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Purpose: Deep learning model has shown the feasibility of providing spatial lung
perfusion information based on CT images. However, the performance of this method
on lung cancer patients is yet to be investigated. This study aims to develop a transfer
learning framework to evaluate the deep learning based CT-to-perfusion mapping method
specifically on lung cancer patients.

Methods: SPECT/CT perfusion scans of 33 lung cancer patients and 137 non-cancer
patients were retrospectively collected from two hospitals. To adapt the deep learning
model on lung cancer patients, a transfer learning framework was developed to utilize the
features learned from the non-cancer patients. These images were processed to extract
features from three-dimensional CT images and synthesize the corresponding CT-based
perfusion images. A pre-trained model was first developed using a dataset of patients with
lung diseases other than lung cancer, and subsequently fine-tuned specifically on lung
cancer patients under three-fold cross-validation. A multi-level evaluation was performed
between the CT-based perfusion images and ground-truth SPECT perfusion images in
aspects of voxel-wise correlation using Spearman’s correlation coefficient (R), function-
wise similarity using Dice Similarity Coefficient (DSC), and lobe-wise agreement using
mean perfusion value for each lobe of the lungs.

Results: The fine-tuned model yielded a high voxel-wise correlation (0.8142 ± 0.0669)
and outperformed the pre-trained model by approximately 8%. Evaluation of function-
wise similarity indicated an average DSC value of 0.8112 ± 0.0484 (range: 0.6460-0.8984)
for high-functional lungs and 0.8137 ± 0.0414 (range: 0.6743-0.8902) for low-functional
lungs. Among the 33 lung cancer patients, high DSC values of greater than 0.7 were
achieved for high functional volumes in 32 patients and low functional volumes in all
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patients. The correlations of the mean perfusion value on the left upper lobe, left lower
lobe, right upper lobe, right middle lobe, and right lower lobe were 0.7314, 0.7134,
0.5108, 0.4765, and 0.7618, respectively.

Conclusion: For lung cancer patients, the CT-based perfusion images synthesized by the
transfer learning framework indicated a strong voxel-wise correlation and function-wise
similarity with the SPECT perfusion images. This suggests the great potential of the deep
learning method in providing regional-based functional information for functional lung
avoidance radiation therapy.
Keywords: perfusion imaging, functional lung avoidance radiation therapy, deep learning, CT-to-perfusion
translation, lung cancer, radiation therapy
INTRODUCTION

Functional Lung Avoidance Radiation Therapy (FLART) is an
emerging technique that selectively avoids excessive dose
delivery to the high functional lung volumes, while favoring
dose deposition in the low functional lung volumes based on the
information obtained from pulmonary function imaging (1–3).
Currently, there are three ongoing clinical trials in the United
States (NCT02528942, NCT02308709, and NCT02843568)
investigating the clinical efficacy of FLART. In addition,
Matuszak et al. found that the mean dose in the high
functional region decreased from 12.6 ± 4.9 Gy to 9.9 ± 4.4 Gy
(4). Waxweiler et al. observed an average decrease of the mean
dose to the functional lung by 2.8 Gy in FLART planning (5).
Yamamoto et al. reported a 5.0% decrease in the dose of the
FLART planning (6). This approach holds great promise to
increase post-treatment perfusion in low-dose regions and
minimize radiation-induced lung injury (7, 8).

The implementation of FLART relies on lung functional
images to provide information on regional lung function for
guiding the treatment planning process. A number of methods
have been proposed for lung function imaging, which can be
broadly divided into two categories: contrast agent-based
imaging methods and deformable image registration (DIR)
based methods. Contrast agent-based imaging reveals lung
function by using different imaging contrast agents, examples
including single-photon emission computed tomography
(SPECT) with Tc-99m-labelled macro aggregated albumin
(MAA) (4, 7), positron emission tomography (PET) with Ga-
68 (9), magnetic resonance imaging (MRI) with hyperpolarized
gas (Helium-3 or Xenon-129) (10, 11), and a variety of contrast-
enhanced MRI (12–14) or CT (15). On the other hand, DIR-
based methods compute surrogates of regional pulmonary
function from lung four-dimensional computed tomography
(4D-CT) images or breath-hold CT (BHCT) image pairs
through DIR algorithms and sophisticated image mathematical
metrics (16–19).

