6-month follow-up

was evaluated using ALSFRS-R scoring, and the rates of

disease progression (DPR) during follow-up was calculated

using the ALSFRS-R at baseline: DPR = (ALSFRS-R at

follow-up � ALSFRS-R at baseline)/6 (months).

Measurement of adipokines and other
metabolic biomarkers

Blood samples were collected from all 76 participants

using a standardized protocol. Then, the blood was cen-

trifuged for 10 min at 3000g and 4°C to obtain serum.

The samples were transferred immediately into containers

and stored at �80°C until further use. The specific

adipokines (adiponectin, adipsin, leptin, resistin, and vis-

fatin) and other metabolic biomarkers [C-peptide, insulin,

ghrelin, gastric inhibitory peptide (GIP), glucagon-like

peptide 1 (GLP-1), glucagon, and plasminogen activator

inhibitor type 1 (PAI-1)] were analyzed using magnetic

bead-based multiplex assays (2-plex Bio-Plex Pro Human

Adiponectin and Adipsin assay and 10-plex Bio-Plex Pro

Human Diabetes assay from Bio–Rad, Ref. 171A7001 M

and 171A7002 M, CA). For adiponectin and adipsin

assays, samples were prepared with a dilution factor of

1:2500 due to the high physiological concentrations previ-

ously found in humans. For assays other than adiponectin

and adipsin (10-plex Bio-Plex Pro Human Diabetes assay,

Ref. 171A7001 M), serum samples were diluted fourfold

(1:4) for analysis. Measurements were performed on a
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BioPlex 200 system (Bio–Rad Laboratories, CA), and all

the analyses were performed in duplicate. All procedures

and measurements strictly followed the instructions and

directions. The interassay coefficients of variation (CVs)

and intraassay %CVs were both <10%. Magnetic bead-

based multiplex assays offer best-in-class performance in a

single experiment with good sensitivity and reproducibil-

ity24 and have been widely used in a variety of studies.25

Statistical analysis

All statistical analyses were carried out with IBM Statisti-

cal Package for the Social Sciences (SPSS) version 22.0

(Armonk, NY). Categorical variables are expressed as

numbers (percentage) and were compared via chi-squared

analysis or Fisher’s test. Continuous variables that were

normally distributed are expressed as the mean � SD,

while nonparametric variables are expressed as the med-

ian (interquartile range). Student’s t-test or a Mann–
Whitney test was used for comparisons between two

groups. Spearman correlation tests were performed to

assess the association of metabolic biomarkers with body

composition and clinical features. The association

between various adipokines and the rate of disease pro-

gression during follow-ups was further identified by mul-

tivariate linear regression analysis to correct for potential

confounding factors, including the age of onset and dis-

ease duration. A p value lower than 0.05 was considered

statistically significant. We used the step-down Bonferroni

correction (Holm) and Benjamini Hochberg (BH)

method to adjust for multiple comparisons.

Results

Comparison of metabolic biomarkers
between patients and controls

Baseline demographic data and the medical history of

metabolic disorders are shown in Table 1. The mean age

at enrolment was 50.40 � 10.90 years old in patients with

ALS, of which 29 (55.8%) were men and 23 (44.2%) were

women. Age and sex were similar between patients and

controls. Few participants had a history of diabetes or

hyperlipidemia.

When comparing adipokines in patients and controls

(Table 1), we found significant differences in the levels of

adiponectin, adipsin, resistin, and visfatin between the

two groups (p < 0.01). The median level of leptin was

similar between ALS patients and normal controls

(3647.5 pg/mL vs. 4030.3 pg/mL, p = 0.884). The median

level of insulin was also similar in the two groups, while

C-peptide was higher in ALS patients than in controls

(p < 0.05). ALS patients had higher levels of glucagon,

GLP-1, GIP, and PAI-1 than controls (p < 0.05), while

the level of ghrelin was similar between groups (784.5 pg/

mL vs. 819.5 pg/mL, p = 0.531).

The differences in metabolic biomarkers between

patients and controls were still significant after correcting

for multiple comparisons. The levels of adiponectin, adip-

sin, resistin, visfatin, GIP, and GLP-1 were significantly

higher in patients than in controls after Bonferroni step-

down correction (pHolm < 0.05). The levels of adiponec-

tin, adipsin, resistin, visfatin, glucagon, GIP, and GLP-1

were significantly higher in patients than in controls after

Benjamini Hochberg correction (pBH < 0.05).

