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Whereas the fundamental role of the body in social cognition seems to be generally

accepted, elucidating the bodily mechanisms associated with non-verbal communication

and cooperation between two or more persons is still a challenging endeavor. In this

article we propose a fresh approach for investigating the function of the autonomic

nervous system that is reflected in parameters of heart rate variability, respiration, and

electrodermal activity in a social setting. We analyzed autonomic parameters of dyads

solving a target-tracking task together with the partner or individually. A machine classifier

was trained to predict the subjects’ rating of performance and collaboration either from

tracking error data or from the set of autonomic parameters. When subjects collaborated,

this classifier could predict the subjective performance ratings better from the autonomic

response than from the objective performance of the subjects. However, when they

solved the task individually, predictability from autonomic parameters dropped to the

level of objective performance, indicating that subjects were more rational in rating their

performance in this condition. Moreover, the model captured general knowledge about

the population that allows it to predict the performance ratings of an unseen subject

significantly better than chance. Our results suggest that, in particular in situations

that require collaboration with others, evaluation of performance is shaped by the

bodily processes that are quantified by autonomic parameters. Therefore, subjective

performance assessments appear to be modulated not only by the output of a rational

or discriminative system that tracks the objective performance but to a significant extent

also by interoceptive processes.

Keywords: biophysical methods, self-perception, joint attention, embodied cognition, human behavior

1. INTRODUCTION

Today the idea that social cognition is not a purely mental phenomenon but also involves the
body seems to be accepted by many researchers. Yet we need to better understand the bodily
mechanisms during non-verbal social interaction. Relevant phenomena range from the tactile and
proprioceptive perception of touches, forces, and torques that are produced by physical contact

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://doi.org/10.3389/fnhum.2020.00234
http://crossmark.crossref.org/dialog/?doi=10.3389/fnhum.2020.00234&domain=pdf&date_stamp=2020-07-17
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:a.maye@uke.de
https://doi.org/10.3389/fnhum.2020.00234
https://www.frontiersin.org/articles/10.3389/fnhum.2020.00234/full
http://loop.frontiersin.org/people/111350/overview
http://loop.frontiersin.org/people/245629/overview
http://loop.frontiersin.org/people/522426/overview
http://loop.frontiersin.org/people/3693/overview


Maye et al. Autonomic Parameters Predict Subjective Experience

between persons either directly or mediated by objects,
over observation or gestures involved in interacting across
peripersonal space, to complex emotional processes that
characterize shared experiences and behavior between
individuals. To understand how individuals perceive other
agents and control social behavior therefore requires the
examination of the relationship between the autonomic nervous
system and interoceptive and emotional functions.

In this respect the analysis of heart rate variability (HRV)
as an autonomic indicator provides a particularly interesting
approach. Normal heartbeat is automatically generated by
autorhythmic cells in the sinoatrial node. The cardiac pacemaker
possesses a substantial level of autonomy from the brain in
that the basic activity pattern continues even when the heart is
denervated. Still this activity is permanently modulated by the
brainstem through the sympathetic and parasympathetic nervous
system, accelerating and decelerating heart rate, respectively.
We consider HRV as an index for the nervous and hormonal
signals that distinctly modulate the strength of sympathetic and
parasympathetic actions on the heart pacemaker, the sinoatrial
node, which results in changes of inter-beat intervals (Shaffer
and Ginsberg, 2017). Parasympathetic modulation of cardiac
activity by the brain is mediated through the right vagus
nerve; sympathetic modulation is exerted through inputs from
postganglionic efferents originating in the stellate ganglion. The
brain, in turn, receives afferent signals from aortic, carotide,
and pulmonary baroceptors through the vagus nerve (Ellis
and Thayer, 2010). Respiratory modulation of heart rate with
increases during inspiration and decreases during expiration
is called respiratory sinus arrhythmia (RSA, Berntson et al.,
1993). Although RSA grossly reflects the rhythmical fluctuation
of pulmonary vagal afferent and cardiac vagal efferent effects
upon the sinoatrial node in synchrony with the breathing cycle,
experimental and anatomical evidence indicate additional RSA-
independent sources of cardiac vagal tone (Grossman and Taylor,
2007; Farmer et al., 2016). Together with electrodermal activity
(EDA), which is typically considered as an index of sympathetic
activity (Dawson et al., 2007), parameters of the respiration
rhythm (RR) and HRV therefore may be considered as a complex
status indicator of the autonomic nervous system.

A mutual brain-viscera interaction has been highlighted as
early as in the nineteenth century (Charles et al., 1998) for the
understanding of the interplay between emotion and cognition.
Damasio (1999) considers visceral input as part and parcel of
emotion and suggests that in particular background feelings “are
a faithful index of momentary parameters of inner organism
state” which have the “temporal and spatial shape of ... the
striated muscle of heart and chest” as core ingredients (p. 286f.).
The central autonomic network (Benarroch, 1993, 2014), linking
the brainstem with forebrain structures through feed-back and
feed-forward loops, is responsible for generating visceromotor,
neuroendocrine, and behavioral responses that are flexibly
adapted to environmental demands (Thayer and Lane, 2000).
Indeed several studies have found a relation between HRV and
the adaptive and functional top-down and bottom-up cognitive
modulation of emotional stimuli (Park and Thayer, 2014). Since
activity in anterior regions of the prefrontal cortex correlates

with HRV specifically during emotionally challenging situations,
individuals with high HRV may be particularly efficient in
recruiting the “social cognition” network in emotional contexts
(Beffara et al., 2016). Correlations of emotional state have been
shown to exist with individual HRV parameters (Zhu et al.,
2019), such as mean heart rate (Yoshino et al., 2011; Choi et al.,
2017) or the high-frequency component of heart rate fluctuations
(Lane et al., 2009), as well as with subsets of HRV parameters
(Rainville et al., 2006). Moreover, higher levels of heart rate
synchrony have been suggested as a marker of interpersonal trust
(Mitkidis et al., 2015). Several studies revealed correlations of
the emotional state with parameters of RR (Del Negro et al.,
2018) and EDA (Sequeira et al., 2009). Real-time feedback
about HRV coherence in pairs or groups of people is used to
investigate whether learning to regulate physiological coherence
helps increasing social coherence, leading to increased prosocial
behaviors, improved communication, cooperation, creativity,
and decision making (McCraty, 2017).

