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Abstract

The immediately-early response gene 5 (IER5) has been reported to be induced by c-ray irradiation and to play a role in the
induction of cell death caused by radiation. We previously identified IER5 as one of the 2,3,4-tribromo-3-methyl-1-
phenylphospholane 1-oxide (TMPP)-induced transcriptional responses in AML cells, using microarrays that encompassed
the entire human genome. However, the biochemical pathway and mechanisms of IER5 function in regulation of the cell
cycle remain unclear. In this study, we investigated the involvement of IER5 in the cell cycle and in cell proliferation of acute
myeloid leukemia (AML) cells. We found that the over-expression of IER5 in AML cell lines and in AML-derived ALDHhi (High
Aldehyde Dehydrogenase activity)/CD34+ cells inhibited their proliferation compared to control cells, through induction of
G2/M cell cycle arrest and a decrease in Cdc25B expression. Moreover, the over-expression of IER5 reduced colony formation
of AML-derived ALDHhi/CD34+ cells due to a decrease in Cdc25B expression. In addition, over-expression of Cdc25B restored
TMPP inhibitory effects on colony formation in IER5-suppressed AML-derived ALDHhi/CD34+ cells. Furthermore, the IER5
reduced Cdc25B mRNA expression through direct binding to Cdc25B promoter and mediated its transcriptional attenuation
through NF-YB and p300 transcriptinal factors. In summary, we found that transcriptional repression mediated by IER5
regulates Cdc25B expression levels via the release of NF-YB and p300 in AML-derived ALDHhi/CD34+ cells, resulting in
inhibition of AML progenitor cell proliferation through modulation of cell cycle. Thus, the induction of IER5 expression
represents an attractive target for AML therapy.
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Introduction

Acute myeloid leukemia (AML) is characterized by the excess

production of leukemic blasts arrested at various stages of granu-

locytic and monocytic differentiation. To effectively cure a patient

with AML, this proliferation of leukemic cells must be halted.

Given that chemotherapy rarely eradicates the leukemic clones,

efforts are now being made to find innovative new therapies which

inhibit the proliferation of AML cells. However, the effect of cell

cycle progression and apoptosis resistance on the pathogenesis of

AML remains to be defined. Against these backgrounds, we have

synthesized new bioactive agents and then investigated these anti-

leukemic effects. We previously reported that the phospha sugar

derivative, 2,3,4-tribromo-3-methyl-1-phenylphospholane 1-oxide

(TMPP), was synthesized in the reaction of 3-methyl-1-phenyl-2-

phospholene 1-oxide with bromine, and we investigated the

potential of TMPP as an anti-leukemic agent using AML-derived

ALDHhi cells [1]. This agent induced a G2/M cell cycle block

through a reduction in cell cycle progression signals (FOXM1,

KIS, Cdc25B, Cyclin D1, Cyclin A, and Aurora-B), resulting in

inhibition of leukemia cell proliferation [1]. We also observed that

down-regulation of FOXM1 inhibited proliferation, and demon-

strated that TMPP suppressed FOXM1 expression, and that this

FOXM1 repression reduced Cyclin B1 and Cdc25B mRNA

expression, resulting in inhibition of the proliferation of AML-

derived ALDHhi cells [2]. Thus, we demonstrated that TMPP-

mediated FOXM1 repression induced G2/M cell cycle arrest

through a reduction in Cyclin B1 and Cdc25B expression. How-

ever, TMPP and FOXM1 regulate many mitotic regulators in

AML cells. It is unclear how TMPP predominantly induces G2/M

cell cycle arrest rather than G1 cell cycle arrest in AML cells.

To identify TMPP-induced transcriptional responses in AML

cells, TMPP-induced transcriptional alterations were investigated

using microarrays that encompassed the entire human genome.
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About 180 genes, which belong to functional categories such as the

DNA damage response, regulation of cell cycle and cell proli-

feration, and signaling pathways, responded to TMPP treatment

at the transcriptional level in AML cells. Of these genes, the

immediate-early response gene 5 (IER5) was identified as a key

regulator of the G2/M cell cycle transition.