Correlations between different biomarkers
and anthropometric characteristics

Correlations between different metabolic biomarkers were

analyzed and are shown in Figure 1. Significant correla-

tions were found between leptin and GIP, glucagon, and

PAI-1 (p < 0.05). Resistin was positively correlated with

both GLP-1 and visfatin (p < 0.05). Positive correlations

were also found between visfatin and ghrelin and gluca-

gon (p < 0.05).

The detailed anthropometric characteristics are shown

in Table 2. Compared with men, women had lower body

weight and FFM (p < 0.001), with a higher level of leptin

(6269.0 pg/mL vs. 3303.5 pg/mL, p < 0.001), and gluca-

gon (58.0 pg/mL vs. 50.5 pg/mL, p = 0.001). The differ-

ences in leptin and glucagon were still significant between

male and female patients after correcting for multiple

comparisons (pcorrected < 0.05). Other metabolic biomark-

ers were similar in males and females. Furthermore, we

analyzed the association between metabolic biomarkers

and anthropometric characteristics in patients with ALS.

Leptin was positively associated with BMI, WHR

(p = 0.034, r = 0.295), FM, VFI, and fat in limbs

(p < 0.001, r = 0.532) (Fig. 2A–C). Glucagon and PAI-1

were also positively associated with BMI, FM, and fat in

limbs (p = 0.004, r = 0.389; p = 0.033, r = 0.295;

p = 0.031, r = 0.299 in PAI-1) (Fig. 2D and E). No sig-

nificant correlation was found between visfatin and VFI

(p = 0.063, r = 0.260) or WHR (p = 0.127, r = 0.214). A

positive association was found between VFI and adipo-

nectin (p = 0.036, r = 0.291), glucagon (p < 0.001,

r = 0.586), and GIP (p = 0.06, r = 0.263) (Fig. 2F and

G). However, no significant correlation was found

between metabolic biomarkers and FFM.

Correlation of metabolic biomarkers with
clinical features and disease progression

Of 52 patients with ALS, 11 (21.2%) had bulbar onset,

and 41 (78.8%) had spinal onset (Table 2). Compared
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with patients with spinal onset, those with bulbar onset had

an older age of onset (57.36 � 9.72 years vs.

48.54 � 10.54 years, p = 0.014) and a higher rate of medi-

cal history of hyperlipidemia (18.2% vs. 0%, p = 0.041).

Serum levels of glucagon and PAI-1 were slightly higher in

patients with bulbar onset (p < 0.05, pcorrected >0.05), while
anthropometric features, including BMI and FM, were simi-

lar between the two groups. Six patients had a positive fam-

ily history of ALS, five patients carried SOD1 mutations,

and one patient carried an FUS mutation (Table S1). No

difference in metabolic factors was found between patients

with and without a family history. We also studied the asso-

ciation between metabolic factors and the severity of the

disease. A positive association between ALSFRS-R and adi-

ponectin was found (p < 0.05, Fig. 2H), but no association

was found with other biomarkers (Fig. 2I). However, the

association was not significant after correcting for multiple

comparisons (pcorrected >0.05). The median change in the

ALSFRS-R from symptom onset to baseline (DFRS) was

0.83 (IQR: 0.48–1.05). Moreover, we studied the association

between metabolic biomarkers and changes in the ALSFRS-

R from symptom onset to baseline (DFRS). A significant

association was observed between DFRS and adiponectin

(r = �0.428, p = 0.0012, pcorrected = 0.014 < 0.05; Fig. 2J),

but significant associations between DFRS and other meta-

bolic factors were not observed.