The influence of visceral information on perceptual processes
and cognitive functions however is less well-explored. Recent
findings show that heartbeat-evoked neural activity canmodulate
perceptual thresholds and shape visual conscious experience
(Park et al., 2014). This led to the hypothesis that the
neural representation of visceral information, projected through
multiple anatomical pathways to a network of brain regions
including posterior insula, ventral anterior cingulate cortex,
amygdala and somatosensory cortex, constitutes an implicit
frame which could explain the subjective nature of perceptual
experience and link it with emotions and the notion of the self
(Park and Tallon-Baudry, 2014). This hypothesis gains support
from the observation that heartbeat-evoked neural responses co-
vary with the self-relatedness of ongoing spontaneous thoughts
(Babo-Rebelo et al., 2016). Heart rate and EDA have been found
to correlate with various dimensions of the subjective experience
of playing a computer game, linking quantitative parameters with
the quality of user experience (Drachen et al., 2010).

The study we present in this article is geared to contribute
at least two novel aspects to this interesting line of research.
The first is to go beyond establishing correlative relations and
explore possibilities for actually predicting the outcome of
the evaluation of the subjective experience. We approach this
question by training a machine classifier to predict ratings of
subjective experience from autonomic parameters and analyzing
the prediction performance. If the trained model performs above
chance level, we conclude that the autonomic response must be
informative about the result of this assessment.

The second contribution of our study to the growing
knowledge about brain-visceral interaction is a fresh approach
for analyzing the relation between autonomic parameters and
behavioral responses. The typical approach selects a single
parameter or a few and analyzes how they change between
normal vs. clinical conditions (Shaffer and Ginsberg, 2017). In
contrast, we here follow a strategy that is inspired by machine
learning approaches. Rather than considering HRV, RR, or EDA
separately and analyzing individual parameters or small subsets
thereof, we conceive of autonomic parameters as a feature vector
which is characteristic for the stable dynamics of the body. One

Frontiers in Human Neuroscience | www.frontiersin.org 2 July 2020 | Volume 14 | Article 234

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Maye et al. Autonomic Parameters Predict Subjective Experience

advantage of this approach is that it allows us to discover patterns
in the parameter set which are more complex than increases or
decreases of individual parameters.

We study the interaction between autonomic state and
subjective experience during a joint target tracking task. Each
partner controlled one of two perpendicular axes of motion,
and together they had to roll a virtual ball as close as possible
to a target that moved in an oblique direction. After each
trial, a subjective assessment of their own performance, the
partner’s performance and the collaboration was requested from
both participants. We investigate a potential relation between
this subjective experience of performance and parameters of
HRV, RR, and EDA, and we contrast it with the actual
performance measured by the tracking error. We elucidate
potential differences between a collaborative condition, in which
subjects jointly controlled the ball, and a condition in which they
solved the task individually. We do not consider the learning
process for acquiring the skill to solve task here; therefore,
subjects exercised the task for several days, and we analyzed the
data after performance had stabilized.

Two non-exclusive hypotheses about the basis of the processes
for the subjective evaluation of performance in the task will
be investigated with our approach. Hypothesis 1 (H1) entails
that the assessment of performance is driven by the subject’s
tracking of the task performance, as indexed by an objective
criterion, i.e., by evaluating the tracking error. This hypothesis
follows from the assumption that the individual utilizes the
recall of memorized behavioral performance parameters to
retrospectively rate performance. Support for H1 would be
gained from good performance of the classifier for predicting
ratings from the tracking error. The main idea of hypothesis
2 (H2) is that a feeling about the own performance, rather
than objective discrimination, guides the ratings in the self-
assessment. We postulate that this feeling about the own
performance is reflected in the autonomic response and hence
consider good performance of the classifier for predicting ratings
from autonomic parameters as support for H2. H2 is closely
related to the idea that visceral bodily states can influence
how humans perceive their own actions, whereas H1 is more
compatible with the view that feedback on overt motor behavior
determines this experience.

2. MATERIALS AND METHODS

2.1. Experimental Setup
The cooperative task, a dual target-tracking task, was
implemented on a tablet computer (iPad2, Apple Inc.). By
tilting the tablet, subjects had to move a virtual ball into the
center of a moving circle. The target circle moved along a straight
line at a fixed speed, but reversed its direction of movement at
random intervals. The animation of the virtual ball followed
the kinematic equations resulting from Newton’s second law to
make its behavior naturalistic.

Each player controlled only one axis of the tablet. In the
collaborative condition, a single target moved on a diagonal line,
and subjects cooperatively moved the ball toward the target. In
the individual condition, there were two confinements along the

main axes of the tablet, each containing a ball and a target,
and subjects tracked the target in their respective confinement
independently from the partner. Figures 1A,B show screen shots
of the two conditions.

