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HIV/AIDS is a leading cause of disease burden in sub-Saharan Africa. Existing evidence has demonstrated that there is 
substantial local variation in the prevalence of HIV; however, subnational variation has not been investigated at a high 
spatial resolution across the continent. Here we explore within-country variation at a 5 × 5-km resolution in sub-Saharan 
Africa by estimating the prevalence of HIV among adults (aged 15–49 years) and the corresponding number of people 
living with HIV from 2000 to 2017. Our analysis reveals substantial within-country variation in the prevalence of HIV 
throughout sub-Saharan Africa and local differences in both the direction and rate of change in HIV prevalence between 
2000 and 2017, highlighting the degree to which important local differences are masked when examining trends at the 
country level. These fine-scale estimates of HIV prevalence across space and time provide an important tool for precisely 
targeting the interventions that are necessary to bringing HIV infections under control in sub-Saharan Africa.

HIV/AIDS is a leading cause of morbidity and mortality in sub-Saharan 
Africa1,2. In the nearly four decades since HIV was first recognized, sci-
entific breakthroughs have transformed the once invariably fatal illness 
to one that can be successfully managed with lifelong anti-retroviral 
therapy (ART)3. Despite the rapid increase in the use of ART since 
the mid-2000s and the resulting decline in mortality, 34% of people in 
east and southern Africa and 60% of people in west and central Africa 
who are living with HIV are not currently receiving any treatment4 and 
HIV/AIDS remains the most common cause of death in sub-Saharan 
Africa2. The burden of the global HIV epidemic is disproportionately 
concentrated in sub-Saharan Africa, where—in 2017—75% of deaths 
and 65% of new infections occurred and where 71% of people living 
with HIV resided1,2.

The global community has repeatedly called for the end of the HIV 
epidemic. Millennium Development Goal 6 (Combat HIV/AIDS, 
malaria, and other diseases) included the target: “To halt by 2015 
and have started to reverse the spread of HIV/AIDS”5. More recently, 
Sustainable Development Goal 3 (Ensure healthy lives and promote 
well-being for all at all ages)6 explicitly calls for the end of the epi-
demic by 2030. The Joint United Nations Programme on HIV/AIDS 
(UNAIDS) fast-track strategy has set diagnosis and treatment targets7 
for 2020 and 2030, with the goal of markedly reducing both new infec-
tions and deaths by 2030. Despite these goals, a recent review of the 
state of HIV concluded that the world is not on track to end the HIV 
epidemic8. Moreover, global spending on HIV in sub-Saharan Africa 
peaked in 2013 and has since declined9, potentially compromising 
existing efforts to combat HIV.

Renewed commitment and new tools are required to get the world 
on track to bring HIV infection under control, in sub-Saharan Africa 
and globally. Local data on the current prevalence of HIV are such a 
tool, providing a means to target resources and interventions more 
efficiently.

Precision public health and HIV
Country-level estimates of HIV prevalence, produced by both the 
Global Burden of Disease (GBD) study1 and UNAIDS4, highlight 
extensive differences in HIV prevalence between countries within 
sub-Saharan Africa. Further differences in HIV prevalence within 
national borders have long been recognized10 and recent evidence 
suggests that there is substantial within-country variation. Both GBD1 
and UNAIDS4 estimate the prevalence of HIV at the first-level adminis-
trative subdivisions in select countries and a growing number of studies 
have examined subnational trends in the prevalence of HIV in a variety 
of locations and at various levels of granularity11–19 (Supplementary 
Table 1); these studies consistently find extensive within-country geo-
graphical variation in HIV prevalence.

Subnational variation in HIV prevalence has important implications 
for efforts to bring HIV infection under control, related to the treat-
ment of people living with HIV as well as other prevention efforts that 
are aimed at directly reducing the number of new infections. Local 
estimates of HIV prevalence—particularly the number of people living 
with HIV—are useful for estimating the location-specific need for ART 
and other HIV-related services, and complement routinely collected 
clinical data that in some locations provide estimates of the number of 
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diagnosed individuals living with HIV. In terms of prevention, areas 
in which HIV prevalence is high and ART coverage is low are likely 
to have a high incidence of HIV20,21. In the absence of local informa-
tion on HIV incidence, knowledge of the variation in HIV prevalence 
can be used to better target prevention efforts to those areas with the 
greatest need. Recognizing the importance of subnational heterogene-
ity in the HIV epidemic, UNAIDS and funding agencies—including 
the US President’s Emergency Plan for AIDS Relief (PEPFAR) and the 
Global Fund to Fight AIDS, Tuberculosis and Malaria—have called for  
incorporating local data into strategies for addressing the HIV 
epidemic22–24.

Although previous studies have examined subnational variation 
in HIV prevalence in select countries11–19 (Supplementary Table 1), 
there is—to our knowledge—no comprehensive and comparable set 
of subnational HIV prevalence estimates for all of sub-Saharan Africa. 
Moreover, for most countries, existing estimates are for a single year 
and use a single data source. Here we present comprehensive space–
time estimates of HIV prevalence among adults aged 15–49 years 
who reside in each area on a 5 × 5-km grid across 47 countries in 
sub-Saharan Africa, annually from 2000 to 2017. For this analysis,  
we constructed a geolocated database of HIV prevalence data from 134 
surveys in 41 countries and 9,794 site-years of sentinel surveillance of 
antenatal care clinics at 1,858 unique sites in 46 countries (Extended 
Data Figs. 1–3). We adapted existing Bayesian spatiotemporal methods 
to analyse these data and produce gridded estimates of HIV preva-
lence, calibrated to national estimates from the GBD1. We additionally 
combined grid-cell-level estimates of HIV prevalence with grid-cell-
level estimates of the population25,26 aged 15–49 years to estimate the 
number of people living with HIV. Finally, for HIV prevalence, we 
calculated population-weighted averages of the grid-cell-level esti-
mates to generate estimates for first-level administrative subdivisions  

(for example, provinces or regions) and second-level administrative 
subdivisions (for example, districts or departments) in each country. All  
estimates are publicly available from the Global Health Data Exchange 
(http://ghdx.healthdata.org/ihme-data/africa-hiv-prevalence-geospatial- 
estimates-2000-2017) and through a user-friendly data visualization 
tool (https://vizhub.healthdata.org/lbd/hiv).