Thirty-three patients with ALS completed the CNAQ

questionnaire, and 12 (36.4%) suffered from loss of appe-

tite. Patients with good appetite had higher body weight

and FFM, but no difference in BMI or body fat was found

between patients with and without loss of appetite. Corre-

lation analysis indicated a positive correlation between

PAI-1 and CNAQ scores (r = 0.366, p = 0.036), while no

correlation was found in other metabolic biomarkers. Lin-

ear regression also did not reveal a significant correlation

between metabolic factors and CNAQ scores, while a

higher ALSFRS-R score was correlated with a better appe-

tite (b = 0.464, p = 0.025, 95% CI: 0.035–0.487).
During the 6-month follow-up, one patient died from

respiratory failure, one patient underwent tracheostomy,

and two patients withdrew from the study. All living

patients were evaluated for ALSFRS-R during follow-ups,

and DPR was calculated for prognostic analysis. The med-

ian DPR was 1.00 during follow-ups (IQR: 0.33–2.42, rang-
ing from 0 to 5.33), by which patients were divided into

two groups to study the factors contributing to disease

progression (Table S2). Patients with rapid disease progres-

sion had lower baseline FM (15.73 � 4.76 kg) and VFI

(9.00 � 2.13 kg) values than those with slow progression

(19.39 � 3.49 kg, 10.63 � 1.40 kg, pcorrected < 0.05). No

significant difference in CNAQ scores was found between

patients with fast or slow disease progression. DPR was

Table 1. Comparison of baseline characteristics and metabolic biomarkers in patients and controls.

Patients (n = 52) Controls (n = 24) p value pHolm pBH

Age (years) 50.40 � 10.90 47.17 � 9.50 0.215

Sex (n, %) 0.139

Male 29 (55.8) 9 (37.5)

Female 23 (44.2) 15 (62.5)

Diabetes (n, %) 5 (9.6) 1 (4.2) 0.388

Hyperlipidemia (n, %) 2 (3.8) 3 (12.5) 0.175

Metabolic biomarkers

Adiponectin (pg/mL) 4945.8 (4579.8, 5194.9) 4417.5 (3488.5, 5064.1) 0.007** 0.049* 0.014*

Adipsin (pg/mL) 305.5 (157.4, 1853.8) 115.0 (87.0, 218.0) <0.001*** 0.0005*** 0.0003***

C-peptide (pg/mL) 2167.8 (1493.6, 3454.8) 1395.0 (818.8, 2443.9) 0.012* 0.072 0.021*

Ghrelin (pg/mL) 784.5 (463.5, 1025.9) 819.5 (555.4, 1055.4) 0.531 1.062 0.58

GIP (pg/mL) 42.0 (37.3, 49.0) 31.3 (26.1, 36.5) <0.001*** <0.001*** <0.001***

GLP-1 (pg/mL) 140.5 (130.5, 161.0) 119.8 (91.4, 136.8) <0.001*** 0.0005*** 0.0002***

Glucagon (pg/mL) 51.5 (48.0, 57.8) 46.0 (36.0, 57.0) 0.031* 0.155 0.047*

Insulin (pg/mL) 1259.8 (802.5, 2749.3) 881.3 (384.8, 2241.3) 0.146 0.438 0.175

Leptin (pg/mL) 3647.5 (2073.4, 7069.3) 4030.3 (2487.6, 6615.8) 0.884 0.884 0.884

PAI-1 (pg/mL) 7791.8 (6731.3, 8286.1) 7129.0 (4630.1, 8050.4) 0.038* 0.152 0.051

Resistin (pg/mL) 3377.8 (2475.9, 4509.8) 2441.0 (2031.5, 3528.0) 0.005** 0.04* 0.012*

Visfatin (pg/mL) 397.3 (336.5, 481.8) 292.5 (193.5, 377.8) <0.001*** 0.0006*** 0.0002***

Values of metabolic biomarkers were shown as medians and interquartile ranges. GIP, gastric inhibitory peptide; GLP-1, glucagon-like peptide 1;

PAI-1, Plasminogen activator inhibitor-1. pHolm = Corrected p values by step-down Bonferroni method. pBH = Corrected p values by Benjamini

Hochberg method.

*p < 0.05.

**p < 0.01.

***p < 0.001.
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negatively associated with leptin and adiponectin (p < 0.05,

Fig. 2K and L), while no association was observed between

other metabolic factors and DPR. However, no significant

correlation was observed between metabolic factors and

DPR after Bonferroni step-down correction or Benjamini

Hochberg correction (pcorrected > 0.05). Multiple regression

analysis showed that visfatin and adiponectin were indepen-

dently associated with DPR after adjusting for confounding

factors, including onset age, disease duration, FM, and VFI

(p < 0.05, Table 3). Considering the effect of sex on meta-

bolism, we performed multiple regression analysis in male

and female patient subgroups. However, no significant asso-

ciation between metabolic factors and disease progression

was found in either subgroup.