In order to constrainmovements of the subjects, we developed
a custom-made frame consisting of two armrests arranged in
an L-shape, handles on each armrest, and a ball joint support
for the tablet computer at the intersection of the armrests (see
Figure 1C). Subjects grasped the handle with their right hand
and extended the index finger into a thimble which was attached
at each side of the tablet computer. The ball joint held the
tablet’s balance and allowed the subjects to tilt it along the
respective main axes by lifting or lowering the index finger with
minimal physical effort. As the friction of the virtual ball was low,
small finger movements were sufficient to move the ball around.
Subjects did not report problems with controlling the ball or
fatigue.

The experimental setup and the participants were placed
in an electrically and acoustically shielded chamber. Subjects
were instructed to not communicate verbally or gesticulate
during the experiment, i.e., during the game or when submitting
ratings. Compliance with this instruction was checked by the
experimenter through a camera mounted in the recording
chamber. Subjects were also instructed to not rotate the tablet
around the vertical axis (by moving the index finger in a
plane parallel to the table), but there was no mechanism for
preventing such movements. Rotations in the horizontal plane,
however, could not affect the ball’s movement, and we have no
indication that subjects used such movements as a means of
covert communication.

2.2. Subjects and Study Protocol
Twenty eight subjects participated in the study (20 females, mean
age 25.18± 3.86 years). They were right-handed and reported to
be in healthy condition. Subjects gave written informed consent
before commencing the experiment. As part of the procedure
for obtaining informed consent from the participants, they
were instructed not to smoke, consume drugs or drink alcohol
or coffee before the experiment. Apart from contraceptives,
participants were free from medication. The study was approved
by the ethics committee of the medical association of the city of
Hamburg. The experiments were performed in accordance with
the Declaration of Helsinki.

Subjects were paired in 14 dyads. In all but two dyads who
were exclusively female, teams were mixed-gender on at least one
of the 2 days when data were recorded. On the first day of the
experiment, all participants except 4 (2 dyads) declared to never
have met the respective partner before.

Each dyad exercised the task on 6 consecutive days, because
we aimed at analyzing the processes when task performance was
dynamically stable. On each day, they completed 7 trials in either
condition (collaborative/individual). The order of the conditions
was randomized. Each trial lasted for 120 s. Immediately after
a trial, the experimenter requested the subjects to rate their
performance by asking them:

R1 : “Please rate your own performance.”
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FIGURE 1 | Screenshots from the tablet computer showing the collaborative (A) and individual (B) conditions. The gray crosshair is the target that moved at constant

rate along the dashed line (the line only illustrates the motion path; it was not visible to the subjects). Subjects tilted the tablet to make the ball roll to the target location.

The black square in the upper left corner was used to synchronize the tablet with the amplifier and was not visible to the subjects. (C) Picture of the experimental setup.

R2 : “Please rate your partner’s performance.”
R3 : “Please rate the collaboration.”

Subjects made their assessment by selecting a number between
1 and 9 (1-worst performance, 9-best) on a small remote control
which they held in their left hands underneath the armrest so that

the partner could not see their selection. R2 and R3 were called
out only after a collaborative trial. Whereas R1 and R2 measured

the subjects’ impression of their performance as individuals, R3

was targeted at their performance as a team. The ratings were

designed to capture different aspects in the social interaction of
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the subjects on the task and to facilitate correlation analyses with
signatures of their body and brain activity.

On days 7 and 8, they performed the same procedure, but
in addition, electrophysiological data were recorded (see below).
On day 7, subjects cooperated with the same partner like the 6
days before, whereas on day 8 they were paired with a different
but equally trained subject. In order to improve statistical
power, but also because we here are not concerned with the
differences between collaboration with a known vs. new partner,
we combined the data from days 7 and 8.

2.3. Recording Physiological Signals and
Calculating Autonomic Parameters
We recorded EEG, EMG, ECG, RR, and EDA simultaneously
from the two subjects in each dyad using an EEG amplifier
(ActiveTwo AD-box, BioSemi instrumentation) and an amplifier
for physiological signals (MP35, Biopac Systems Inc.). Both
amplifiers were synchronized by a common clock. Here we
analyze ECG, RR, and EDA data only; results of EEG and EMG
data analyses will be reported elsewhere.

The air in the recording chamber was conditioned to have a
temperature of 21◦C and a humidity of 40%. The interior was
illuminated by 4 × 25 W LED lights on the ceiling. Except for
day 8, when participants interacted with a new partner, data were
recorded at the same time of the day, which differed between the
teams though.

Two ECG electrodes were placed below the upper medial
clavicle and on the Erb point (Eindhoven 2). ECG was sampled
at 2,048 Hz. Respiration was recorded by a strain sensor on an
elastic belt which subjects wore around their chest. Electrodes
for recording skin conductance (EDA) were placed on the distal
phalanx of the index and middle fingers on the left hand. RR and
EDA were sampled at 10 Hz and a resolution of 24 bit.

ECG data analysis started by detecting R-peaks using the
qrsdetect function in the Biosig toolbox (Vidaurre et al., 2011)
in Matlab (The Mathworks). Correctness of QRS detection
was checked visually for each subject. Detection of the QRS-
complex resulted in so-called normal-to-normal intervals (NN)
from which then HRV parameters were calculated using the
heartratevariability function of the toolbox. Frequency-domain
parameters were calculated using autoregressive modeling. Using
a fast Fourier transform did not qualitatively change the results.