The immediate-early genes (IER), which are rapidly induced by

growth factors or other various stimuli, encompass a variety of

different protein families (Fos and Jun family of transcriptional

regulators; Myc; zinc-finger proteins; secreted cytokines; cytoplas-

mic proteins, and integral membrane proteins) [3]. Activation of

IER is an important initial step in the regulation of cellular and

genomic responses to external stimuli. Approximately 100 IER

genes have been described to date, and are subdivided into two

classes (fast-kinetics and slow-kinetics) based on their activation

kinetics [4]. The fast-kinetics IER genes (e.g., c-Fos) contain serum

response elements (SRE), which are required for transcriptional

induction. In contrast, the slow-kinetics IER genes, which lack

SRE, display a relatively slower induction and longer persistence

profile following stimulation compared with the fast-kinetics IER

genes [5]. The IER5 gene, which has been identified as a member

of the IER gene family, belongs to the slow-kinetics IER genes, and

is rapidly induced by stimulation with serum or with the growth

factors FGF or PDGF [6]. It has been also reported that IER5

mRNA is induced in the cerebral cortex of rats during waking and

sleep deprivation [7], or in the brains of mouse embryos exposed

to teratogenic valpronic acid (VPA) [8]. The IRE5 mRNA was

induced within 30 min after serum-exposure and at least 180 min

after the serum-stimulation, but its expression was not inhibited by

cycloheximide [6]. IER5 is also upregulated by ionizing radiation

at doses ranging from 0.02 to 10 Gy in lymphoblastoid AHH-1

cells [9,10]. Moreover, it has been reported that suppression of

IER5 increased HeLa cell proliferation, mitigated the inhibition of

proliferation imposed by irradiation, and potentiated radiation-

induced arrest at the G2/M transition [11]. These results

demonstrated that IER5 expression plays an important role in

radiation-mediated cell death and cell cycle checkpoints.

It has been reported that inhibition of cell proliferation in AML

cells is associated with a decrease in the expression of the Cdc25B

phosphatase [12], and that this phosphatase participates in G2/M

checkpoint recovery and its expression is upregulated in acute

myeloid leukemia cells [13]. Therefore, depletion of Cdc25B

might be expected to strongly induce G2/M cell cycle arrest in

AML cells. As previously reported, siRNA-mediated depletion of

FOXM1 expression, or TMPP treatment, induced G2/M cell

cycle arrest and inhibited AML cell proliferation through a

decrease in protein expression of mitotic regulators such as

Cdc25B in AML cells [1,2]. However, it is unclear how Cdc25B

expression is regulated.

In this study, we investigated the function of IER5 in leukemia

cell proliferation. We found that IER5 expression inhibited the

proliferation of both leukemia cell lines and of leukemic blast cells

derived from AML through the transcriptional repression of

Cdc25B.

Results

The expression of IER5 mRNA in acute myeloid leukemia
cells

We first determined the relative expression of IER5 mRNA in

the leukemia cell lines KG-1, Kasumi-1, U937 and YRK2. As

shown in Fig. 1, IER5 mRNA was constitutively expressed in these

AML cell lines. Interestingly, we found that the mRNA expression

of IER5 increased in these AML cell lines compared to untreated

cells, when treated with TMPP (5 and 10 mM) for 24 h. However,

Ara-C (1 mM) did not affect IER5 mRNA expression in these

AML cell lines. Furthermore, we quantified the level of IER5

mRNA in the AML cell lines using quantitative RT-PCR. This

analysis indicated that the expression of IER5 mRNA in the

TMPP-treated leukemia cells was increased 1.78 to 2.29-fold

relative to its expression in untreated cells.