Discussion

Recently, growing evidence has indicated that metabolic

dysfunction is correlated with the pathological process of

neurodegenerative diseases, such as Alzheimer’s disease

and ALS, in which adipokines and other metabolic

biomarkers may play a potential role in the onset and

progression of neurological symptoms.19,26 This study

found significant differences in the serum levels of

adipokines and other metabolic biomarkers between ALS

patients and normal controls. The levels of adiponectin,

adipsin, resistin, and visfatin and some feeding-related

peptides, including GLP-1 and GIP, were significantly

higher in patients with ALS than in controls, indicating

the involvement of metabolic dysfunction in ALS.

In this study, serum metabolic biomarkers were found

to be related to detailed body composition in ALS

patients, which is partly in line with previous findings

from healthy individuals and patients with different dis-

eases.27,28 In this study, we found that women had a

higher level of leptin than men, and serum leptin was

positively correlated with body fat, VFI, and BMI. It

should be noted that the serum levels of leptin and BMI

showed a weak positive correlation, while leptin was

highly correlated with total fat. The relationship between

leptin and fat in limbs was more significant than the rela-

tionship between leptin and VFI, indicating the promi-

nent contribution of subcutaneous fat to the leptin serum

concentration.29 Previous epidemiological studies found

sex-dependent differences in the development, clinical fea-

tures, and prognosis of ALS, which is generally explained

by the protective role of sex hormones.30 It has been

reported that female patients are more susceptible to

developing bulbar involvement and cognitive impairment,

especially older women.31 Since leptin functions in diet

regulation and can be affected by sex hormones, we

assumed that the sex-related differences in leptin and fat

mass may be due to the effect of sex hormones in ALS,32

warranting further investigation of the correlation

between diet, body composition, sex hormones, and

metabolism in ALS to understand the mechanism. Adipo-

nectin was also positively correlated with VFI, which

might indicate a correlation between adiponectin and vis-

ceral adipose tissue. In addition to adipokines, other

metabolic biomarkers, such as glucagon, were found to be
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correlated with body composition, which may indicate

extensive involvement of metabolic dysfunction in ALS.

Since impaired glucose metabolism and homeostasis in

ALS are correlated with abnormal insulin reactions,6,33

abnormalities in glucagon levels, and altered glucagon

sensitivity34 may also contribute to the impaired energy

metabolism in ALS. The increased circulating level of glu-

cagon and its relationship with body composition (BMI,

FM, and VFI) that we observed may be explained by the

role of glucagon in regulating lipid metabolism35,36 and

increased energy production from lipid nutrients in

ALS.37,38 However, the significance of this observation

and the precise underlying mechanism is still unknown.

Although adipokines are secreted mostly from adipocytes,

the interaction between adipocytes and other metabolic

peptides and its role in nutritional status in ALS, includ-

ing altered body composition, have not yet been fully elu-

cidated and require further research.

Although patients with ALS had a lower level of leptin

than controls, we did not find a significant difference

between patients and controls, which is inconsistent with

previous research. Ahmed et al.39 showed an increased

level of leptin in ALS patients compared with controls,

while Nagel et al.40 found that ALS patients had signifi-

cantly lower leptin levels than controls. A previous animal

experiment found an upregulation of leptin mRNA levels

in adipose tissue of ALS-related genetic mutant mice

compared with levels in wild-type mice, which continued

to increase as the disease progressed.41 Contrary to the

results at the transcriptional level, the plasma level of lep-

tin was lower in mutant mice than in control mice and

further decreased at the end stage of the disease.41 Due to

the significant association between leptin and adipose tis-

sue, the conflicting results of these studies could be attrib-

uted to differences in the study populations, such as

race42 and body composition. Considering the muscle

and fat wasting that occur during the course of ALS, the

difference in disease duration may also be responsible for

the different findings of serum leptin levels in ALS

patients in previous studies and our results. However,

whether the altered leptin levels in ALS patients are sec-

ondary to changes in body composition or serve as the

primary trigger factor in the pathogenesis of ALS remains

unclear. A population-based study in Germany found that

Table 2. Anthropometric and clinical characteristics in ALS patients.