Widespread differences in HIV prevalence
HIV prevalence varied substantially at the grid-cell level as well as 
among first and second administrative subdivisions throughout 
sub-Saharan Africa (Fig. 1, Extended Data Fig. 4 and Supplementary 
Figs. 1–4). This variation was apparent within countries with a  
relatively high overall HIV prevalence; for example, in Botswana 
(national prevalence, 22.8% (95% uncertainty interval, 19.8–26.1%)) 
prevalence among districts ranged from 15.1% (11.5–19.8%) in Ghanzi 
district to 27.7% (22.3–33.8%) in North-East district in 2017. This var-
iation was also apparent in countries with a more moderate national 
HIV prevalence; for example, in Tanzania (national prevalence, 3.9% 
(3.6–4.3%)), prevalence among regions ranged from 0.4% (0.2–0.6%) 
in Kusini Pemba region to 9.1% (7.1–11.3%) in Njombe region in 2017. 
In countries in which levels of HIV prevalence are lower overall, the 
absolute differences among subnational units were necessarily smaller. 
However, in many instances, relative differences among subnational 
units remained large—for example, in the Democratic Republic of the 
Congo, in which national prevalence was 0.7% (0.6–0.9%), prevalence 
among second-level administrative subdivisions ranged from 0.3% 
(0.2–0.5%) in Lukaya district to 1.4% (0.8–2.3%) in the city Likasi in 
2017. Most countries (36 out of 47) had a more than twofold difference 
in prevalence between the second-level administrative subdivisions 
with the lowest and highest estimated prevalence in 2017, and the  
largest difference was more than fivefold in 14 out of 47 countries.
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Fig. 1 | Prevalence of HIV in adults aged 15–49 in 2017. a–d, Prevalence 
of HIV among adults aged 15–49 in 2017 at the country level (a), first 
administrative subdivision level (admin 1; b), second administrative 
subdivision level (admin 2; c) and 5 × 5-km grid-cell level (d). Maps 

reflect administrative boundaries, land cover, lakes and population; grid 
cells with fewer than 10 people per 1 × 1 km, and classified as barren or 
sparsely vegetated, are coloured light grey25,26,37–40. Countries in dark grey 
were not included in the analysis.
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At the country level (Fig. 1a), there was a clear divide between coun-
tries in southern sub-Saharan Africa (Botswana, Lesotho, Mozambique, 
Namibia, South Africa, Swaziland, Zambia and Zimbabwe), where esti-
mated HIV prevalence exceeded 10% in 2017 and the rest of the conti-
nent, where prevalence was generally much lower. At subnational levels, 
however, there are areas outside of southern sub-Saharan Africa that 
nonetheless had a very high prevalence of HIV, including second-level 
administrative subdivisions in Kenya, Malawi, Uganda and Tanzania, 
where the estimated prevalence of HIV exceeded 10% in 2017 (Fig. 1c). 
Overall, the highest estimated prevalence observed in 2017 at the coun-
try level was 27.2% (23.6–31.1%) in Swaziland, compared to 28.3% 
(24.2–32.7%) in Lubombo province (Swaziland) at the first administra-
tive level and 30.1% (25.2–35.4%) in Tikhuba constituency (Swaziland) 
at the second administrative level.

Local temporal changes in HIV prevalence
Between 2000 and 2017, estimated HIV prevalence at the country 
level increased in 15 out of 47 countries (Fig. 2a). At subnational lev-
els, we estimated an increase in HIV prevalence in 22.9% of first-level 
administrative subdivisions (located in 24 countries) and in 25.0% of 
second-level administrative subdivisions (located in 28 countries) across 
sub-Saharan Africa (Fig. 2b, c; the posterior probability of an increase is 
shown in Supplementary Fig. 5). Although there was local heterogeneity, 
broad regional trends were apparent; the largest increases were found 
primarily in areas in coastal countries in southern sub-Saharan Africa 
and the largest decreases found primarily in a band stretching from 
Botswana to Kenya and in Central African Republic. Although in some 
places the direction and rate of change differed substantially on oppo-
site sides of international borders (for example, between Botswana and 
South Africa), transnational patterns were also apparent—for example, 
the region that covered eastern South Africa and southern Mozambique.

There were substantial differences in both the direction and rate of 
change in HIV prevalence within many countries: 16 (34%) countries 
had areas in which the estimated HIV prevalence increased and areas 
in which the estimated HIV prevalence decreased among first-level 
administrative subdivisions (Fig. 2b). At the second administrative level 
this was true in 20 (42.6%) countries, and at the grid-cell level this was 
true in 28 (59.6%) countries (Fig. 2c, d). In some of these countries, the 
differences were substantial. For example, HIV prevalence declined by 
5.8 percentage points (0.2–11.4 percentage points) in Manica district in 
Mozambique, whereas prevalence increased by 17.2 percentage points 
(9.3–26.1 percentage points) in Guija district. Similarly, prevalence 
declined by 14.3 percentage points (10.3–18.2 percentage points) in 
Chegutu district in Zimbabwe, whereas it increased by 0.6 percentage 
points (−4.1 to 5.0 percentage points) in Beitbridge district.

Changes in HIV prevalence from 2000 to 2017 in any given location 
were not generally linear or necessarily consistently in the same direc-
tion. Estimates of changes in prevalence over shorter periods within 
the overall 2000–2017 timeframe of this analysis highlight the variation 
within this period (Supplementary Figs. 6–8).

Local trends in the number of people living with HIV
Figure 3 shows the estimated number of people living with HIV by 
5 × 5-km grid cell. As expected, given variation in population density 
and HIV prevalence, the number of people living with HIV per grid cell 
was highly variable and skewed: in 2017, we estimate that less than one  
person lives with HIV in 52.1% (50.6–53.4%) of grid cells, less  
than 10 people live with HIV in 83.8% (83.3–84.3%) of grid cells, less than  
100 people living with HIV in 97.4% (97.2–97.5%) of grid cells and 
less than 1,000 people live with HIV in 99.8% (99.78–99.81%) of grid 
cells. Grid cells with large numbers of people living with HIV tend to 
have large populations in general. Although many of the grid cells that 
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Fig. 2 | Change in HIV prevalence in adults aged 15–49 from 2000 to 
2017. a–d, Absolute change in HIV prevalence among adults aged 15–49 
between 2000 and 2017 at the country level (a), first administrative 
subdivision level (b), second administrative subdivision level (c) and 

5 × 5-km grid-cell level (d). Maps reflect administrative boundaries, 
land cover, lakes and population; grid cells with fewer than 10 people per 
1 × 1 km, and classified as barren or sparsely vegetated, are coloured light 
grey25,26,37–40. Countries in dark grey were not included in the analysis.
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have the largest number of people living with HIV are also grid cells 
with very high prevalence (which are located primarily in southern and 
south-eastern sub-Saharan Africa), there are also grid cells with more 
moderate HIV prevalence but large numbers of people living with HIV; 
these are located primarily in western Africa.

A large proportion of people who are living with HIV are concen-
trated in a small number of grid cells with high spatial concentrations 
of people who are living with HIV. Approximately one-third (34.3% 
(33.0–35.7%)) of people living with HIV in sub-Saharan Africa live in 
the 0.2% of grid cells in which it is estimated that there are more than 
1,000 people living with HIV. A similarly large proportion of people 
living with HIV is distributed throughout the larger number of grid 
cells that have more moderate spatial concentrations of people living 
with HIV: 32.0% (30.6–33.4%) of people with HIV live in grid cells 
in which there are estimated to be fewer than 100 people with HIV, 
and 7.2% (6.7–7.7%) of people with HIV reside in grid cells in which 
there are estimated to be fewer than 10 people with HIV. The total 
number of people living with HIV aged 15–49 years in sub-Saharan 
Africa increased by 3.0 (1.8–4.4) million between 2000 and 2017, from 
17.0 million (16.3–17.8) to 20.1 million (19.0–21.2). This increase was 
due to a corresponding increase in population, as prevalence in sub- 
Saharan Africa as a whole declined over this same period, from 5.5% 
(5.2–5.7%) in 2000 to 4.0% (3.8–4.2%) in 2017. The increase in people 
living with HIV was larger in locations with high spatial concentrations 
of people with HIV compared to those with fewer people living with 
HIV: in 2017, the total number of people with HIV in grid cells in which 
there are estimated to be fewer than 100 people with HIV was nearly 
identical (6.4 million (6.2–6.6)) to the number in 2000 (6.5 million 
(6.3–6.6)). However, the number of people living with HIV in grid cells 
in which there are estimated to be more than 1,000 people increased by 
37.5%, from 5.0 million (4.7–5.3) to 6.9 million (6.3–7.5).