We next determined the relative expression levels of IER5

mRNA and protein in U937 cells. As shown in Fig. 1B, both IER5

mRNA and protein in U937 cells were overexpressed following

transfection with IER5 cDNA or treatment with TMPP compared

to untransfected and untreated U937 cells, respectively. In

contrast, transfection with IER5 shRNA-#1 or -#2 decreased

the expression of both IER5 mRNA and protein in U937 cells

compared to untransfected U937 cells. Moreover, the mRNA and

protein expression of IER5 in other AML cell lines (KG-1,

Kasumi-1 and YRK2) was similarly increased by IER5 cDNA

transfection and suppressed by IER5 shRNA transfection (data not

shown). Thus, IER5 mRNA and protein were constitutively

expressed in all four AML cell lines, although their expression in

AML cell lines were at lower levels compared to normal ALDHhi/

CD34+ cells (data not shown). Treatment with TMPP increased

both the mRNA and the protein level of IER5 in AML cells.

Effects of IER5 expression on AML cell proliferation
Since IER5 expression was induced by TMPP in AML cells, we

next examined the functional importance of IER5 expression. For

this purpose, we transfected U937 cells with IER5 cDNA, and

assessed the effect of IER5 over-expression on AML cell

proliferation over 72 h of culture, starting from day 3 post-

transfection. Cell proliferation was measured by cell counting

using a hemocytometer (Fig. 2A, upper panel). When U937 cells

were transfected with IER5 cDNA, cell proliferation was inhibited

compared to non-transfected control cells. Treatment with TMPP

(5 mM) also significantly inhibited the proliferation of U937 cells.

However, the viability of AML cells transfected with IER5 cDNA

or treated with TMPP was almost same as that of the untreated

cells (Fig. 2A, bottom panel). In addition, the expression of IER5

mRNA was significantly increased by TMPP treatment compared

to untreated cells (Fig. 2B, upper panel). We further examined the

effect of IER5 induction on AML cell proliferation by flow

cytometric analysis of the effect of IER5 on cell cycle distribution.

As shown in Fig. 2C and 2D, analysis of U937 cells on day 3 post

cDNA-transfection or post-TMPP treatment indicated an increase

in the percentage of cells in S and G2/M, but not in sub-G1,

compared to control DNA-transfected and untreated cells. No

increase in the polyploid (.4N) population of these cells was

observed. On the other hand, when U937 cells were transfected

with IER5 shRNA-#1 or -#2, each cell cycle distribution was not

affected compared to scrambled shRNA-transfected cells. In

contrast, the population of G2/M was significantly reduced

following TMPP treatment. Moreover, we determined the effect of

IER5 over-expression and TMPP treatment on markers of

apoptosis. We analyzed the effects on loss of mitochondrial

membrane potential, which was determined by flow cytometric

analysis of DiOC6 uptake. Loss of mitochondrial membrane

potential is known to occur in apoptotic cells and precedes the

activation of caspases. DiOC6 fluorescence of U937 cells was not

reduced 3 days after transfection with IER5 cDNA or TMPP

treatment, and DiOC6 fluorescence of IER5 cDNA-transfected or

TMPP treated cells compared to control cells was observed in the

almost same levels (Fig. 2E). The IER5 over-expression and

TMPP treatment similarly induced G2/M cell cycle arrest, but not

apoptosis in other AML cell lines (KG-1, Kasumi-1 and YRK2)

IER5 Induced G2/M Cell Arrest
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Figure 1. IER5 mRNA and protein expression in AML cells. A. RT-PCR was performed to analyze IER5 mRNA expression in AML cell lines (KG-1,
Kasumi-1, U937, and YRK2) treated with or without TMPP (5 and 10 mM) or Ara-C (1 mM) for 24 h. GAPDH mRNA expression is shown as an internal
control. RT-PCR results representative of three independent experiments are shown. Relative levels of IER5 mRNA expression in AMLs were measured
using QRT-PCR. B. IER5 mRNA and protein expression in U937 cells that were transfected with IER5 cDNA, shRNA-#1, or -#2, or were treated with
TMPP (5 mM), were assessed using RT-PCR and QRT-PCR, and Western blotting, respectively. Actin was immunoblotted as a loading control. The
expression levels of the target mRNAs were normalized to the expression of GAPDH mRNA. The results are expressed relative to the untreated control
which was set at 1. Each RT-PCR assay was performed at least three times, and the results are expressed as means 6 SD. *P,0.01. Western blotting
results representative of three independent experiments are shown.
doi:10.1371/journal.pone.0028011.g001
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(data not shown). These results showed that induction of IER5

induced a block in the G2/M phase in AML cells, but did not

induce apoptosis, and therefore demonstrated that induction of

IER5 expression strongly inhibited AML cell proliferation.