Patients (n = 52)

Male patients

(n = 29)

Female

patients (n = 23) p value pHolm pBH

Anthropometric characteristics

Height (cm) 167.23 � 6.96 171.83 � 5.06 161.43 � 4.08 <0.001*** <0.001*** <0.001***

Weight (kg) 66.78 � 11.81 72.33 � 11.96 59.78 � 7.00 <0.001*** <0.001*** <0.001***

BMI (kg/m2) 23.83 � 3.12 24.42 � 3.35 23.10 � 2.69 0.13 0.39 0.182

WHR 0.91 � 0.06 0.91 � 0.04 0.92 � 0.08 0.759 0.759 0.759

FFM (kg) 48.97 � 9.54 55.38 � 7.53 40.88 � 4.02 <0.001*** <0.001*** <0.001***

FM (kg) 17.81 � 4.92 16.95 � 5.22 18.9 � 4.37 0.158 0.316 0.184

VFI 9.87 � 2.02 9.48 � 2.03 10.36 � 1.92 0.12 0.48 0.21

Clinical characteristics

Onset age (years) 48.71 � 11.44 49.14 � 11.90 48.17 � 11.07 0.766

Disease duration 12 (8, 19) 11 (8, 19) 13 (9, 20) 0.417

Site of onset (n, %) 0.927

Bulbar 11 (21.2) 6 (20.7) 5 (21.7)

Spinal 41 (78.8) 23 (79.3) 18 (78.3)

ALSFRS-R 37.04 � 6.32 38.24 � 5.21 35.52 � 7.32 0.124

CNAQ score

(n = 19/14)

28.61 � 3.21 28.95 � 3.06 28.14 � 3.46 0.486

Metabolic biomarkers

Glucagon (pg/mL) 51.5 (48.0, 57.8) 50.5 (45.8, 53.0) 58.0 (49.0, 74.0) 0.001** 0.011* 0.006**

Insulin (pg/mL) 1259.8 (802.5, 2749.3) 1213.5 (806.5, 2562.3) 1267.5 (694.5, 3919.0) 0.905 0.91 0.905

Leptin (pg/mL) 3647.5 (2073.4, 7069.3) 3303.5 (1634.8, 3951.0) 6269.0 (3588.0, 10444.0) <0.001*** 0.004** 0.004**

Values of anthropometric characteristics, onset age, ALSFRS-R, and CNAQ score were shown as mean � standard deviation. Values of disease

duration were shown as medians and interquartile ranges. BMI, body mass index; WHR, waist-hip rate; FFM, fat-free mass; FM, fat mass; VFI, vis-

ceral fat index; ALSFRS-R, revised ALS Functional Rating Scale; CNAQ, the Council on Nutrition Appetite Questionnaire. pHolm = Corrected p values

by step-down Bonferroni method. pBH = Corrected p values by Benjamini Hochberg method.

*p < 0.05.

**p < 0.01.

***p < 0.001.
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increased leptin was negatively correlated with the risk of

ALS in the general population, while the correlation was

not significant after adjusting for BMI,40 indicating that

the leptin correlation resulted from the influence of nutri-

tional status. Moreover, an increasing number of studies

have shown that leptin plays a neuroprotective role in

neurodegenerative diseases, including Alzheimer’s disease

and Parkinson’s disease.43 Thus, we hypothesized that the

changes in serum leptin in ALS patients may be secondary

to the nutritional status or pathological state in ALS, but

Figure 2. Correlation of metabolic biomarkers with anthropometric and clinical features. Leptin was positively correlated with BMI (A), FM (B),

and VFI (C). Glucagon was positively correlated with BMI (D), FM (E), and VFI (F). Adiponectin was positively correlated with VFI (G). Adiponectin

was positively correlated with ALSFRS-R (H), while no significant correlation was found between leptin and ALSFRS-R (I). Adiponectin was nega-

tively correlated with DFRS (J) and DPR (K), and leptin was also negatively correlated with DPR (L). BMI, body mass index; FM, fat mass; VFI, vis-

ceral fat index; ALSFRS-R, revised ALS Functional Rating Scale; DFRS, slope of reduction in ALSFRS-R at baseline since symptom onset; DPR, rate

of disease progression during follow-ups.
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the altered serum leptin may be further involved in multi-

ple signaling pathways and play a pivotal role in physio-

logical and pathological processes in ALS. Further

longitudinal studies with larger sample sizes and longer

follow-up periods are needed to investigate the longitudi-

nal changes in leptin and body composition in ALS

patients and confirm a causal relationship between leptin

and nutritional status in ALS.