Discussion
This study provides a comprehensive quantification of subnational 
trends in HIV prevalence and the number of people living with HIV 

in sub-Saharan Africa. These estimates highlight substantial differences 
between and within countries in levels and trends in HIV prevalence 
and the spatial concentration of people living with HIV. For discussion 
of the advantages of this analysis compared to earlier analyses, impor-
tant limitations of the present analysis and potential future directions, 
see Supplementary Discussion.

Subnational estimates of HIV prevalence can be used to more effi-
ciently target resources and interventions. The WHO (World Health 
Organization) recommends ART for all people living with HIV27, 
and the UNAIDS fast-track strategy emphasizes the importance of 
treatment and diagnosis7. Estimates of the prevalence of HIV and the 
number of people living with HIV at local levels provide important 
information about the number of people who are potentially in need 
of diagnosis and treatment services. Additionally, in the absence of 
local information on HIV incidence, information about HIV preva-
lence can be used to target primary prevention strategies: modelling 
studies that compare geographically targeted to non-geographically 
targeted prevention strategies have found that geographically targeted 
strategies are more efficient in preventing new HIV infections under 
the same budgetary constraints11,28. Moreover, previous research has 
highlighted the potential role of geographical ‘hot spots’ as a source of 
HIV transmission both locally and further afield, which suggests that 
targeted prevention strategies may reduce the incidence of HIV not 
only in targeted areas but also more broadly29,30.

Our analysis highlights several challenges to bringing HIV infec-
tion under control in Africa. Growing population size coupled with 
continued high incidence1,4 of new HIV infections and increased life 
expectancy among people living with HIV31–34 has led to an increase 
in the number of people living with HIV in sub-Saharan Africa 
since 2000. Despite this increase, spending on HIV in sub-Saharan 
Africa has declined in recent years, largely as a result of a reduction in 
development assistance for health9. Our estimates also highlight the  
diversity of the HIV epidemic: although a large number of people 
living with HIV are concentrated in a few select areas (Fig. 3), a simi-
larly large number are living in areas with a relatively low spatial con-
centration of people living with HIV. The most effective treatment 
and prevention strategies probably differ between areas in which  
many people live with HIV and those with a smaller number of people 
living with HIV, and economies of scale may be harder to realize in 
the latter case. Nonetheless, it is essential to ensure that people living 
with HIV have access to appropriate health services regardless of their 
location.

The results of this analysis describe a multifaceted picture of pat-
terns of changing HIV prevalence across sub-Saharan Africa, with many 
areas experiencing increases over the same period in which other areas 
experienced declines. Changes in HIV prevalence are the outcome of 
a complex interaction between incidence, mortality and migration 
patterns. Globally, the large-scale expansion of ART coverage has 
reduced mortality among people living with HIV, offsetting declines 
in incidence and resulting in an overall increase in HIV prevalence 
since 20001,4,35. At the region and country levels, trends in mortality 
and incidence have varied, which has resulted in differing trends in the  
prevalence of HIV1,4,35. Exploration of this dynamic at a subnational 
level is warranted, although it is complicated by the relative lack of 
directly observed empirical data on HIV incidence and mortality in 
sub-Saharan Africa36. Nonetheless, existing evidence indicates that sub-
national increases in prevalence should not be interpreted as inherently 
alarming without additional consideration of incidence and mortality 
trends.

Despite progress in recent decades, HIV continues to impose a 
substantial health burden on countries in sub-Saharan Africa. The 
estimates from this analysis highlight the degree to which the effect 
of this epidemic varies, even within countries. These local data pro-
vide a new tool for policymakers, programme implementers and 
researchers to use to assess local needs, efficiently target interven-
tions and ultimately work towards bringing HIV infection under 
control in Africa.
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MEthOdS
Data reporting. No statistical methods were used to predetermine sample size. 
The experiments were not randomized and the investigators were not blinded to 
allocation during experiments and outcome assessment.
Overview. Our study follows the Guidelines for Accurate and Transparent Health 
Estimates Reporting (GATHER). This analysis provides estimates of HIV preva-
lence among adults aged 15–49 on a 5 × 5-km grid in 47 countries in sub-Saharan 
Africa, with annual resolution, from 2000 to 2017. The period of 2000–2017 and 
the age group of 15–49 years were selected to optimize the contemporaneousness 
of the estimates and to maximize data availability—there were relatively few large-
scale seroprevalence surveys conducted before 2000, and most seroprevalence sur-
veys focus on adults, in which 15–49 years was the most commonly reported age 
range. The methodology used here is similar to that used for previous analyses of 
mortality in children under 5 years of age41, child growth failure42 and education43 
in Africa. We used a 5 × 5-km grid for consistency with these previous analyses; to 
align with the resolution available for pre-existing covariates incorporated in this 
analysis; and for flexibility in aggregating these estimates to other levels of interest 
(for example, first- and second-order administrative subdivisions). Extended Data 
Figure 5 provides an overview of the analytic process. Each step is described below 
and additional details are available in the Supplementary Information, including a 
discussion of the limitations of this approach.
HIV data. We compiled a dataset of 29,103 data points from 134 seroprevalence 
surveys in 41 countries and 9,794 data points from sentinel surveillance of ante-
natal care clinics (ANC data) in 46 countries. Data from seroprevalence surveys 
were originally in one of three forms: survey microdata (that is, individual-level 
survey responses), survey reports or published literature (Supplementary Table 2). 
For surveys with available microdata, we extracted variables related to age, HIV 
blood test result, location and survey weights. After subsetting the data to ages 
15–49 years and excluding rows with missing information on any of these variables, 
we collapsed the data by calculating the weighted HIV prevalence at the finest 
spatial resolution available. Ideally, this was at the level of the GPS coordinates that 
represent the location of a survey cluster, but in instances for which GPS data were 
not available, the smallest areal unit (termed a polygon) possible was used instead, 
typically representing an administrative subdivision. For surveys for which micro-
data were unavailable but for which estimates with some subnational resolution 
were provided in a report or published literature, we extracted these estimates along 
with information about the sample size and location. Where possible, these data 
were matched to a specific set of GPS coordinates, and otherwise were matched to 
a polygon, which most-often represented an administrative subdivision. In some 
instances, estimates extracted from reports or published literature were for age 
groups other than 15–49 years (34 sources representing 1.76% of the total effective 
sample size; Supplementary Table 3). In these instances, we used a cross-walking 
model—that is, an approach for linking disparate data sources (in this case data 
sources reporting for different age groups)—that leveraged existing microdata 
and linear regression to translate the prevalence in the reported age range to the 
standard 15–49 age range (Supplementary Information, section 2.3).