Effects of IER5 knock-down on AML cell proliferation
To further examine the functional importance of IER5

expression in AML cells, we next examined the effect of IER5

knock-down on AML cell proliferation. U937 cells were trans-

fected with IER5 shRNA-#1 or -#2, and the effect of IER5

knock-down on AML cell proliferation was assessed over 72 h of

culture, starting from day 3 day post-transfection (Fig. 3). Cell

proliferation was measured by counting the cells using a

hemocytometer (upper panels). When U937 cells were transfected

with IER5 shRNA-#1 or -#2 (Fig. 3A and 3B, respectively), cell

proliferation was slightly increased compared to both untreated

Figure 3. Effect of IER5 knock-down on AML cell proliferation. U937 cells were transfected with IER5 shRNA-#1 (A) or -#2 (B). After 3 days, the
cells were treated with TMPP (5 mM) for 24, 48 and 72 h and the number of viable cells was counted (upper panels). The IER5 mRNA level was
analyzed using quantitative RT-PCR and the level was determined relative to that of GAPDH (bottom panels). The results are means 6 SD from three
independent experiments.
doi:10.1371/journal.pone.0028011.g003

Figure 2. Over-expression of IER5 inhibited AML cell proliferation. A. The cell proliferation of U937 cells, transfected with IER5 cDNA or
treated with TMPP, was measured by counting cells using a hemocytometer (upper panel). Cell counting was started 3 days after transfection, and
was performed every 24 h for 3 days. Data are shown as means 6 S.D. of triplicate cultures and are representative of three independent experiments.
*P,0.01 compared with untransfected control cells. Cell viability of the IER5 over-expressing U937 cells was assessed by counting of viable cells using
trypan blue staining at 72 h, starting 3 days after DNA transfection (bottom panel). B. QRT-PCR analysis of IER5 mRNA expression in untreated cells,
IER5 cDNA-transfected cells, and TMPP-treated U937 cells. QRT-PCR was started 3 days after transfection, and was performed every 24 h for 3 days.
Data are shown as means 6 S.D. of triplicate cultures and are representative of three independent experiments. The levels of the quantified RT-PCR
products were normalized to GAPDH expression in the same sample and were then expressed relative to the mRNA level of a normal control, which
was assigned a value of 1. *P,0.01 compared with untransfected control cells. The protein expression of IER5 in cells was analyzed after 3 days of
culture (bottom panels). Blotting of Actin was used as a loading control. C. The cell cycle distribution of U937 cells that were transfected with control
DNA, IER5 cDNA, scrambled shRNA, IER5 shRNA #1, IER5 shRNA #1, or were treated with TMPP, was analyzed using flow cytometric analysis. The
transfected or TMPP-treated U937 cells were harvested after 3 days. The fraction of cells in the G1, S and G2/M stage of the cell cycle was determined.
Data are shown as means 6 S.D. of triplicate cultures. The IER5 mRNA expression of the cells is shown at bottom and was assessed using RT-PCR. The
RT-PCR results are representative of three independent experiments. Data are shown as means 6 S.D. of triplicate cultures. *P,0.01 compared with
control cells. D and E. Cell cycle analysis (D) and changes of mitochondrial membrane potential (DYm) (E) in IER5 overexpressed or TMPP treated AML
cells. U937 cells were transfected with IER5 cDNA or treated with TMPP (5 mM). Mitochondrial membrane potential was determined 3 days after
transfection or TMPP treatment by staining of the cells with DiOC6 followed by flow cytometric analysis. The FACS results are representative of three
independent experiments. NC; Negative control.
doi:10.1371/journal.pone.0028011.g002
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cells and to scrambled shRNA-transfected cells. In contrast, cell

proliferation was significantly reduced following TMPP treatment.