We used a subset of the HRV parameters that are described in
(Camm et al., 1996) and, additionally, Poincaré-map parameters
(SD1, SD2, r-RR; Brennan et al., 2001). Table 1 lists all
HRV parameters together with a short description of what
they represent; a comprehensive explanation and their clinical
relevance is given in Shaffer et al. (2014). It has to be pointed
out that the HRV parameters are not independent measures of
cardiac activity; rather, several of them are correlated to various
degrees (Shaffer and Ginsberg, 2017).

In women, HRVparameters are known to bemodulated by the
phase of the menstrual cycle (Sato et al., 1995; Yildirir et al., 2001;
Brar et al., 2015). There are a number of other factors, however,
which also affect HRV. Age and body-mass index, for example,
have been shown to exert a stronger modulation than menstrual

cycle (Vallejo et al., 2005; Zhang, 2007). Likewise differences in
HRV between female and male participants in our cohort had to
be expected (Zhang, 2007). Since here we are not interested in the
distribution of individual HRV parameters across the population,
but rather in the predictive information when considered jointly,
we consider menstrual cycle as one of many factors that give rise
to inter-individual differences of HRV parameters and devise our
methods to cope with these differences.

The respiration signal was band-pass filtered between 0.05 and
0.5 Hz, and the instantaneous breathing rate was determined
from the zero-crossings of the resulting signal. Interval durations
shorter than 0.5 s were considered as artifacts and removed. From
the Fourier power spectrum of the filtered signal, the integrals
in the frequency bands from 0.07 to 0.14 and 0.15 to 0.5 Hz,
normalized by the total power, yielded spectral power features in
the mid and high frequency bands, respectively (Hidalgo-Muñoz
et al., 2018). RR parameters are listed in Table 2.

Skin conductance was decomposed into a tonic skin
conductance level (SCL) and a transient skin conductance
response (SCR) (Boucsein, 2010) using the continuous
decomposition analysis implemented in the LEDALAB toolbox
(Benedek and Kaernbach, 2010). Since SCR events may reflect
stimulus-related as well as non-specific responses, and to avoid
the intricacies involved in finding thresholds which define such
events, we followed the approach suggested in Zhang et al. (2018)

TABLE 1 | HRV parameters.

HRV parameter Description

ecg_mean Mean duration of NN intervals

ecg_SDNN Standard deviation of the NN interval

ecg_RMSSD Square root of the mean of the squared differences

between successive NNs

ecg_NN50,

ecg_pNN50

Number of pairs of successive NNs that differ by more

than 50 ms (NN50count) and its ratio to the total number

of intervals (pNN50)

ecg_SD1,

ecg_SD2

Width and length of the Poincaré plot

ecg_r_RR Correlation coefficient in the Poincaré plot

ecg_VLF, ecg_LF,

ecg_HF,

ecg_tot_pwr

Power in three frequency bands (0.009–0.04, 0.04–0.15,

0.15–0.4 Hz) and total power

ecg_LF/HF ratio of LF to HF power

ecg_LFnu,

ecg_HFnu

LF and HF in normalized units, i.e., the relative value in

proportion to the TotalPower minus VLF

TABLE 2 | RR parameters.

RR parameter Description

resp_mean Mean breathing rate

resp_std Standard deviation of the breathing rate

resp_MF Spectral power in the middle frequency band

(0.07–0.14 Hz)

resp_HF Spectral power in the high frequency band (0.15–0.5 Hz)
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and considered the integrated SCR (iSCR) that was calculated by
integrating the SCR time courses across 10 s non-overlapping
time windows. SCL was treated in the same way. The means and
standard deviations across the trial yielded the EDA parameters
listed in Table 3.

For the statistical analysis of correlations between ratings and
autonomic parameters, we assumed a significance threshold of
0.05 and used the false discovery rate (FDR, Benjamini and
Hochberg, 1995) to correct for multiple comparisons.

2.4. Classification
We employed quadratic discriminant analysis (QDA) as a model
for the relation between autonomic parameters or objective
performance and ratings. QDA is a variant of linear discriminant
analysis (LDA Rao, 1948; Hastie et al., 2001) which allows for
different covariance matrices for each class and hence more
complex decision boundaries. Accuracies from a linear classifier
were always lower, which relates to the finding that the inclusion
of quadratic terms seemed to improve model accuracy (Beffara
et al., 2016). Although the problem naturally is one of ordinal
classification or regression, none of the corresponding methods
that we tested (LASSO, random forests, support vector machines)
outperformed QDA. We used the implementations of QDA and
LDA that are provided in Matlab (classify) and custom scripts.

Models were trained on pooled data from all subjects (N =

28 subjects × 14 trials × 2 days = 784 samples). In order to

TABLE 3 | EDA parameters.

EDA parameter Description

iscl_mean Mean of the integrated SCL (integration across 10 s

non-overlapping time windows)

iscl_std Standard deviation of the integrated SCL

iscr_mean Mean of the integrated SCR (integration across 10 s

non-overlapping time windows)

iscr_std Standard deviation of the integrated SCR

combine autonomic data from all subjects, we normalized data
by linearly mapping them to the interval [0, 1]. We also tried
z-scores for normalizing the distribution of each parameter per
subject to have zero mean and unit variance, but this did not
qualitatively affect the results.

Ratings were not normalized, but we checked for outliers
of the average ratings per subject with respect to the whole
population. If the median of the ratings from a subject was
more than 1.5 interquartile ranges above the upper quartile
or below the lower quartile, we corrected ratings from this
subject by subtracting the difference between the subject’s
median rating and the median of all other subjects’ median
ratings. Ratings of two subjects were corrected in this way.
In order to equalize the number rating levels across the
three ratings R1-3 and two conditions (collaborative/individual),
and to eliminate rating levels with an insufficient number of
samples for classification, we used only those trials where the
rating was among the six most frequent levels. This resulted
in discarding 2/6/5 trials from R1/2/3 in the collaborative
condition and 3 trials from R1 in the individual condition. The
resulting frequencies of the L = 6 rating levels are shown
in Figure 2B.