Nevertheless, these current methods suffer from numerous
drawbacks, impeding the widespread application of FLART in
the clinic. For example, SPECT function imaging commonly
offers a limited spatial resolution and incurs focal radio aerosol
clumping artifacts. PET imaging requires a long imaging time
2

and incurs inevitable image noise. Besides, both SPECT and PET
imaging requires contrast agents that may release additional
ionizing radiation to patients. Hyperpolarized gas MRI (HP-
MRI) is free of ionizing radiation; however, it requires precious
noble gases and additional equipment for hyperpolarization. On
the other hand, DIR-based function imaging is error-prone due
to the deficiencies of the current DIR algorithms. These
limitations have restricted their widespread application in
clinic (17). In general, these function imaging modalities are of
low accessibility in the radiation oncology department for the
patients (17, 20).

Confronted with these limitations, the deep learning-based
CT-to-perfusion mapping (CTPM) method was proposed in our
previous study (21). This method synthesizes lung functional
images based on the texture information provided by anatomic
CT images. We previously demonstrated that the CT-based
perfusion images generated by the CTPM method achieved a
moderate-to-high approximation as compared with SPECT
perfusion images in patients with different lung diseases
(22, 23). Perfusion SPECT is one of the primarily diagnostic
tools for pulmonary embolism, but not for lung cancer patients.
In this study, we collected a cohort of lung cancer patients with
3D SPECT perfusion images. In the hope of paving the way
towards FLART application in the future, we aimed to develop a
transfer learning framework to evaluate the performance of the
CTPM method specifically in lung cancer patients by using
multi-level evaluations (voxel-wise correlation, function-wise
similarity, and lobe-wise agreement).
METHOD

Datasets and Image Acquisition
In this study, two datasets of SPECT/CT perfusion images were
retrospectively collected from two hospitals. The first dataset
(n=33, lung cancer dataset) was built using SPECT/CT images
collected from Hong Kong Queen Mary Hospital (n=14,
Institution A) and Henan Cancer Hospital (n=19, Institution
B). All patients in this dataset were diagnosed with lung cancer in
clinical diagnosis and the SPECT/CT scans were performed
before treatment. The second dataset (n=137, non-cancer
dataset) was collected from institution A, which includes
July 2022 | Volume 12 | Article 883516
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different types of lung diseases except lung cancer (such as
pulmonary hypertension, pulmonary embolism, etc.). The
patient characteristics of the two datasets are listed in Table 1.
This study was approved by the Institutional Review Boards
(IRB) of The University of Hong Kong/Hospital Authority Hong
Kong West Cluster and the IRB of Henan Cancer Hospital.

SPECT/CT scans collected from Institution A were acquired
with 111 MBq technetium-99m (99mTc) MAA before imaging.
Patients were immobilized in the supine position with normal
resting breathing during image acquisition. The 3D SPECT/CT
scans were acquired in 360 degrees to cover the whole lung
volume under GE Discovery 670 SPECT/CT scanner (GE
Healthcare, Milwaukee, WI) with a frame rate of 30 seconds
per frame and a total frame number of 60. Each acquired CT
image was reconstructed into 512×512 slices with 0.977×0.977
mm2 in-plane pixel spacing and 1.25 mm slice thickness, while
each acquired SPECT image was reconstructed into a
128×128×128 matrix with 4.42×4.42×4.42 mm3 voxel size.

Patients from Institution B were scanned using a dual-head
SPECT-CT scanner (Philips, Eindhoven, The Netherlands). A
total of 185 MBq 99m Tc-MAA was injected through the
brachium vein of the patient. Cross−sectional images were
acquired with one frame for 60 seconds per frame. Each
acquired CT image was reconstructed into a 512×512 matrix
with 0.977×0.977 mm2 pixel spacing and 3.75 mm slice
thickness, and each SPECT image was reconstructed into a
128×128×60 matrix with 2.76×2.76×1 mm3 voxel size.