However, TMPP-mediated inhibition of the proliferation of U937

cells was reduced by knock-down of IER5 via transfection of IER5

shRNA-#1 or -#2. Moreover, TMPP-mediated IER5 induction

was decreased in U937 cells transfected with IER5 shRNA-#1 or -

#2 (bottom panels) compared to non-transfected cells. Knock-

down of IER5 in other AML cell lines (KG-1, Kasumi-1 and

YRK2), similarly increased cell proliferation (data not shown).

These results show that TMPP inhibits AML cell proliferation

through IER5 induction.

IER5 induced cell cycle arrest in AML cells through direct
binding to Cdc25B promoter and decrease of NF-YB binding

We next determined if the inhibitory effect of IER5 induction

on cell proliferation was mediated by modulation of the expression

of cell cycle regulators such as Cdc25B, CHK1, WEE1, Cyclin B1,

Survivin, KIS, or Aurora B kinase, during the G2/M transition.

As shown in Fig. 4A, induction of the IER5 protein in IER5

cDNA-transfected or in TMPP-treated U937 cells was accompa-

nied by a significant decrease in the level of Cdc25B protein

compared to untransfected cells. IER5 over-expression did not

affect CHK1, WEE1, Cyclin B1, Survivin or Aurora B kinase

expression. In contrast, TMPP treatment reduced the expression

of Cyclin B1, Survivin, and Aurora B kinase. TMPP treatment did

not affect CHK1 and WEE1 expression. Induction of IER5

similarly reduced Cdc25B expression in other AML cell lines (KG-

1, Kasumi-1 and YRK2) (data not shown). These results indicate

that, during TMPP-mediated G2/M cell cycle arrest, TMPP

reduced Cdc25B expression through IER5 induction and that

IER5 is essential for the repression of Cdc25B protein expression

in AML cells. Moreover, IER5 only regulated Cdc25B, and did

not affect other cell cycle regulators of the G2/M transition.

To confirm binding of IER5 to the Cdc25B promoter and more

accurately define its binding site, we performed ChIP analysis in

AML cells using two pairs of oligonucleotides within upstream

from the transcription start site for Cdc25B (Fig. 4B). ChIP analysis

showed that IER5 is highly enriched within a region of the

promoter of Cdc25B, indicating that the Cdc25B gene is a target for

IER5 (Fig. 4C). Moreover, to determine whether the over-

expression of IER5 corresponded to the binding sites of Sp1, Sp3,

and NF-YB within the Cdc25B promoter, ChIP analysis was

performed using antibodies corresponding to Sp1, Sp3, and NF-

YB, which has been reported to be related to p53-mediated

negative regulation of Cdc25B [14]. As shown in Fig. 4D, the

reduced binding of NF-YB on the Cdc25b promoter was observed

in IER5 over-expressed U937 cells compared to untreated and

control DNA transfected cells. On the other hand, the levels of

binding Sp1 and Sp3 on the Cdc25B promoter was not affected in

untreated, control DNA-, or IER5-transfected cells. In addition,

we investigated whether the reduction of NF-YB binding to

Cdc25B promoter interferes with the recruitment of coactivator

p300, which is anti-histone acetyltransferase as a coactivator

known interact with NF-Y [15]. When U937 cell was untreated or

transfected with control DNA, p300 was bound on the Cdc25B

promoter. When IER5 over-expressed in U937 cells, a significant

release of p300 was observed (Fig. 4E). On the other hand, the

DNA methyltransferase DNMT1, which acts as a loading platform

for repressor complexes such as the p53-Sp1 complexes [16] was

not recruited on the Cdc25B promoter in IER5 over-expressed

U937 cells. These ChIP experiments show that the binding of

IER5 on the Cdc25B promoter induced the release of the

coactivator p300, but not the recruitment of the coactivator

DNMT1 via Sp1 interaction, causing the down-regulation of

Cdc25B expression.