ANC data were primarily derived from national HIV estimate files developed 
by national teams and compiled and shared via UNAIDS44, and supplemented with 
data derived from sentinel surveillance country reports (Supplementary Table 4). 
In both instances, we extracted information on HIV prevalence and sample size by 
site and year. Sites were geolocated to specific GPS coordinates where possible and 
otherwise to a polygon that represents an administrative subdivision.

In instances in which data were matched to a polygon rather than specific GPS 
coordinates, we resampled these data to mimic point data. Specifically, for each 
observation, we randomly sampled 10,000 candidate locations within the asso-
ciated polygon with a probability proportional to the population and then used 
k-means clustering to generate a reduced set of locations based on the centroid 
of each k-means cluster. Each of these resulting pseudo-points was assigned the 
HIV prevalence observed for the polygon as a whole, and the sample size was set 
to the observed sample size for the polygon as a whole multiplied by the fraction 
of candidate locations that belonged to that k-means cluster. Weighting by sample 
size, 78.0% of all data (including 61.1% of survey data and 83.5% of ANC data) 
were associated with GPS coordinates, and the remaining data were associated 
with polygons and were analysed using this approach.
Covariates. This analysis included five pre-existing covariates: (1) travel time 
to the nearest settlement of more than 50,000 inhabitants; (2) total population; 
(3) night-time lights; (4) urbanicity; and (5) malaria incidence (Supplementary 
Table 5). In addition, eight covariates were constructed explicitly for this analy-
sis owing to their known association with HIV prevalence and data availability:  
(1) prevalence of male circumcision (all forms); (2) prevalence of self-reported 
STI symptoms; (3) prevalence of marriage or living with a partner as married;  
(4) prevalence of one’s current partner living elsewhere; (5) prevalence of condom 
use at last sexual encounter; (6) prevalence of reporting ever having had intercourse 
among young adults; and (7) and (8) prevalence of multiple partners in the past 

year for men and for women (Extended Data Fig. 6). These eight covariates were 
constructed based on survey data collected and analysed analogously to the HIV 
data (described above), and using geostatistical models similar to those described 
in the next section (Supplementary Table 6 and Supplementary Figs. 9–16). In 
addition, calendar year was used as a covariate.
Statistical model. Covariate stacking. An ensemble covariate modelling approach 
was implemented to capture possible nonlinear effects and complex interactions 
among these covariates45. For each modelling region (Extended Data Fig. 7), three 
sub-models were fitted to the HIV survey data with the covariates as explanatory 
predictors: generalized additive models, boosted regression trees and lasso regres-
sion. Each sub-model was fitted using fivefold cross-validation to avoid overfitting, 
and the out-of-sample predictions from across the five folds were compiled into 
a single set of predictions that were used to fit the geostatistical model described 
below. In addition, each sub-model was also fitted to the full dataset to generate a 
complete set of in-sample predictions that were subsequently used when generating 
predictions from the geostatistical model (Supplementary Figs. 17–19).
Geostatistical model. We modelled HIV prevalence using a spatially and temporally 
explicit generalized linear mixed effects model:

∼Y p Nbinomial( , )i t i t i t, , ,

ββ γ β= + + + + + +εXp Z U Ilogit( ) ( )i t i t c i i t i t i, 0 1 , [ ] , , 2 ANC

γ σ∼ normal(0, )c i[ ] country
2

∼ Σ ⊗ ΣZ GP(0, )i t, space time

σ∼ε normal(0, )i t, nugget
2

∼ ΣU GP(0, )i space

in which ∼ denotes ‘distributed as’. We modelled the number of HIV-positive 
individuals (Yi,t) among a sample (Ni,t) in location i and year t as a binomial vari-
able. This model specified logit-transformed HIV prevalence (pi,t) as a linear com-
bination of a regional intercept (β0), covariate effects (β1Xi,t), country random 
effects (γc[i]), spatially and temporally correlated random effects (Zi,t) and an uncor-
related error term or nugget effect ε( )i t, . HIV prevalence as measured by sentinel 
surveillance of antenatal care clinics is known to be biased as a measure of HIV 
prevalence in the general adult population, because it only covers pregnant women 
who attend ANC, compared to all adult men and women46,47. In instances in which 
data in our model were derived from ANC sentinel surveillance (IANC = 1), our 
model allowed for this bias using a fixed term (β2) that captured the overall mean 
bias and a spatially varying term (Ui) that captured local differences in the extent 
of this bias. In this model, the spatially and temporally correlated random effect 
(Zi,t) was modelled as a Gaussian process with mean 0 and a covariance matrix 
given by the Kronecker product of a spatial Matérn covariance function Σ( )space  
and a temporal first-order autoregressive covariance function Σ( )time . Ui was mod-
elled as a Gaussian process with mean 0 and spatial Matérn covariance Σ( )space . 
Sensitivity analyses were carried out to assess sensitivity to hyper-prior specifica-
tion and are described in detail in the Supplementary Information, section 4.2.

This model was fitted in R-INLA48 using the stochastic partial differential 
equation49 approach to approximate the continuous spatial and spatio-temporal  
Gaussian random fields (Ui and Zi,t, respectively). Owing to computational con-
straints, and to allow for regional differences in the relationship between the 
covariates and HIV prevalence, as well as differences in the temporal and spatial 
autocorrelation in HIV prevalence, separate models were fitted for each of the four 
regions (Extended Data Fig. 7). From each fitted model, we generated 1,000 draws 
from the approximated joint posterior distribution of all model parameters and 
used these to construct 1,000 draws of pi,t, setting IANC to 0. Fivefold cross-validation  
was used to assess model performance and to compare among a number of alter-
native models that use covariates, ANC data and polygon data in a variety of ways 
(Supplementary Figs. 20–25 and Supplementary Information, section 4.3).
Post-estimation. To take advantage of the more structured modelling approach and 
additional national-level data used by GBD 2017, we performed post hoc calibra-
tion of our estimates to the corresponding national-level GBD estimates1. For each 
country and year in our analysis, we defined a raking factor equal to the ratio of 
the GBD estimate for this country and year to the population-weighted posterior 
mean HIV prevalence in all grid cells within this country and year (Supplementary 
Fig. 26). These raking factors were then used to scale each draw of HIV prevalence 
for each grid cell within that GBD geography and year. Point estimates for each grid 
cell were calculated as the mean of the scaled draws, and 95% uncertainty intervals 
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were calculated as the 2.5th and 97.5th percentiles of the scaled draws. Grid cells 
that crossed international borders within modelling regions were fractionally allo-
cated to multiple countries in proportion to the covered area during this process.