Objective task performance was measured by calculating the
tracking error. To evaluate the performance as a team, the
cumulative Euclidean distance (in pixels) between the target
and the ball across the duration of the trial was calculated. The
individual objective performances were given by the cumulative
distance (in pixels) in x-/y-direction between the target and the
ball across the trial duration.

Two sets of classifiers were trained to predict ratings. One
set was trained on the tracking errors. For each rating category
R1–3, the corresponding tracking error was used as a measure
of the subject’s or the dyad’s objective performance: Ratings of
own performance (R1) were predicted from the tracking error
along the axis that the subject controlled; ratings of the partner’s
performance (R2) were predicted from the tracking error along
the axis that the partner controlled; and ratings of collaboration

A B

FIGURE 2 | (A) Average tracking error across all subjects for each day of participating in the study. ECG was recorded on days 7 and 8, RR and EDA on every day.

(B) Distribution of ratings R1-3 from all subjects in the two conditions (collaborative/individual) on days 7 and 8 after correcting outliers and eliminating rating levels

with an insufficient number of samples.
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(R3) were predicted from the Euclidean distance between the ball
and the target. The other set of classifiers was trained on the
autonomic parameters.

Model performance was calculated by leave-one-sample-
out cross-validation: One sample was selected from the data
set, and the classifier was trained on the remaining samples.
The trained classifier was then used to predict the rating of
the selected sample, and the output was compared with the
observed ratings. Repetition of this procedure for each sample
in the data set yielded an estimate of the model’s performance.
To corroborate the results, and to investigate how the model
responds to data from an unseen subject, we also employed
leave-one-subject-out cross-validation: Here the classifier was
trained on data from all but one subjects and tested on data
from this subject. As this classifier captures common properties
across the cohort of participants, we call this classifier the
population model.

In order to reduce the redundancy between the numerous
autonomic parameters and thereby improve classification
performance, we employed backward feature selection for each
of the three ratings and two conditions. Successively, each
parameter was temporarily omitted from the data set and
the resulting classification performance was determined using
leave-one-sample-out cross-validation. The parameter that, when
omitted from the data set, yielded the strongest performance
increase was then permanently removed, and the procedure
was repeated until no further performance improvements were
achieved. The reduced set of parameters was then used to
determine the final model performance.

Importance of the remaining parameters was estimated by
permuting them individually and gauging the decrease in
model performance. Parameters that cause large decreases under
permutation can be considered more important than those with
smaller decreases (Breiman, 2001). A data set with a permuted
parameter was generated by replacing in each of theN samples of
the original data set the value of the respective parameter with
the values in all other samples, yielding a new data set of size
N(N−1). Model performance on this data set was then evaluated
using leave-one-sample-out cross-validation, and the difference
to the model performance on the original data set was taken as a
measure of parameter importance.

Since the number of samples for each rating level was far from
equal (see Figure 2B), we report model performance in terms of
F1-scores rather than prediction accuracies. The F1-score is the
harmonic mean of recall and precision of a classifier,

F1 =
2

1
recall

+
1

precision

,

whereby

recall =
1

L

L∑

l=1

TPl

Pl
and precision =

1

L

L∑

l=1

TPl

TPl + FPl

are the averages of the class-specific recall and precisionwhich are
calculated from the number of true positive (TP), total positive
(P), and false positive (FP) classifications.

The cross-validation methods yielded a single F1-score per
condition and rating. We assessed the likelihood of obtaining
the reported F1-scores by chance by running permutation tests
on all classifiers (Good, 2013). In each of the 1,000 repetitions,
we trained and tested the classifier on a data set in which the
structure had been destroyed by randomly permuting the class
labels.

3. RESULTS

3.1. Correlation Analysis of Behavioral Data
Exercising the task every day, subjects continuously improved
their performance, reflected in a monotonic decrease of the
average tracking error shown in Figure 2A. The only exception
was on day 7, when the introduction of ECG and EEG
recording likely affected the experimental routine acquired
during the previous days, leading to a transient decrease of task
performance. Average performance was higher when subjects
tracked individual targets compared to when they collaborated to
track the target jointly. On days 7 and 8 the average tracking error
was 49.8/55.6 pixels in the individual/collaborative condition,
respectively (p = 2.4466e−4, paired two-sided t-test). The
subjects rated their own performance slightly higher in the
individual than in the collaborative condition (6.3269 vs. 6.1319,
p = 0.0429).

Participants mainly used the upper half of the 9-point scale
(values 5–9) for assessing task performances, with 6 and 7 being
the most frequent responses (Figure 2B). The distributions of the
responses was nearly normal (Lilliefors test, p-values for the four
ratings between 0.01 and 0.021).

We analyzed the relation between the performance
assessments of the two partners in the collaborative condition by
calculating Pearson correlation coefficients between all possible
combinations of the ratings R1–3. For most rating combinations,
correlations were more or less evenly distributed across the
negative and positive ranges (Figure 3). Only correlations
between mutual ratings of the partner’s performance (R2
subject x vs. R2 subject y, center panel) and between ratings
of the partner’s performance and collaboration (R2 subject x
vs. R3 subject y, middle panel in the bottom line) appeared
to be significant (medians different from zero: p = 0.013 and
p = 0.015, respectively, Wilcoxon signed rank test). Despite
this prevalence of positive correlations in the mutual assessment
of the partner’s performance, the rather flat distribution of
correlations between ratings of the collaboration of the partners
(R3 subject × vs. R3 subject y, lower right panel) indicates
that in most dyads, a feeling of ‘good collaboration’ was rarely
reciprocated by the partner, and in some dyads this feeling even
was inverse.