In addition, we found a weak correlation between

serum leptin and DPR during follow-ups, and the rele-

vance tended to be lost after correcting for multiple com-

parisons or adjusting for covariates. Nagel et al.40 also

suggested that leptin concentrations were positively corre-

lated with the survival rate in ALS patients, indicating

protective effects of leptin in patients with ALS. It has

been widely demonstrated that the serum leptin concen-

tration is strongly correlated with body weight or BMI,

which was also confirmed in this study. As higher body

weight and BMI have been found to be associated with a

lower risk of ALS and better prognosis in ALS

patients,44,45 The positive association between leptin and

prognosis in ALS has been attributed to the protective

effect of nutritional status. However, some previous stud-

ies found that the association of leptin with the DPR and

survival in ALS patients remained significant after adjust-

ing for BMI.40 Thus, there are likely other mechanisms

underlying the potential role of leptin in the pathological

process of ALS. The variable results further suggest that

the function of leptin is complex.

Increasing evidence has revealed that leptin has a wide

range of functions in energy homeostasis, fertility, inflam-

mation, and autoimmunity.46,47 Leptin can also be trans-

ported across the blood–brain barrier and bind to leptin

receptors in the hypothalamus, causing reduced appetite

and food intake.48 In addition, a leptin gene knockout

mouse model with mutant SOD1 showed increased

weight and fat mass, improved neurological function, and

enhanced survival,49 indicating the contribution of leptin

to energy expenditure. Loss of appetite is widely present

in ALS patients; however, no correlation between serum

leptin and appetite was found in this study. One possible

explanation is that leptin functions in different physiolog-

ical processes by binding to leptin receptors in different

tissues, and leptin in cerebrospinal fluid, rather than

serum leptin, may be correlated with appetite and have a

negative effect on the prognosis of ALS. The loss of leptin

receptors in the hypothalamus due to pathological

hypothalamic atrophy and loss of orexin neurons in ALS

patients50 could be another explanation for the conflicting

results. In addition, numerous studies have found that

circulating leptin has a role beyond energy regulation and

can modulate innate immunity and inflammation, includ-

ing inhibiting the function and proliferation of regulatory

T lymphocytes (Tregs).51 Notably, reduced and dysfunc-

tional Tregs have been reported in ALS patients, and

restored Treg function is associated with delayed disease

progression and prolonged survival.52 Thus, the

immunomodulatory effects of serum leptin may be

another interpretation of its protective role in ALS. There

have been relatively few explorations on the role of leptin

in ALS, and the functional complexity of leptin in periph-

eral tissue and the brain may hinder understanding.

Future research will be required to confirm our hypothe-

sis and further determine the mechanism underlying the

association between leptin and the pathogenesis of ALS.

Similarly, several studies have reported that serum adi-

ponectin concentrations are significantly elevated in

patients with ALS.40,53 Our study demonstrated a weakly

positive correlation between adiponectin concentrations

and ALSFRS-R scores, suggesting that adiponectin may

serve as a marker to reflect the severity of the disease.

Moreover, the baseline serum levels of adiponectin were

negatively correlated with both the prebaseline DPR and

the DPR during follow-ups. Although the correlation was

weak between adiponectin and DPR during follow-ups,

the result was still significant after adjusting for covari-

ates. Our findings contrast with those of previous studies

demonstrating that adiponectin does not affect the mor-

tality of ALS patients.40 This discrepancy may be

explained by the heterogeneity of clinical features and

racial differences. Although the correlation between adi-

ponectin and disease progression and prognosis in ALS

patients has been sparsely researched, previous studies on

the biological functions of adiponectin provide some evi-

dence suggesting that adiponectin is beneficial in ALS. As

one of the most abundant adipokines secreted by adipo-

cytes, adiponectin functions in multiple physiological pro-

cesses, including insulin sensitization, glucose regulation,

lipid metabolism, and anti-inflammatory and antiapop-

totic activities.54–56 Animal studies initially found that

Table 3. Multiple regression analyses of disease progression rate.