In addition to estimates of HIV prevalence on a 5 × 5-km grid, we constructed 
estimates of HIV prevalence for first- and second-level administrative subdivisions 
by calculating population-weighted averages of prevalence for all grid cells within 
a given area. This process was carried out for each of the 1,000 posterior draws 
(after calibration to GBD) with final point estimates derived from the mean of these 
draws and uncertainty intervals from the 2.5th and 97.5th percentiles. Additionally, 
estimates of the number of people living with HIV for each grid cell were derived 
by multiplying estimated prevalence in each grid cell by the corresponding pop-
ulation estimate from WorldPop25,26, which was also calibrated to match GBD 
201750 (Supplementary Information, section 4.4). As with calibration, grid cells 
that crossed borders were fractionally allocated to multiple areas when calculating 
aggregated prevalence estimates and estimates of people living with HIV.

Although the model makes predictions for all locations that are covered by 
available covariates, all final model outputs for which the land cover was classified 
as barren or sparsely vegetated on the basis of MODIS satellite data and for which 
the total population density was less than 10 individuals per 1 × 1 km in 2015 
were masked for improved clarity when communicating with data specialists and 
policymakers.
Limitations. This analysis is subject to several limitations (further discussed in 
the Supplementary Information, section 5.2). Most importantly, the accuracy of 
our estimates is dependent on the quantity and quality of the underlying data. We 
have constructed a large database of geolocated HIV prevalence data for the pur-
poses of this analysis. Nonetheless, important gaps in data coverage, both spatial 
and temporal, remain (Extended Data Figs. 1–3). Data quality is also likely to be 
variable and may be problematic for some data sources or locations. For HIV sero-
prevalence surveys, potential non-response bias is a particular concern51 and the 
quality of the underlying data that are used to generate the covariate surfaces may 
also be suboptimal in some situations—for example, if cultural context influences 
the interpretation of a survey question or the response to potentially sensitive ques-
tions regarding sexual behaviour52. The information on locations that is associated 
with the data used in this analysis is also subject to some error and uncertainty. For 
example, in most surveys, GPS coordinates are randomly displaced (typically by 
2–5 km) to protect the confidentiality of respondents 53 and some data sources have 
relatively non-specific location information (for example, districts or provinces 
instead of GPS coordinates). Primarily as a consequence of gaps in data coverage as 
well as the relative sparsity and small sample sizes in existing data sources disaggre-
gated at small subnational levels, our estimates at the grid cell level—and to a lesser 
extent at the second and first administrative level—are associated with considerable 
uncertainty (Extended Data Fig. 4 and Supplementary Figs. 1–4). In the future, 
additional data collection, increased access to existing datasets (including detailed 
location information) and new strategies for using non-traditional data sources 
such as routine healthcare facility data54 will be needed to improve the precision 
of these estimates at all levels.

The modelling strategy incorporates a number of assumptions, which—if  
incorrect—may lead to error. Additionally, the model fitting and prediction strategy  
used an integrated nested Laplace approximation to the posterior distribution, as 
implemented in R-INLA48, as well as further approximations to generate predic-
tions; these approximations may also introduce error. Although it is difficult to 
assess the effect of these assumptions and approximations, our validation analyses 
showed that our final model had minimal bias and a good coverage of the 95% pre-
diction intervals, which provides some reassurance that the approximation method 
used—as well as other potential sources of error—did not result in appreciable bias 
or poorly described uncertainty in our reported estimates.
Reporting summary. Further information on research design is available in 
the Nature Research Reporting Summary linked to this paper.

Data availability
The findings of this study are supported by data that are available in public online 
repositories, data that are publicly available upon request from the data provider 

and data that are not publicly available owing to restrictions by the data provider 
and that were used under a license for the current study (including select data 
sources in Burkina Faso, Burundi, Chad, Eritrea, Nigeria, Sierra Leone, Uganda 
and Zambia, as indicated in Supplementary Tables 2, 6). A detailed description 
of data sources can be found in Supplementary Tables 2, 4–6. More information 
about each data source is available on the Global Health Data Exchange (http://
ghdx.healthdata.org/), including information about the data provider and links to 
where the data can be accessed or requested (where available).

Administrative boundaries were retrieved from the Global Administrative Unit 
Layers dataset, implemented by FAO within the CountrySTAT and Agricultural 
Market Information System projects37. Land cover data were retrieved from the 
online Data Pool, courtesy of the NASA EOSDIS Land Processes Distributed Active 
Archive Center, USGS/Earth Resources Observation and Science Center38. Lakes 
were retrieved from the Global Lakes and Wetlands Database, courtesy of the 
World Wildlife Fund and the Center for Environmental Systems Research39,40. 
Populations were retrieved from WorldPop25,26.

All estimates produced as part of this analysis are publicly available from 
the Global Health Data Exchange (http://ghdx.healthdata.org/ihme-data/afri-
ca-hiv-prevalence-geospatial-estimates-2000-2017) and via a user-friendly data 
visualization tool (https://vizhub.healthdata.org/lbd/hiv).

Code availability
All code used for these analyses is publicly available at https://github.com/ihmeuw/
lbd/tree/hiv-africa-2019.
 
 41. Golding, N. et al. Mapping under-5 and neonatal mortality in Africa, 2000–15: a 

baseline analysis for the Sustainable Development Goals. Lancet 390, 
2171–2182 (2017).

 42. Osgood-Zimmerman, A. et al. Mapping child growth failure in Africa between 
2000 and 2015. Nature 555, 41–47 (2018).

 43. Graetz, N. et al. Mapping local variation in educational attainment across Africa. 
Nature 555, 48–53 (2018).

 44. Joint United Nations Programme on HIV/AIDS. National HIV Estimates File. 
http://www.unaids.org/en/dataanalysis/datatools/spectrum-epp (UNAIDS, 
2017).

 45. Bhatt, S. et al. Improved prediction accuracy for disease risk mapping using 
Gaussian process stacked generalization. J. R. Soc. Interface 14, https://doi.
org/10.1098/rsif.2017.0520 (2017).

 46. Gouws, E., Mishra, V. & Fowler, T. B. Comparison of adult HIV prevalence from 
national population-based surveys and antenatal clinic surveillance in countries 
with generalised epidemics: implications for calibrating surveillance data. Sex. 
Transm. Infect. 84, i17–i23 (2008).

 47. Marsh, K., Mahy, M., Salomon, J. A. & Hogan, D. R. Assessing and adjusting for 
differences between HIV prevalence estimates derived from national 
population-based surveys and antenatal care surveillance, with applications for 
Spectrum 2013. AIDS 28, S497–S505 (2014).

 48. Rue, H., Martino, S. & Chopin, N. Approximate Bayesian inference for latent 
Gaussian models by using integrated nested Laplace approximations. J. R. Stat. 
Soc. 71, 319–392 (2009).

 49. Lindgren, F., Rue, H. & Lindström, J. An explicit link between Gaussian fields and 
Gaussian Markov random fields: the stochastic partial differential equation 
approach. J. R. Stat. Soc. 73, 423–498 (2011).

 50. GBD 2017 Population and Fertility Collaborators. Population and fertility by age 
and sex for 195 countries and territories, 1950–2017: a systematic analysis for 
the Global Burden of Disease Study 2017. Lancet 392, 1995–2051 (2018).