Correlations were weak in general; only in a few dyads they
reached a threshold of p < 0.05 (FDR-corrected) which ismarked
by the dashed lines in Figure 3. This suggests that subjects in a
dyad rated the performance independently of the partner. We
therefore investigated whether there was a systematic relation
between the ratings within each subject instead. In contrast to
the relation between the ratings in the dyad, most ratings from
an individual subject were positively correlated (median different
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FIGURE 3 | Distribution of correlation coefficients between the ratings from the two partners in each dyad. All possible correlations were calculated, e.g., the top

panel shows the correlation coefficients between the ratings of own performance (R1) from the two partners. Red dashed lines mark the strength beyond which

correlations are significant (p < 0.05, FDR-corrected).

A B C

FIGURE 4 | Distribution of correlation coefficients between the ratings (printed above each histogram) from each subject. Red dashed lines mark the strength beyond

which correlations are significant (p < 0.05, FDR-corrected). The four panels show the distribution of correlations between (A) ratings of the own and the partner’s

performance on the own axis (collaborative condition), (B) the partner’s performance rating and the tracking error on the partner’s axis, (C) ratings of collaboration and

the Euclidean tracking error, (D) own performance rating and tracking error on the own axis (individual condition).

from zero: all p < 1e−8, Wilcoxon signed rank test), reaching
a significance threshold of p < 0.05 (FDR-corrected) in several
subjects (Figure 4).

A third set of correlation analyses was run to figure out in
how far the subjects’ ratings reflected actual task performance.
From the trials in the collaborative condition, we calculated
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the correlation of the own performance ratings with the
tracking error along the subject’s axis, the partner’s performance
rating with the tracking error along the partner’s axis, and the
collaboration rating with the absolute tracking error. Whereas
most subjects showed a negative correlation between the
tracking error and their ratings (median different from zero: all
p < 1e−5, Wilcoxon signed rank test), only in a few of them this
correlation was significant, suggesting that most subjects were
hardly objective in the assessments of their own performance,
their partner’s performance or the success of their collaboration
(Figure 5). In addition, we could not observe any significant
difference in the distribution of correlation coefficients
between the four ratings (all p > 0.82, Wilcoxon signed
rank test).

3.2. Analyzing the Relation Between
Ratings and Individual Autonomic
Parameters
Following a conventional approach for studying the properties
of autonomic parameters in cognitive tasks, we analyzed
correlations between each of the 23 parameters that were used
in this study (see Tables 1–3) and the ratings. From the set of
HRV parameters, one ore more were significantly correlated with
each of the four different ratings (see Figure 6). In particular
the r_RR parameter (correlation coefficient in the Poincaré plot)
correlated with ratings of own performance in the collaborative
and individual conditions as well as with ratings of collaboration.
In the individual condition, 8 of the 15 HRV parameters were
correlated with ratings of own performance, whereas for the
collaborative condition, only 3 or less parameters correlated with
the ratings. Collaboration was the only rating that correlated
with one of the EDA parameters, the standard deviation of
the skin conductance level (iscl_std). Own performance in
the collaborative condition was the only rating that correlated
with one of the RR parameters, the mean respiration rate
(resp_mean). About half of the parameters however did
not show significant correlations with at least one of the
four ratings.

3.3. Predicting Ratings From Autonomic
Parameters and Objective Performance
The correlation analysis in the previous section showed that some
of the autonomic parameters bore a linear relation to at least
one of the ratings. The correlations were calculated across all
participants and trials. In the next step we explored to what
extent this relation would enable a machine classifier to make
predictions about single trials. We successively trained a classifier
to predict ratings from each autonomic parameter individually
and evaluated the performance by leave-one-sample-out cross-
validation. Since samples in the data set were unevenly
distributed across rating levels 5–9 (see Figure 2B), we could
not employ accuracy for quantifying classification performance.
For non-equally distributed target classes, classification accuracy
may be a misleading quality measure, because a classifier could
achieve high accuracy values by simply deciding for the most
frequent class. Instead, we used F1-scores to compare the
classification performances on different autonomic parameters.
We determined the likelihood of observing these performance
values when in fact there is no structure in the data by comparing
them against the distribution of F1-scores on surrogate data. The
result is shown in Figure 7. None of classification performances
exceeded the chance level (all p > 0.05, FDR-corrected), that is,
none of the ratings could be predicted from any of the autonomic
parameters.