Induction of IER5 inhibited colony formation of AML
derived-ALDHhi/CD34+ cells

We next examined IER5 mRNA expression in clinical spe-

cimens from AML patients. Hematopoietic progenitor cells from

bone marrow were obtained using flow cytometry based on

ALDH activity, using the substrate Aldefluor as previously

reported. The CD34+ progenitor cells in the ALDHhi population

(ALDHhi/CD34+ cells) were then sorted using FACS. We isolated

ALDHhi/CD34+ cells from bone marrow cells derived from 2

healthy volunteers (#1 and #2) and 2 AML patients (M1 and M2)

(Fig. 5A and B). The percentage of bone marrow cells derived

from healthy volunteers #1 and #2 that were ALDHlow was

98.6% and 97.1%, and that of ALDHhi cells was 0.37% and

0.52%, respectively. The percentage of the ALDHhi cells that was

CD34+ was 84.2% and 81.9%, and that was CD34- was 14.7%

and 17.5%, respectively. On the other hand, in bone marrow cells

derived from AML patients M1 and M2, the percentage of

ALDHlow cells was 85.4% and 81.1%, respectively, and that of

ALDHhi cells was 7.4% and 6.7%, respectively. The percentage of

the ALDHhi cells that was CD34+ was 87.1% and 80.6%, and that

was CD34- was 11.4% and 19.3%, respectively.

To confirm that IER5 also modulated the proliferation of AML

progenitor cells from patients, we analyzed the effect of IER5

expression on colony formation of ALDHhi/CD34+ cells from

normal healthy volunteer #1 and from an AML patient (M1) prior

to treatment (Fig. 5C). Transfection with IER5 cDNA or treatment

with TMPP induced dramatic decreases in the number of colonies

formed by AML-derived ALDHhi/CD34+ cells compared to the

number in untreated cells (Fig. 5C; left panels). In untransfected

AML (M1) cells, the mean number of colonies was 112 (range,

103–119). Following transfection with IER5 cDNA and treatment

with TMPP the mean number of colonies was 27 (range, 21–35)

and 16 (range, 12–27), respectively. In contrast, transfection with

IER5 cDNA only moderately decreased the number of colonies

formed by normal ALDHhi/CD34+ cells, compared to untrans-

fected normal ALDHhi/CD34+ cells. Thus, the mean number of

colonies in untransfected cells was 46 (range, 39–52) but that in

cells transfected with IER5 cDNA was 22 (range, 18–29). These

results demonstrate that induction of IER5 expression predomi-

nantly inhibited the proliferation of AML-derived ALDHhi/

CD34+ cells. In addition, to confirm that IER5-mediated-

inhibition of colony formation of AML-derived ALDHhi/CD34+

cells from patients was mediated by an effect on transcription of

the IER5 target gene, we assayed the mRNA expression of the

IER5 target gene Cdc25B in AML-derived ALDHhi/CD34+ cells.

As shown in Fig. 5C (right panels), induction of IER5 expression

significantly decreased the expression of Cdc25B mRNA in AML-

derived ALDHhi/CD34+ cells, and also decreased the expression

of Cdc25B mRNA in normal ALDHhi/CD34+ cells. Moreover, in

AML (M1) ALDHhi/CD34+ cells, IER5 over-expression or TMPP

treatment indicated an increase in the percentage of cells in S and

G2/M compared to control cells (Fig 5D). No increase in the sub-

G1 population of these cells was observed. Interestingly, we also

detected an increase (3.1 to 4.2%) in the percentage of polyploid

cells (.4N) in TMPP treated cells compared to control cells. In

addition, as shown in Fig. 5E, DiOC6 fluorescence of AML (M1)

ALDHhi/CD34+ cells was not reduced 3 days after transfection

with IER5 cDNA or TMPP treatment, and DiOC6 fluorescence of

IER5 cDNA-transfected or TMPP treated cells compared to

control cells was observed in the almost same levels. Similar results

were obtained using other AML ALDHhi/CD34+ cells. (data not

IER5 Induced G2/M Cell Arrest
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shown). These findings suggest that the induction of IER5

expression strongly inhibited colony formation and G2/M cell

cycle arrest in AML-derived ALDHhi/CD34+ cells compared to

normal ALDHhi/CD34+ cells through induction of Cdc25B

expression.