Each SPECT image was registered to the corresponding CT
image. To ensure the consistency of the acquired data between
different institutions, all the acquired SPECT/CT images were
reconstructed into a voxel size of 1×1×1 mm3. All downstream
evaluations were performed under this resolution.

Transfer Learning Framework for the
Generation of CT-Based Perfusion
To adapt the deep learning model in the lung cancer cohort, a
transfer learning framework was developed to utilize the features
learned from the non-cancer patients (Figure 1A). Specifically,
the convolutional neural network (CNN) of the CTPM method
was firstly trained on the non-cancer dataset to learn the
fundamental mapping relation. Then the learned parameters
from the non-cancer dataset were used as the initial
parameters for further tunning on the lung cancer dataset.
During the transfer training, three-fold cross-validation was
used to make full use of the dataset. In each split, 2/3 of the
lung cancer patients were used for training, with the remaining
Frontiers in Oncology | www.frontiersin.org 3
patients for testing. The outputs from three splits were combined
for the subsequent evaluations.

The preprocessing procedures and CNN model were
proposed in our previous study (22) and illustrated in
Figure 1B. Briefly, the lung parenchyma region was segmented
by using a pre-trained U-Net model (R231) (24), which was
trained on multifarious lung CT scans. Then the left and right
lungs were separated and cropped to the border of the
parenchyma, followed by resampling to 128 × 64 × 64-sized
matrices. The resampled CT and SPECT images were
s tandard iz ed us ing CT enhancement and SPECT
standardization, respectively. In this process, the tumor regions
and vessels were removed from all images and following
evaluations by using thresholds of -1000 to -300 Hounsfield
unit (HU). In this study, the three-dimensional attention residual
neural network (ARNN) was utilized to extract features from
three-dimensional CT images and synthesize the corresponding
CT-based perfusion images. It was trained with the processed CT
images as input and processed SPECT perfusion as the target. In
the application, the trained ARNN translated the processed CT
images and synthesized the corresponding perfusion images.

To ensure that the synthesized lung images were in the same
shape and coordinate with the original lung CT, the output images
of left/right lungs were combined and recovered to the same
geometry with the pre-processed CT images, which is referred to
as CT-based perfusion images. The signal intensity of a lung
SPECT image is strongly affected by the patient’s condition, such
as the respiratory capacity, frequency, diseases, etc. To ensure the
perfusion value is comparable between patients, the SPECT
perfusion was normalized to the 75th percentile value for each
image, as this is close to the perfusion value of normal-functioning
lung tissue (25). The CT-based perfusion images were then
compared with the SPECT perfusion images via multi-level
evaluations, including voxel-wise correlation, function-wise
similarity, and lobe-wise agreement.

Quantitative Evaluation of CT-BASED
PERFUSION WITH SPECT Perfusion
Voxel-Wise Correlation
To evaluate the performance in terms of voxel-wise intensity
correlation, the Spearman’s correlation coefficient (R) was
computed between the CT-based perfusion images and the
corresponding SPECT perfusion images. R is defined by the
equation (1):

R = oN
i=1 yi − �yð Þ · pi − �pð Þ½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

oN
i=1 yi − �yð Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oN

i=1 pi − �pð Þ2
q , (1)

where �p,�y pi, and yi denote the average value and value at voxel i
for the predicted and ground-truth perfusions, respectively. N
denotes the total number of non-zero voxels.

Function-Wise Similarity
To evaluate the accuracy of high functional lung avoidance as
well as low functional lung allowance in inverse planning, we
TABLE 1 | Patient characteristics of the two datasets.

Lung cancer dataset Non-cancer dataset

Number Percent Number Percent

Sex Male 18 54.5% 51 37.2%
Female 15 45.5% 86 62.8%

Age Mean ± SD 64 ± 7.6 65 ± 15.7
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defined the low/high functional lung volumes in both the
SPECT/CT-based perfusion images for the volume overlap test.
Since each perfusion image has a maximum value of 1, the
threshold value of 0.66 was used to separate the low and high
functional lung volumes, which were suggested in previous lung
ventilation study and FLART planning (26, 27). The Dice
Similarity Coefficient (DSC) was then computed to determine
the similarity of the low/high functional lung volumes. DSC is
defined as follows.