To investigate whether this situation could be changed
when autonomic parameters are considered jointly rather than
individually, we trained another set of models on feature vectors
which were composed from subsets of the autonomic parameters.
Starting from a feature set with all parameters, we eliminated
one by one until classification performance did not improve
further (backward feature selection). The classification results
on the optimized parameter set are summarized in Figure 8.
Prediction performance from the aggregated parameters was
well above chance level for all ratings. Prediction of ratings
was generally better in the collaborative than in the individual
condition. To explore the stability of these findings, we also
tested whether the models captured some general properties of
the relation between ratings and the autonomic response across

A B C D

FIGURE 5 | Distribution of correlation coefficients between ratings (given in the first line of the title) and objective performance (tracking error, second title line) of all

subjects. Red dashed lines mark the strength beyond which correlations are significant (p < 0.05, FDR-corrected). Correlations are mostly negative because subjects

were asked to rate higher performance, which corresponds to smaller tracking errors, by larger values. The four panels show the distribution of correlations between

(A) own performance rating and tracking error on the own axis (collaborative condition), (B) the partner’s performance rating and the tracking error on the partner’s

axis, (C) ratings of collaboration and the Euclidean tracking error, (D) own performance rating and tracking error on the own axis (individual condition).
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FIGURE 6 | Correlation coefficients between individual autonomic parameters and ratings. RR parameters have blue hues, EDA parameters green colors, and HRV

parameters shades of red. Dashed red lines visualize the strength beyond which correlations are significant (p < 0.05, FDR-corrected).

the population, which would allow it to make predictions about
unseen subjects. We therefore ran a leave-one-subject-out cross-
validation on the same parameter sets. Prediction performances
were generally lower under this cross-validation method, which
had to be expected since generalizing to a unseen subject is harder
than generalizing to new samples when data from all subjects
were already seen in the training. Nevertheless, this analysis
revealed that the subjective performance evaluation of an unseen
participant in the collaborative condition could still be predicted
from the autonomic response of this participant above chance
level, whereas this was not possible when the participants solved
the task individually.

For the relation of the objective task performance measured
by the tracking error to the subjective experience, the analysis
in section 3.1 showed that correlations were significant only in
a few participants (c.f. Figure 5), but that for most of them, the
correlations were stronger than those for individual autonomic
parameters (shown in Figure 6). This raised the question whether
these stronger correlations could result in a better predictability
of the subjective performance evaluation from the objective task
performance than from individual autonomic parameters. The
results of predicting ratings from the objective performance
using both cross-validation methods are shown in Figure 8.

Indeed, prediction performance of own performance ratings
from the tracking error reached the chance level, which is a
clear improvement compared to the prediction from individual
autonomic parameters (c.f. Figure 7). However, when subjects
collaborated, predicting ratings from objective performance was
always inferior to the prediction from aggregated autonomic
parameters. In contrast, the generalization capabilities of the
model across subjects seemed to be better for the tracking error
than for the autonomic response when subjects tracked targets
individually. Numerical values of F1 scores and p-values are listed
in Tables 4, 5.

3.4. Analyzing the Relevance of Individual
Parameters
Finally, we were interested in the importance of individual
autonomic parameters in the optimized feature set for the
prediction performance. We therefore permuted each parameter
and ordered them according to the incurred decrease in the
model’s prediction performance (Figure 9). Comparing the three
groups of autonomic parameters, we observed that all RR
parameters are among the seven most important parameters
for the prediction of own performance in the collaborative
condition, whereas they rank lower in predicting the remaining
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FIGURE 7 | F1-scores of predicting ratings from individual autonomic parameters, estimated using leave-one-sample-out cross-validation. Dashed red lines mark the

0.05 quantile of obtaining the corresponding F1-score or higher by chance (FDR-corrected).

FIGURE 8 | F1-scores of predicting ratings from aggregated autonomic parameters and from objective performance, estimated using cross-validation on a single

sample (sample cv) and on all samples from one subject (subject cv). Dashed red lines mark the 0.05 quantile of obtaining the corresponding F1-score or higher by

chance (FDR-corrected).
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TABLE 4 | F1-scores, precision, and recall from leave-one-sample-out cross-validation and p-values from a randomization test.

Rating Classification from auton. param. Classification from obj. perform.

F1-score p prec. recall F1-score p prec. recall

Own performance (R1, collab.) 0.32 0 0.43 0.26 0.19 0.048 0.18 0.19

Partner performance (R2) 0.37 0 0.47 0.3 0.14 0.866 0.11 0.18

Collaboration (R3) 0.37 0 0.46 0.31 0.14 0.905 0.11 0.18

Own performance (R1, indiv.) 0.23 0 0.23 0.23 0.16 0.461 0.14 0.2

TABLE 5 | F1-scores, precision, and recall from leave-one-subject-out cross-validation and p-values from a randomization test.

Rating Classification from auton. param. Classification from obj. perform.

F1-score p prec. recall F1-score p prec. recall

Own performance (R1, collab.) 0.22 0.001 0.22 0.22 0.19 0.027 0.19 0.2

Partner performance (R2) 0.23 0 0.25 0.22 0.14 0.889 0.11 0.18

Collaboration (R3) 0.21 0.008 0.18 0.24 0.13 0.96 0.11 0.17

Own performance (R1, indiv.) 0.13 0.984 0.14 0.11 0.19 0.045 0.18 0.2

ratings (with the exception of the mean breathing rate for
predicting the partner’s performance). EDA parameters play a
role in predicting the partner’s performance and collaboration
but are less important in predicting own performance. For all
ratings, different combinations of HRV parameters have the
strongest influence on the prediction performance. From the set
of HRV parameters, frequency-related parameters (HF, HFnu,
LF, LF/HF, VLF) seem to be critically involved in the prediction
of own and partner performance in the collaborative condition,
whereas prediction of collaboration and own performance in the
individual condition relies more on parameters which capture the
regularity of the heart beat intervals in the time domain (NN50,
pNN50, SD1, SD2).