Colony forming activity of ALDHhi/CD34+ cell populations

from AML patients following the induction or depletion of IER5

expression

We examined the effect of induction or knock-down of IER5 on

the colony formzing activity of ALDHhi/CD34+ hematopoietic

progenitor cells from an AML patient (M1) (Fig. 6A and C). When

cells were left untreated, the mean number of colonies was 117

(range, 102–126). When the cells were transfected with IER5

cDNA and/or treated with TMPP, the mean numbers of colonies

were 7 (range, 3–11), 28 (range, 20–37), and 22 (range, 14–26),

respectively. Thus colony numbers were dramatically reduced

when ALDHhi/CD34+ cells were cultured with TMPP and/or

were transfected with IER5 cDNA. In ALDHhi/CD34+ cells

transfected with IER5 shRNA-#1 or -#2, TMPP moderately

reduced colony numbers compared to untransfected cells. More-

over, in each colony derived from ALDHhi/CD34+ cells that was

treated with TMPP or transfected with IER5 cDNA, the

expression of IER5 mRNA was increased and the expression of

Cdc25B mRNA was significantly decreased compared to untreated

cells (Fig. 6B). These results demonstrate that during the

proliferation of progenitor cells derived from AML patients,

IER5 induced a reduction in Cdc25B expression.

To further assess the effects of IER5-mediated Cdc25B redu-

ction on colony formation of ALDHhi/CD34+ cells from an AML

patient (M1), we investigated whether transfection of Cdc25B DNA

could rescue the colony forming activity of the AML-derived

ALDHhi/CD34+ cells transfected with IER5 DNA or treated with

TMPP. ALDHhi/CD34+ cells were transfected with IER5 cDNA

or were treated with TMPP. As shown in Fig. 6D and F, either

TMPP treatment or IER5 over-expression inhibited colony

formation of AML-derived ALDHhi/CD34+ cells. In contrast,

over-expression of Cdc25B in ALDHhi/CD34+ cells increased the

number of colonies compared to untransfected cells. Moreover,

the expression level of IER5 mRNA was not affected in any colony

derived from ALDHhi/CD34+ cells that was transfected with

Cdc25B DNA (Fig. 6E). Similar results were obtained using AML

(M2) ALDHhi/CD34+ cells. These findings suggest that the

transcriptional repression mediated by IER5 regulated Cdc25B

expression levels, and, subsequently, decreased the expression of

Cdc25B, resulting in inhibition of colony formation.

The reduction of NF-YB binding to the Cdc25B promoter
by IER5 causes the decrease of Cdc25B expression

Finally, to confirm binding of IER5 to the Cdc25B promoter in

AML-derived ALDHhi/CD34+ cells, we also performed ChIP

analysis in ALDHhi/CD34+ cells purified from one AML patient

(AML: M1) (Fig. 7). ChIP analysis showed that IER5 is also highly

enriched within a region of the promoter of Cdc25B (Fig. 7, left

panel). Moreover, to determine whether the over-expression of

IER5 corresponded to the binding site of NF-YB within the

Cdc25B promoter, ChIP analysis was performed using the anti-NF-

YB antibody. The result shows that the reduced binding of NF-YB

on the Cdc25b promoter was observed in IER5 over-expressed

AML-derived ALDHhi/CD34+ cells compared to untreated and

control DNA transfected cells (Fig. 7, middle panel). In addition, a

significant release of p300 was also observed in IER5 over-

expressed AML-derived ALDHhi/CD34+ cells, (Fig. 7, right

panel). These results show that the binding of IER5 on the

Cdc25B promoter induced the release of the coactivator p300,

causing the down-regulation of Cdc25B expression in AML-

derived ALDHhi/CD34+ cells.

Discussion

We investigated the role of IER5 in inhibition of the growth of

AML cells induced by treatment with TMPP. We demonstrated,

for the first time, that TMPP induces the expression of IER5 and

inhibits AML cell proliferation via IER5-mediated transcriptional

repression of Cdc25B. Combined with the results of our previous

study that TMPP-mediated FOXM1 repression induced G2/M

cell cycle arrest, our results provide in vitro evidence to support a

role for FOXM1 as an oncogene in AML cells, and to support the

fact that its down-regulation inhibits the proliferation of esta-

blished AML cell lines and primary AML cells.