Variables B Beta p value 95% CI

Onset age 0.032 0.292 0.073 �0.003, 0.068

Disease

duration

�0.01 �0.228 0.133 �0.022, 0.003

Leptin �0.000086 �0.241 0.177 �0.00021, 0.000041

Resistin �0.000147 �0.142 0.346 �0.00046, 0.000165

Visfatin 0.003 0.395 0.015* 0.001, 0.006

Adiponectin �0.001 �0.334 0.017* �0.001, �0.000135

Adipsin �0.000148 �0.1 0.463 �0.001, 0.000256

FM 0.05 0.176 0.617 �0.15, 0.25

VFI �0.147 �0.226 0.506 �0.59, 0.296

FM, fat mass; VFI, visceral fat index.

*p < 0.05.
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adiponectin can increase glucose uptake and enhance fatty

acid oxidation in skeletal muscle cells through the AMPK

signaling pathway, which was further confirmed in

human tissue.57,58 Since energy metabolism dysfunction,

such as impaired glucose and increased lipid utilization,

has been demonstrated in the skeletal muscle of ALS

patients,4,38 adiponectin may be a potential therapeutic

target in the future.

We also observed a positive correlation between visfatin

and the DPR after adjusting for covariates, indicating a

potential prognostic role of visfatin in ALS. Visfatin, also

named nicotinamide phosphoribosyltransferase, was origi-

nally known for its secretion from visceral adipose tis-

sue,59 which was also confirmed in our study by the

finding that visfatin had a weakly positive correlation with

VFI. Increased visceral fat has been reported in ALS

patients,60 which may explain the elevated level of visfatin

observed in this study, but the exact function of visfatin

in ALS progression remains unclear. We found that

patients with a lower baseline VFI had a rapidly progres-

sive course at follow-up, suggesting that energy stores in

visceral fat may delay ALS progression. Although visfatin

was positively correlated with VFI, higher visfatin was

associated with a faster rate of progression, suggesting

that the positive correlation between visfatin and DPR

may be independent of visceral fat. Moreover, studies

have shown inconsistent results in the correlation between

visfatin and visceral fat.61,62 Sitticharoon et al.63 suggested

that serum visfatin levels were negatively correlated with

weight gain, while no correlation was found between vis-

fatin and BMI. These results indicate that visfatin may be

correlated with changes in body weight rather than actual

fat distribution, which may indirectly explain the positive

correlation between serum visfatin level and the DPR in

ALS patients. In addition to metabolic regulation, previ-

ous studies have demonstrated that visfatin is involved in

inflammation, autoimmunity, and apoptosis,64 showing

potential prognostic and therapeutic value in several

inflammatory diseases and cancer types.65 Thus, further

studies are needed to explore the role of visfatin and its

underlying mechanism in the pathological process of ALS.

Our study shed some light on the understanding of

metabolic dysfunction in ALS by investigating serum

metabolic biomarkers and further exploring their prog-

nostic value in patients. However, there was no detailed

information on body composition in controls, and the

difference in body composition may affect the compar-

ison of serum metabolic biomarkers between groups.

Although we analyze the correlation between body com-

position and serum metabolic biomarkers in ALS patients,

it is still unknown whether this result was similar to the

correlation in healthy controls. Confounding factors,

including body composition, were adjusted for when

exploring the effect of metabolic factors on the rate of

progression in ALS patients. In addition, the absence of

data on diet limits the investigation of the underlying

mechanism of metabolic biomarkers in ALS. Although it

is widely known that leptin is involved in the regulation

of appetite and food intake, the interaction of leptin and

other biomarkers in energy metabolism has not been fully

clarified. Moreover, the rather small sample size and

short-term follow-up limit the exploration of prognostic

value, and we will continue to follow these patients and

expand the sample size to further analyze the effect of

metabolic biomarkers on the survival of patients with

ALS. Furthermore, the type I error rates may be relatively

high in this study due to the multiple comparisons, for

which we performed some statistical analysis corrections.

Overall, this study produced some interesting findings,

which we hope will arouse interest in further study of

metabolic biomarkers in the future.

Conclusions

In conclusion, this study showed altered adipokines in

patients with ALS, which were associated with disease

severity and prognosis. Our findings suggest that adipoki-

nes may serve as useful biomarkers in ALS, providing

new insight for additional studies of metabolic dysfunc-

tion in ALS and possible therapeutic strategies for ALS in

the future.
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