DSC =
2 ∗ p ∩ yj j
pj j + yj j , (2)

where p is the low- and high-functional volume in the predicted
perfusion images, and y is the corresponding volume in the
ground-truth SPECT perfusion images. The overall concordance
is inferred as the mean DSC value of all the testing cases.

Lobe-Wise Agreement
To evaluate the overlap of different lung regions, the perfusion
images were segmented based on the region of lobes of the lung
for further analysis. Specifically, the left upper lobe (LUL) and
left lower lobe (LLL) were segmented from the left lung; the right
upper lobe (RUL), right middle lobe (RML) and right lower lobe
(RLL) were segmented from the right lung. The lobe
segmentations were performed on the CT images using the
Chest Imaging Platform in open-source software 3D Slicer
(Surgical Planning Laboratory, Brigham and Women’s
Hospital, Boston, Mass) (28, 29). To compare the perfusion in
each lobe region, the mean perfusion value in each lobe was
calculated for both SPECT/CT-based perfusion images.
Frontiers in Oncology | www.frontiersin.org 4
Convolution Neural Network
Implementation
The CT and SPECT images were prepared and processed prior to
model training and testing. The initialization of the
convolutional layers was configurated using the Kaiming
Uniform method (30). We implemented our network using the
Pytorch 1.1 framework and coded the processing procedures in
python. All the experiments were performed using a workstation
with Intel Core i7-8700 @ 3.2GHz CPU, NVIDIA GTX 2080 TI
GPU with 11GB memory, and 32 GB of RAM.
RESULTS

Figure 2A shows the result of voxel-wise correlation evaluation
before and after transfer learning using the CTPM method. The
CT-based perfusion images in the three splits after transfer
learning achieved a high correlation value (R) of 0.8263 ±
0.0767, 0.8133 ± 0.0727, and 0.8032 ± 0.0537, respectively,
with an average correlation value of 0.8142 ± 0.0669 for all
three splits. Compared with the testing results before transfer
learning (0.7554 ± 0.0875), there was a significant improvement
of the average of all splits (7.78%, p = 0.0047) in the performance
after fine-tuning of the model.

Figure 2B shows the function-wise similarity evaluation of
low-functional volume (LFV) and high-functional volume
(HFV) in RT treatment planning between SPECT perfusion
images and CT-based perfusion images. The mean DSC for
LFV and HFV were 0.8137 ± 0.0414 and 0.8112 ± 0.0484,
respectively, suggesting a high similarity of both levels of
B

A

FIGURE 1 | (A) Flow chart of the transfer learning framework for generation of CT-based perfusion images on lung cancer patients. (B) The pipeline of deep
learning-based CT-to-perfusion mapping (CTPM) method.
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functional volumes. Among the 33 lung cancer patients, a high
DSC value of greater than 0.8 was achieved in 67% of patients for
high-functional volume and 70% for low-functional volume;
almost all the lung cancer patients (33 for low-functional
volume, and 32 for high-functional volume) demonstrated a
DSC value larger than 0.7.

Figure 3 shows results of voxel-wise correlation and function-
wise similarity in representative lung cancer patients. For the
high-performance case in the testing group, the low functional
region on the right upper region was successfully predicted on
the CT-based perfusion. For the low-performance case in the
testing group, no apparent low functional region was observed
on the synthesized and ground-truth images. For both cases, CT-
based perfusion images showed similar low-functional/high-
functional regions to their respective SPECT perfusion images.

Figures 4A, B show the scatter plots of the mean value of each
lobe between SPECT perfusion images and CT-based perfusion
images. The correlations of the mean perfusion value on LUL,
LLL, RUL, RML, and RLL were 0.7314, 0.7134, 0.5108, 0.4765,
and 0.7618, respectively. The regional accuracy of CT-based
perfusion on the RUL and RML was lower than the
performance on other lobes. For the histogram of mean
perfusion function, the histogram of CT-based perfusion
images was lower than SPECT perfusion images in the range
of 0 to 0.35 and 0.6 to 1, while higher on the other side.