4. DISCUSSION

This study investigated the relation between the subjective
assessment of performance and activity of the autonomic
nervous system indexed by HRV, RR, and EDA in a joint
target-tracking task. Ratings of collaboration, partner and
own performance, which were reported by the subjects after
each trial, were highly correlated within each subject. This
indicates that subjects did not differentiate much between the
individual contributions inquired by the different questions
and possibly rated them on the basis of a general impression
of the success in tracking the target instead. Partners within
a dyad however rarely agreed upon the success of their
collaboration or the performance of their partner. Hence, it
seems that the experience of joint task performance was not
shared among the partners. Whereas the joint target-tracking
task and the instructions engaged many of the coordinating
mechanisms that constitute joint action (Vesper et al., 2017) (e.g.,
monitoring, joint attention and shared gaze, haptic coupling,
emotion understanding, and expression), critical components
for making the task completion a joint experience may have
been missing. The independent control of orthogonal axes was

likely to impact the joint action goal as well as the task co-
representation, leading to a collaboration experience that was
not systematically reciprocated. Yet subjects reacted differently
to the collaborative and to the individual condition, which
became evident in the lower tracking error and higher ratings of
their own performance in the individual condition. The current
results should therefore be interpreted on the background of an
experimental manipulation of joint attention (Maye et al., 2017)
rather than joint action.

We compared the capability of predicting ratings from
aggregated autonomic parameters and from the tracking error
as an objective measure of task performance. We found that
predictions from autonomic parameters generally were more
reliable, in particular for ratings of the partner’s performance
and the success of the collaboration. Autonomic parameters were
also more effective in predicting ratings of own performance,
but the prediction performance was lower for trials in which
the target was tracked individually than for joint tracking.
The prediction performance for the own performance from
the tracking error seemed to be less affected by the condition
though. Taken together, our results suggests that the autonomic
response is more informative for inferring the subjective
experience in the collaborative condition and less so when
interaction with the partner is not required. For the efficiency
of the objective task performance, however, the difference is
between assessments of own performance, no matter whether
in a collaborative or individual context, and the evaluation
of the contribution of the partner to achieving a common
goal. These findings may provide support for efforts to
increase social coherence by using realtime-feedback for enabling
group members to co-regulate HRV coherency (McCraty,
2017).

With respect to the two hypotheses about the origin of the
subjective performance assessment, our results suggest that H1
can not sufficiently well explain how subjects arrived at their
ratings. H2 entails that the subjects’ ratings were guided by a
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FIGURE 9 | Average decrease of F1-scores (on the abscissa) under permutations of individual predictors (on the ordinate). Predictors were ordered according to their

associated F1-score change.

feeling about the performance, and that this feeling is modulated
by visceral information. In particular in a collaborative
setting, the autonomic response may be a good indicator for
the outcome of this subjective performance assessment. The

stronger coupling between ratings and these parameters in the
collaborative condition suggests that subjects rely more on the
internal state of their body when assessing the outcome in a
collaborative task.
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A crucial point of this study is that the relation between the
autonomic response and the outcome of a subjective assessment
could only be observed when the parameters were considered
in an integrated manner. Traditional studies investigate the
relation between a single (or a few) parameter(s) and the
experimental paradigm. Quite often, these studies discriminate
between fluctuations on a short time scale which are reflected in
short-term components of the HRV (e.g., RMSSD, NN50count,
SD1, or HF) and variability on a longer time scale as indicated
by long-term components (e.g., SDNN, SD2, or LF), and
interpret effects as shifts of the sympatho-vagal balance in
the modulation of cardiac activity. This approach is followed
on the background that long-term components, such as LF,
and short-term components, such as HF, reflect primarily
sympathetic and vagal modulations, respectively. Here, this
approach did not reveal such an obvious systematic relation
between any of the typical HRV parameters (Camm et al., 1996;
Brennan et al., 2001) and ratings. However, considering the
same parameters as elements of a feature vector and training
a simple classifier allowed us to obtain a population model
which predicted the result of the subjective assessment better
than that of a model based on the objective performance. This
indicates that there is a systematic relation between autonomic
parameters and subjective performance evaluation that is shared
across the population. Since we observed this relation only
for aggregated parameters and not for individual ones, we
cannot interpret the result with respect to only one of the
mental-cognitive phenomena that are typically considered in
the literature in relation to autonomic parameters. Yet, one
should consider that sympathetic and parasympathetic activity
are not always entirely antagonistic, rendering a simple concept
of sympathetic-parasympathetic balance inadequate in complex
cognitive, emotional, and behavioral situations.

Whereas, the results of our study show some potential for
a better understanding of the embodied nature of subjective
experience, the ramifications of the approach have to be
elucidated in future investigations. An important issue in this
respect is the demography of the cohort and the composition of
the dyads. Participants in our study were young students, and
a clear majority of them were females. As gender is known to
affect the dynamics of autonomic parameters, it would certainly
be interesting to find out whether and how this might impact the
prediction capabilities of the proposed method. Other factors in
this context which require systematic investigation are whether
the partners in a team are from the same or different sex as
well as their relationship. Another avenue for future research is
probably the question in how far the findings in our study can
be generalized across different tasks. Methodological difficulties
notwithstanding, we think that the evidence for the importance
of bodily signals in the emergence of subjective experience that

we found in our study suggests that tasks which require more
physical play than just flicking a finger may result in better
prediction capabilities.

5. CONCLUSION

Existing studies have suggested a variety of interactions between
cognitive and perceptual processes and individual autonomic
parameters, but almost all of them concluded that the true
relations are likely more complex. The machine-learning-
inspired approach we suggest here may pave the way to
understand such complex relationships. Our study suggests that
the physiological activity indexed by autonomic parameters bears
a relation to the subjective performance evaluation that can be
stronger than that of the actual performance. This underlines the
importance of considering bodily processes for understanding
the mechanisms of social cognition.
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