 51. Mishra, V., Hong, R., Khan, S., Gu, Y. & Liu, L. Evaluating HIV Estimates from 
National Population-Based Surveys for Bias Resulting from Non-Response. DHS 
Analytical Studies No. 12 http://dhsprogram.com/publications/publication-
as12-analytical-studies.cfm (2008).

 52. Curtis, S. L. & Sutherland, E. G. Measuring sexual behaviour in the era of HIV/
AIDS: the experience of Demographic and Health Surveys and similar 
enquiries. Sex. Transm. Infect. 80, ii22–ii27 (2004).

 53. Burgert, C. R., Colston, J., Roy, T. & Zachary, B. Geographic Displacement 
Procedure and Georeferenced Data Release Policy for the Demographic and 
Health Surveys. https://dhsprogram.com/publications/publication-SAR7-
Spatial-Analysis-Reports.cfm (Calverton, 2013).

 54. Cuadros, D. F. et al. Capturing the spatial variability of HIV epidemics in South 
Africa and Tanzania using routine healthcare facility data. Int. J. Health Geogr. 
17, 27 (2018).

http://ghdx.healthdata.org/
http://ghdx.healthdata.org/
http://ghdx.healthdata.org/ihme-data/africa-hiv-prevalence-geospatial-estimates-2000-2017
http://ghdx.healthdata.org/ihme-data/africa-hiv-prevalence-geospatial-estimates-2000-2017
https://vizhub.healthdata.org/lbd/hiv
https://github.com/ihmeuw/lbd/tree/hiv-africa-2019
https://github.com/ihmeuw/lbd/tree/hiv-africa-2019
http://www.unaids.org/en/dataanalysis/datatools/spectrum-epp
https://doi.org/10.1098/rsif.2017.0520
https://doi.org/10.1098/rsif.2017.0520
http://dhsprogram.com/publications/publication-as12-analytical-studies.cfm
http://dhsprogram.com/publications/publication-as12-analytical-studies.cfm
https://dhsprogram.com/publications/publication-SAR7-Spatial-Analysis-Reports.cfm
https://dhsprogram.com/publications/publication-SAR7-Spatial-Analysis-Reports.cfm


ArticlereSeArcH

Extended Data Fig. 1 | HIV prevalence data by region and country. 
a, b, HIV seroprevalence survey data (a) and ANC sentinel surveillance 
data (b) used in this analysis, by region and country. Colour indicates the 
data source. AIS, AIDS Indicator Survey; DHS, Demographic and Health 
Survey; MICS, Multiple Indicator Cluster Survey; PHIA, Population-based 
HIV Impact Assessment Survey. Shape type indicates whether a data 

source has point (GPS) or polygon location information. Size indicates the 
relative effective sample size for each source. A full list of data sources  
with additional details about data type (such as survey microdata and 
survey reports) and geographical details are provided in Supplementary 
Tables 2, 4.
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Extended Data Fig. 2 | HIV seroprevalence survey data coverage by 
year. A data point is defined as a cluster or polygon used in the analysis 
for the given year. There are a total of 29,103 data points for the HIV 

seroprevalence surveys from 2000 to 2017. Countries in white have no 
available survey data in the given year. Countries in dark grey were not 
included in the analysis.



ArticlereSeArcH

Extended Data Fig. 3 | ANC sentinel surveillance data coverage by 
year. A data point is defined as an ANC sentinel surveillance site used in 
the analysis for the given year. A site may be a hospital, city or town, or 

administrative region. There are a total of 9,794 ANC data points from 
2000 to 2017. Countries in white have no available ANC data in the given 
year. Countries in dark grey were not included in the analysis.
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Extended Data Fig. 4 | Relative uncertainty in HIV prevalence in adults 
aged 15–49 in 2017. Overlapping population-weighted quartiles of HIV 
prevalence and relative 95% uncertainty in 2017 at the 5 × 5-km grid cell 
level. Relative uncertainty is defined as the ratio of the width of the 95% 
uncertainty interval to the mean estimate. Maps reflect administrative 

boundaries, land cover, lakes and population; grid cells with fewer than 
10 people per 1 × 1 km, and classified as barren or sparsely vegetated, are 
coloured light grey25,26,37–40. Countries in dark grey were not included in 
the analysis.
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Extended Data Fig. 5 | Analytic process overview. The process used to 
produce HIV prevalence estimates among adults in sub-Saharan Africa 
involved three main parts. In the data-processing steps (green), data were 
identified, extracted and prepared for use in the HIV prevalence model 
and in covariate models. In the modelling phase (orange), we used these 
data and covariates in a stacked generalization ensemble model and 

spatiotemporal Gaussian process model. In the post-processing phase 
(blue), we calibrated the prevalence estimation to match GBD 2017 
estimates at the national level, aggregated prevalence estimates to the  
first- and second-level administrative subdivisions in each country  
and calculated the number of people living with HIV.
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Extended Data Fig. 6 | Prevalence of covariates at 5 × 5-km grid cell 
level in 2017. a–h, Maps of HIV-specific covariates in 2017 include 
prevalence of male circumcision (a), prevalence of signs and symptoms 
of sexually transmitted infections (b), prevalence of marriage or living as 
married (c), prevalence of partner living elsewhere among women (d),  
prevalence of condom use during the most recent sexual encounter (e),  
prevalence of sexual activity among young women (f), prevalence of 

multiple partners among men in the past year (g) and prevalence of 
multiple partners among women in the past year (h). Maps reflect 
administrative boundaries, land cover, lakes and population; grid cells 
with fewer than 10 people per 1 × 1 km, and classified as barren or 
sparsely vegetated, are coloured light grey25,26,37–40. Countries in dark grey 
were not included in the analysis.
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Extended Data Fig. 7 | Modelling regions. Modelling regions were 
defined as the four GBD regions in sub-Saharan Africa: central, east, south 
and west. Sudan was included in the east sub-Saharan Africa region for 

this analysis (in GBD, it is included in the North Africa and Middle  
East region). Countries in grey were not included in the analysis.
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When statistical analyses are reported, confirm that the following items are present in the relevant location (e.g. figure legend, table legend, main 
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An indication of whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
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A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
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For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
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Clearly defined error bars 
State explicitly what error bars represent (e.g. SD, SE, CI)

Our web collection on statistics for biologists may be useful.

Software and code
Policy information about availability of computer code

Data collection No primary data collection was carried out for this analysis.

Data analysis This analysis was carried out using R version 3.5.0. The main geostatistical models were fit using R-INLA version 18.07.12. All code used 
for these analyses is publicly available online at https://github.com/ihmeuw/lbd/tree/hiv-africa-2019.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers 
upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
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- A description of any restrictions on data availability

The findings of this study are supported by data that are available in public online repositories, data that are publicly available upon request from the data provider, 
and data that are not publicly available due to restrictions by the data provider and which were used under license for the current study. A detailed table of data 
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sources can be found in Supplementary Tables 2, 4-6. More information about each data source is available on the Global Health Data Exchange (http://
ghdx.healthdata.org/), including information about the data provider and links to where the data can be accessed or requested (where available). 
 