Figure 5 shows a representative case of lobe-wise comparison
of SPECT perfusion image and CT-based perfusion image. The
difference in the mean perfusion function on the LUL, LLL, RUL,
RML, and RLL were 0.28, -0.03, 0.02, 0.03, and -0.04,
respectively. The LUL had the lowest perfusion values on both
perfusion images. For the LUL, the mean perfusion value of CT-
Frontiers in Oncology | www.frontiersin.org 5
based perfusion images was 0.44, while it was 0.15 in SPECT
perfusion images. For other lung lobes, the differences between
the synthesized/ground truth perfusion images were less
than 10%.
DISCUSSION

This study was the first report on the evaluation of the deep
learning-based CT-to-perfusion mapping method on lung
cancer patients. The CT-based perfusion images were
compared with ground-truth SPECT perfusion images with
voxel-wise correlation, function-wise similarity, and lobe-wise
agreement in 33 lung cancer patients. In our previous work, we
developed and evaluated the deep learning based CTPM method
in patients with various lung diseases (22). However, the
performance of the CTPM method specifically on lung cancer
patients is yet to be investigated due to the limited number of
lung cancer patients in our previous dataset. In this study, we
collected a total of 33 SPECT/CT scans of lung cancer patients
from two different hospitals, and then developed the transfer
learning framework to evaluate the performance of the CTPM
method specifically for lung cancer patients, in the hope of
paving the way towards FLART application in the future.

To increase the model generalizability, we first trained the
CNNmodel on patients with various lung diseases other than lung
cancer and directly adapted it to the lung cancer dataset. The CNN
model achieved a voxel-wise correlation (R) of 0.7554 ± 0.0875 in
lung cancer patients. Subsequently, we used a transfer learning
strategy to adapt the pre-trained model to the lung cancer dataset.
It was observed that the correlation was approximately 8% higher
BA

FIGURE 2 | (A) Evaluation of voxel-wise correlation of lung cancer patients before and after applying transfer learning. (B) Histogram of function-wise similarity
evaluation in terms of DSC for low/high functional volumes. (A) shows the result of voxel-wise correlation evaluation before and after transfer learning using the
CTPM method. The CT-based perfusion images in the three splits after transfer learning achieved a high correlation value (R) of 0.8263 ± 0.0767, 0.8133 ±
0.0727, and 0.8032 ± 0.0537, respectively, with an average correlation value of 0.8142 ± 0.0669 for all three splits. Compared with the testing results before
transfer learning (0.7554 ± 0.0875), there was a significant improvement of the average of all splits (7.78%, p = 0.0047) in the performance after fine-tuning of
the model. (B) shows the function-wise similarity evaluation of low-functional volume (LFV) and high-functional volume (HFV) in RT treatment planning between
SPECT perfusion images and CT-based perfusion images. The mean DSC for LFV and HFV were 0.8137 ± 0.0414 and 0.8112 ± 0.0484, respectively,
suggesting a high similarity of both levels of functional volumes. Among the 33 lung cancer patients, a high DSC value of greater than 0.8 was achieved in 67%
of patients for high-functional volume and 70% for low-functional volume; almost all the lung cancer patients (33 for low-functional volume, and 32 for high-
functional volume) demonstrated a DSC value larger than 0.7.
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(p = 0.0047) to 0.8142 ± 0.0669 after applying the transfer learning
(Figure 2). Transfer learning can improve the performance of the
target domain by transferring the knowledge contained in different
but related source domains (31). For the task of functional image
synthesis, this improvement could be explained by the subject
uniformity in the lung cancer dataset. Decreased lung function is
caused by various mechanisms (32). For example, a complete
defect can be induced by chronic obstructive pulmonary disease or
other unrecoverable diseases. Lung cancer can also cause large
vessel compression and alter the blood supply within the regional
lung (33). In the lung cancer dataset, there are more low perfusion
regions induced by tumor compression, which increases the
uniformity of the low function region. For these functional
defects induced by pulmonary vessel compression, tumor
regression from RT may lead to regional lung reperfusion
because of the relief of obstructions (34). For the future
implementation of FLART, it is necessary to fine-tune the model
on the lung cancer dataset to achieve better performance.

With regard to the function-wise similarity of the CT-based
perfusion images, the low/high functional volumes showed
Frontiers in Oncology | www.frontiersin.org 6
almost the same level of high similarity (~0.8). In the
qualitative comparison (Figure 3), we noticed two patterns of
distributions of low functional volume (LFV): the first case had
the LFV located at the corner of the lung (corner type); the
second LFV was located at the peripheral region of the whole
lung volume (peripheral type). The LFV of peripheral type could
be attributed to its distance to the pulmonary arteries. Therefore,
no significant dose-spare would be expected for this type in the
FLART planning. This indicates that the benefit of generated CT-
based perfusion for the surrounding type is limited. Based on this
indication, a further step is needed to identify the distribution
pattern of low functional regions prior to FLART
implementation in the clinic.

For the lobe-wise agreement, the correlation coefficients of
the mean perfusion value in the LUL (0.7314), LLL (0.7139), and
RLL (0.7618) were significantly higher than those in the RUL
(0.5108), RML (0.4765) regions of the lung. A possible
explanation could be related to the fact that the horizontal
fissure separating the RUL and RML has increased the
perfusion complexity of this region. As compared with the
FIGURE 3 | Comparison of SPECT perfusion images and CT-based perfusion images in terms of voxel-wise correlation and function-wise similarity for two
representative lung cancer cases. Each case is presented in axial, coronal, and sagittal views. In the voxel-wise evaluation, the red arrow indicates the main low
functional regions. In function-wise evaluation, the blue contour indicates the low functional volume for treatment planning, while the white contour indicates the high
functional volume. It shows results of voxel-wise correlation and function-wise similarity in representative lung cancer patients. For the high-performance case in the
testing group, the low functional region on the right upper region was successfully predicted on the CT-based perfusion. For the low-performance case in the testing
group, no apparent low functional region was observed on the synthesized and ground-truth images. For both cases, CT-based perfusion images showed similar
low-functional/high-functional regions to their respective SPECT perfusion images.
July 2022 | Volume 12 | Article 883516
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right lung, the extra horizontal fissure makes the perfusion
condition on the RUL/RML region more complex, leading to
relatively large uncertainty in these regions. In the future, a
vessel-based analysis will be needed to explore further the effects
caused by vessel differences between the left/right lungs and
increase the prediction accuracy in these regions.

Apart from this, we also observed some cases with
mismatched defect regions. As shown in Figure 6, the
representative case has a correlation value of 0.6601 and 0.7859
for the right and left lungs, respectively. Most of the low
perfusion region on the right lung (red arrow) was predicted as
relatively high functional regions on synthesized CT-based
perfusion. To a degree, this could be partly ascribed to the
observed variations of CT-to-SPECT perfusion relationship
between imaging views. In Figure 6, for instance, the
representative case presents a consistent location between
the low intensity regions (<-900 HU) within the right lung on
Frontiers in Oncology | www.frontiersin.org 7
the coronal view of the CT image (as indicated by the red regions
in the first row of Figure 6) and the corresponding low perfusion
regions on the ground-truth SPECT perfusion image (as
indicated by the blue-shaded regions in the second row of
Figure 6); while this consistency diminishes in some regions of
the sagittal and axial views (as indicated by the white arrows in
Figure 6). In this model, the regional inconsistency might have
impeded accurate prediction of lung perfusion information from
CT to SPECT images, and led to a “trade-off” predicting strategy
of the deep learning model. This trade-off can also be observed in
the histogram distribution of the mean perfusion values of all the
lobes: the CTPM method tends to yield lower predicted values
than the ground-truth in the perfusion value range from 0 to 0.35
and 0.6 to 1, while higher in the range from 0.35 to 0.6. When
encountering uncertainties, the ARNN model trended to output
median values to minimize the difference. This mismatch may
degrade the accuracy of FLART treatment planning. To further
B