Administrative boundaries were retrieved from the Global Administrative Unit Layers (GAUL) dataset, implemented by FAO within the CountrySTAT and Agricultural 
Market Information System (AMIS) projects [37]. Land cover was retrieved from the online Data Pool, courtesy of the NASA EOSDIS Land Processes Distributed 
Active Archive Center (LP DAAC), USGS/Earth Resources Observation and Science (EROS) Center, Sioux Falls, South Dakota [38]. Lakes were retrieved from the 
Global Lakes and Wetlands Database (GLWD), courtesy of the World Wildlife Fund and the Center for Environmental Systems Research, University of Kassel [39,40]. 
Populations were retrieved from WorldPop [25,26]. 
 
All estimates produced as part of this analysis are publicly available from the Global Health Data Exchange (http://ghdx.healthdata.org/ihme-data/africa-hiv-
prevalence-geospatial-estimates-2000-2017) and via a user-friendly data visualization tool (https://vizhub.healthdata.org/lbd/hiv). 
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Sample size was calculated as the number of unique data source-location pairs with observations of HIV prevalence. This sample size is 
reported in the methods section: "We compiled a dataset of 29,103 data points from 134 seroprevalence surveys in 41 countries and 9,794 
data points from sentinel surveillance of antenatal care clinics (ANC data) in 46 countries." This is an observational study with no hypothesis 
testing and the sample size was not pre-specified. We evaluate the overall performance of our modelling strategy, given the available data, as 
part of a validation exercise reported in the Supplementary Information (Section 4.3).  

Data exclusions Surveys that did not contain all relevant variables (HIV blood test results or at least one of the covariates) or that did not contain subnational 
geographic detail or could otherwise not be geolocated were excluded as not relevant for this analysis. Surveys that did not sample from the 
general population or did not sample both males and females (with the exception of surveys contributing to covariates that are sex-specific) 
were excluded as they were not representative of the population of interest. Surveys that did not contain information about the sample size 
or confidence intervals associated with a prevalence estimate were excluded as information about sample size (which can be derived from 
confidence intervals) was required by our modeling strategy. These exclusions were all pre-specified. In addition, a number of surveys were 
identified as poor quality or inconsistent with other data sources and were subsequently excluded (a list of these surveys and justification for 
their exclusion is reported in Supplementary Table 7). Antenatal care clinic sentinel surveillance data that could not be geolocated or that 
overlapped with an alternate source that were found to be more consistent were excluded; this exclusion criteria was pre-specified. In 
addition, a small number of site-years were identified as outliers and subsequently excluded (as described in Supplementary Information 
Section 2.4.2).

Replication This is an observational study using many years of survey and surveillance data and in principle could be replicated. Due to the time required 
to extract, process, and geo-located all data, as well as to run the statistical models, we have not undertaken an explicit replication analysis. 

Randomization Randomization was not relevant to this study. This analysis is an observational mapping study and there were no experimental groups.

Blinding Blinding was not relevant to this study, as it was an observational study using survey and surveillance data.

Behavioural & social sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description Briefly describe the study type including whether data are quantitative, qualitative, or mixed-methods (e.g. qualitative cross-sectional, 
quantitative experimental, mixed-methods case study). 

Research sample State the research sample (e.g. Harvard university undergraduates, villagers in rural India) and provide relevant demographic information 
(e.g. age, sex) and indicate whether the sample is representative. Provide a rationale for the study sample chosen. For studies involving 
existing datasets, please describe the dataset and source.

Sampling strategy Describe the sampling procedure (e.g. random, snowball, stratified, convenience). Describe the statistical methods that were used to 
predetermine sample size OR if no sample-size calculation was performed, describe how sample sizes were chosen and provide a rationale 
for why these sample sizes are sufficient. For qualitative data, please indicate whether data saturation was considered, and what criteria 
were used to decide that no further sampling was needed.

Data collection Provide details about the data collection procedure, including the instruments or devices used to record the data (e.g. pen and paper, 
computer, eye tracker, video or audio equipment) whether anyone was present besides the participant(s) and the researcher, and whether 
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the researcher was blind to experimental condition and/or the study hypothesis during data collection.

Timing Indicate the start and stop dates of data collection. If there is a gap between collection periods, state the dates for each sample cohort.

Data exclusions If no data were excluded from the analyses, state so OR if data were excluded, provide the exact number of exclusions and the rationale 
behind them, indicating whether exclusion criteria were pre-established.

Non-participation State how many participants dropped out/declined participation and the reason(s) given OR provide response rate OR state that no 
participants dropped out/declined participation.

Randomization If participants were not allocated into experimental groups, state so OR describe how participants were allocated to groups, and if 
allocation was not random, describe how covariates were controlled.

Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description Briefly describe the study. For quantitative data include treatment factors and interactions, design structure (e.g. factorial, nested, 
hierarchical), nature and number of experimental units and replicates.

Research sample Describe the research sample (e.g. a group of tagged Passer domesticus, all Stenocereus thurberi within Organ Pipe Cactus National 
Monument), and provide a rationale for the sample choice. When relevant, describe the organism taxa, source, sex, age range and 
any manipulations. State what population the sample is meant to represent when applicable. For studies involving existing datasets, 
describe the data and its source.

Sampling strategy Note the sampling procedure. Describe the statistical methods that were used to predetermine sample size OR if no sample-size 
calculation was performed, describe how sample sizes were chosen and provide a rationale for why these sample sizes are sufficient.

Data collection Describe the data collection procedure, including who recorded the data and how.

Timing and spatial scale Indicate the start and stop dates of data collection, noting the frequency and periodicity of sampling and providing a rationale for 
these choices. If there is a gap between collection periods, state the dates for each sample cohort. Specify the spatial scale from which 
the data are taken

Data exclusions If no data were excluded from the analyses, state so OR if data were excluded, describe the exclusions and the rationale behind them, 
indicating whether exclusion criteria were pre-established.

Reproducibility Describe the measures taken to verify the reproducibility of experimental findings. For each experiment, note whether any attempts to 
repeat the experiment failed OR state that all attempts to repeat the experiment were successful.

Randomization Describe how samples/organisms/participants were allocated into groups. If allocation was not random, describe how covariates were 
controlled. If this is not relevant to your study, explain why.

Blinding Describe the extent of blinding used during data acquisition and analysis. If blinding was not possible, describe why OR explain why 
blinding was not relevant to your study.

Did the study involve field work? Yes No

Field work, collection and transport
Field conditions Describe the study conditions for field work, providing relevant parameters (e.g. temperature, rainfall).

Location State the location of the sampling or experiment, providing relevant parameters (e.g. latitude and longitude, elevation, water 
depth).

Access and import/export Describe the efforts you have made to access habitats and to collect and import/export your samples in a responsible manner and 
in compliance with local, national and international laws, noting any permits that were obtained (give the name of the issuing 
authority, the date of issue, and any identifying information).

Disturbance Describe any disturbance caused by the study and how it was minimized.

Reporting for specific materials, systems and methods
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Materials & experimental systems
n/a Involved in the study

Unique biological materials

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Unique biological materials
Policy information about availability of materials

Obtaining unique materials Describe any restrictions on the availability of unique materials OR confirm that all unique materials used are readily available 
from the authors or from standard commercial sources (and specify these sources).