C

A

FIGURE 4 | Scatter plots of the mean relative perfusion value in each lobe between SPECT perfusion images and CT-based perfusion images of the left lung (A)
and right lung (B). (C) Histogram of the mean relative perfusion values of all the lobes. (A, B) show the scatter plots of the mean value of each lobe between SPECT
perfusion images and CT-based perfusion images. The correlations of the mean perfusion value on LUL, LLL, RUL, RML, and RLL were 0.7314, 0.7134, 0.5108,
0.4765, and 0.7618, respectively. The regional accuracy of CT-based perfusion on the RUL and RML was lower than the performance on other lobes. For the
histogram of mean perfusion function, the histogram of CT-based perfusion images was lower than SPECT perfusion images in the range of 0 to 0.35 and 0.6 to 1,
while higher on the other side.
July 2022 | Volume 12 | Article 883516
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s a representative case of lobe-wise comparison of
.02, 0.03, and -0.04, respectively. The LUL had the
erfusion images. For other lung lobes, the differences
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FIGURE 5 | A representative case for the lobe-wise agreement between the CT-based perfusion images and the ground-truth SPECT perfusion images. It show
SPECT perfusion image and CT-based perfusion image. The difference in the mean perfusion function on the LUL, LLL, RUL, RML, and RLL were 0.28, -0.03, 0
lowest perfusion values on both perfusion images. For the LUL, the mean perfusion value of CT-based perfusion images was 0.44, while it was 0.15 in SPECT p
between the synthesized/ground truth perfusion images were less than 10%.
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improve the model performance on these uncertainty regions,
The texture information of these mismatched regions should be
further investigated (35).

In this study, we also compared the two groups of patients
collected from two medical institutions. The performance on
patients from institution A was significantly higher than that on
patients from institution B in terms of correlation (10% higher,
p = 0.0016), DSC of high functional volume (5% higher, p =
0.0033) and low functional volume (5% higher, p = 0.0027).
These discrepancies could be explained by the different tumor
sizes of these two groups of patients. There is a significant
difference between the diameter of the tumors from the two
institutions (p = 0.0006), with average diameter sizes of 40 ± 19.5
mm and 15 ± 15.6 mm, respectively. All the lung cancer patients
from cohort A had tumor sizes larger than 20 mm, while only 6
of 14 patients from cohort B had comparable tumor sizes. The
large tumor volume may have changed the blood supply and
generated more significant lung functional volumes. In the future
Frontiers in Oncology | www.frontiersin.org 9
application of FLART, the effects of the tumor size should also be
considered for lung function prediction.

There are also several limitations to this study. First, due to
the limitation of GPU memory and the size of the training
dataset, each lung is divided into left and right parts before
inputting to the CNN network for model development. This may
limit the cross-lung quantitative comparisons between left and
right lungs from the same patient. The neural network still needs
optimization in the coming study. Second, the performance of
the CT-based perfusion images in treatment planning is still
unknown. As such, dosimetry evaluation is still needed for
potential dosimetry benefits of the CTPM method (36).
CONCLUSION

In this study, we, for the first time, quantitatively developed a
transfer learning framework to evaluate the deep learning based
FIGURE 6 | A representative case with relatively low perfusion prediction on CT-based perfusion images. The red contours in the CT images indicate the low
intensity regions (<-900 HU). The red arrows indicate the main mismatched low functional regions. The white arrows indicate the inconsistent regions between the
low intensity regions of the CT images and the SPECT perfusion images.
July 2022 | Volume 12 | Article 883516
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CT-to-perfusion mapping method specifically on 33 lung cancer
patients at multiple levels, and achieved high correlations
between the CT-based perfusion images and the ground-truth
SPECT perfusion images. These findings suggested the use of
CT-based perfusion images for high functional lung avoidance as
well as low functional lung allowance in RT inverse planning,
holding great promise in providing regional-based functional
information for FLART in the future.
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