Antibodies
Antibodies used Describe all antibodies used in the study; as applicable, provide supplier name, catalog number, clone name, and lot number.

Validation Describe the validation of each primary antibody for the species and application, noting any validation statements on the 
manufacturer’s website, relevant citations, antibody profiles in online databases, or data provided in the manuscript.

Eukaryotic cell lines
Policy information about cell lines

Cell line source(s) State the source of each cell line used.

Authentication Describe the authentication procedures for each cell line used OR declare that none of the cell lines used were authenticated.

Mycoplasma contamination Confirm that all cell lines tested negative for mycoplasma contamination OR describe the results of the testing for 
mycoplasma contamination OR declare that the cell lines were not tested for mycoplasma contamination.

Commonly misidentified lines
(See ICLAC register)

Name any commonly misidentified cell lines used in the study and provide a rationale for their use.

Palaeontology
Specimen provenance Provide provenance information for specimens and describe permits that were obtained for the work (including the name of the 

issuing authority, the date of issue, and any identifying information).

Specimen deposition Indicate where the specimens have been deposited to permit free access by other researchers.

Dating methods If new dates are provided, describe how they were obtained (e.g. collection, storage, sample pretreatment and measurement), 
where they were obtained (i.e. lab name), the calibration program and the protocol for quality assurance OR state that no new 
dates are provided.

Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.

Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals For laboratory animals, report species, strain, sex and age OR state that the study did not involve laboratory animals.

Wild animals Provide details on animals observed in or captured in the field; report species, sex and age where possible. Describe how animals 
were caught and transported and what happened to captive animals after the study (if killed, explain why and describe method; if 
released, say where and when) OR state that the study did not involve wild animals.

Field-collected samples For laboratory work with field-collected samples, describe all relevant parameters such as housing, maintenance, temperature, 
photoperiod and end-of-experiment protocol OR state that the study did not involve samples collected from the field.
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Human research participants
Policy information about studies involving human research participants

Population characteristics Describe the covariate-relevant population characteristics of the human research participants (e.g. age, gender, genotypic 
information, past and current diagnosis and treatment categories). If you filled out the behavioural & social sciences study design 
questions and have nothing to add here, write "See above."

Recruitment Describe how participants were recruited. Outline any potential self-selection bias or other biases that may be present and how 
these are likely to impact results.

ChIP-seq
Data deposition

Confirm that both raw and final processed data have been deposited in a public database such as GEO.

Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links 
May remain private before publication.

For "Initial submission" or "Revised version" documents, provide reviewer access links.  For your "Final submission" document, 
provide a link to the deposited data.

Files in database submission Provide a list of all files available in the database submission.

Genome browser session 
(e.g. UCSC)

Provide a link to an anonymized genome browser session for "Initial submission" and "Revised version" documents only, to 
enable peer review.  Write "no longer applicable" for "Final submission" documents.

Methodology

Replicates Describe the experimental replicates, specifying number, type and replicate agreement.

Sequencing depth Describe the sequencing depth for each experiment, providing the total number of reads, uniquely mapped reads, length of 
reads and whether they were paired- or single-end.

Antibodies Describe the antibodies used for the ChIP-seq experiments; as applicable, provide supplier name, catalog number, clone 
name, and lot number.

Peak calling parameters Specify the command line program and parameters used for read mapping and peak calling, including the ChIP, control and 
index files used.

Data quality Describe the methods used to ensure data quality in full detail, including how many peaks are at FDR 5% and above 5-fold 
enrichment.

Software Describe the software used to collect and analyze the ChIP-seq data. For custom code that has been deposited into a 
community repository, provide accession details.

Flow Cytometry
Plots

Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Describe the sample preparation, detailing the biological source of the cells and any tissue processing steps used.

Instrument Identify the instrument used for data collection, specifying make and model number.

Software Describe the software used to collect and analyze the flow cytometry data. For custom code that has been deposited into a 
community repository, provide accession details.

Cell population abundance Describe the abundance of the relevant cell populations within post-sort fractions, providing details on the purity of the samples 
and how it was determined.
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Gating strategy Describe the gating strategy used for all relevant experiments, specifying the preliminary FSC/SSC gates of the starting cell 
population, indicating where boundaries between "positive" and "negative" staining cell populations are defined.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

Magnetic resonance imaging
Experimental design

Design type Indicate task or resting state; event-related or block design.

Design specifications Specify the number of blocks, trials or experimental units per session and/or subject, and specify the length of each trial 
or block (if trials are blocked) and interval between trials.

Behavioral performance measures State number and/or type of variables recorded (e.g. correct button press, response time) and what statistics were used 
to establish that the subjects were performing the task as expected (e.g. mean, range, and/or standard deviation across 
subjects).

Acquisition

Imaging type(s) Specify: functional, structural, diffusion, perfusion.

Field strength Specify in Tesla

Sequence & imaging parameters Specify the pulse sequence type (gradient echo, spin echo, etc.), imaging type (EPI, spiral, etc.), field of view, matrix size, 
slice thickness, orientation and TE/TR/flip angle.

Area of acquisition State whether a whole brain scan was used OR define the area of acquisition, describing how the region was determined.

Diffusion MRI Used Not used

Preprocessing

Preprocessing software Provide detail on software version and revision number and on specific parameters (model/functions, brain extraction, 
segmentation, smoothing kernel size, etc.).

Normalization If data were normalized/standardized, describe the approach(es): specify linear or non-linear and define image types 
used for transformation OR indicate that data were not normalized and explain rationale for lack of normalization.

Normalization template Describe the template used for normalization/transformation, specifying subject space or group standardized space (e.g. 
original Talairach, MNI305, ICBM152) OR indicate that the data were not normalized.

Noise and artifact removal Describe your procedure(s) for artifact and structured noise removal, specifying motion parameters, tissue signals and 
physiological signals (heart rate, respiration).

Volume censoring Define your software and/or method and criteria for volume censoring, and state the extent of such censoring.

Statistical modeling & inference

Model type and settings Specify type (mass univariate, multivariate, RSA, predictive, etc.) and describe essential details of the model at the first 
and second levels (e.g. fixed, random or mixed effects; drift or auto-correlation).

Effect(s) tested Define precise effect in terms of the task or stimulus conditions instead of psychological concepts and indicate whether 
ANOVA or factorial designs were used.

Specify type of analysis: Whole brain ROI-based Both

Statistic type for inference
(See Eklund et al. 2016)

Specify voxel-wise or cluster-wise and report all relevant parameters for cluster-wise methods.

Correction Describe the type of correction and how it is obtained for multiple comparisons (e.g. FWE, FDR, permutation or Monte 
Carlo).

Models & analysis

n/a Involved in the study
Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis
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Functional and/or effective connectivity Report the measures of dependence used and the model details (e.g. Pearson correlation, partial 
correlation, mutual information).

Graph analysis Report the dependent variable and connectivity measure, specifying weighted graph or binarized graph, 
subject- or group-level, and the global and/or node summaries used (e.g. clustering coefficient, efficiency, 
etc.).

Multivariate modeling and predictive analysis Specify independent variables, features extraction and dimension reduction, model, training and evaluation 
metrics.
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