IER5, which encodes a 308-amino acid member of the

immediate-early class of signal transduction proteins, is induced

by growth factors and mediates the cellular response to mitogenic

signals [6]. IER5 also functions as a transcriptional regulator by

binding to DNA or by mediating nuclear protein-protein inter-

actions [6]. Moreover, it has been reported that ionizing radiation

induces IER5 mRNA expression in a dose- and time-dependent

manner, and that suppression of IER5 increases the proliferation

of HeLa cells and mitigates the inhibition of proliferation induced

by exposure to radiation, thereby increasing the resistance of

HeLa cells to radiation. In contrast, increased expression of IER5

reportedly disturbed the cell cycle checkpoint and sensitized cells

to radiation [11]. These previous results have shown that IER5

expression plays a role in the induction of cell death that is caused

by radiation. However, the biochemical pathway and mechanisms

of IER5 function in regulation of the cell cycle remain unclear. In

this study, we investigated the involvement of IER5 in the cell

cycle and in proliferation of AML cells and AML-derived leukemic

progenitor cells. We found that treatment with TMPP induced the

expression of IER5 mRNA and that over-expression of IER5 in

AML cells inhibited their proliferation. Moreover, suppression of

IER5 expression in AML cells using shRNA increased the pro-

liferation of AML cells, and mitigated TMPP-mediated inhibition

of proliferation compared to untransfected AML cells. We also

found that the both IER5 over-expression and induction of IER5

expression by TMPP treatment induced an increase in the

population of AML cells and primary AML blastic cells in the

Figure 4. IER5 induced G2/M cell cycle arrest through direct binding to Cdc25B promoter in AML cells. A. U937 cells were transfected
with control DNA, IER5 cDNA, or were treated with TMPP (5 mM or 10 mM). The cells were harvested after 3 days, and the expression of the indicated
cell cycle regulating proteins was analyzed by SDS-PAGE followed by Western blotting using the indicated specific antibodies. Blotting of Actin was
used as a loading control. B. Schematic representation of the human Cdc25B promoter regions, indicating sites for Sp1, Sp3, and NF-YB motifs,
amplified from the precipitated DNA by specific primer sets 1 and 2. C. ChIP analysis for IER5 in the Cdc25B promoter. D & E. IER5-dependent changes
in Sp1, Sp3 and NF-YB binding (E), and the bindings of coactivators, DNMT1 and p300, to interact with Sp1 and NF-YB, respectively (F) in Cdc25B
promoter. U937 cells were either untransfected or were transfected with the control DNA or IER5 DNA. After 3 days culture, cells were cross-linked
with 1% formaldehyde and ChIP was performed with either control antibody (IgG) or the anti-IER5 antibody. The precipitated DNA was then assayed
by PCR using pairs (primer set 1 and 2) of oligonucleotides encompassing specific regions of the Cdc25B promoter. The values of ChIP efficiencies are
given as % of input.
doi:10.1371/journal.pone.0028011.g004
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G2/M phase as well as in S phase compared to control untreated

cells, 3 days after transfection. These data are consistent with the

established notion that IER5 is a key regulator of cell cycle

checkpoints [11].

Because induction or over-expression of IER5 expression

induced G2/M cell cycle arrest and inhibited AML cell

proliferation, we considered that identification of genes regulated

by IER5 would facilitate an understanding of the roles IER5 plays

in AML cell proliferation. We previously showed that knock-down

of FOXM1, or TMPP treatment, markedly decreased the protein

expression of the mitotic regulators Skp2, Cdc25B, Cyclin B1,

Survivin, KIS, Aurora-B kinase in AML cells [1,2]. Diminished

expression of these mitotic regulators results in a block in mitotic

progression or proliferation, and leads to an accumulation of

p27Kip1 and p21Cip1 proteins [1,2]. Moreover, the expression of

Cdc25B is known to be increased in AML cells [13]. In this study,

we found that IER5 over-expression markedly decreased Cdc25B

protein expression, but not the expression of CHK1, WEE1,

Cyclin B1, Survivin, and Aurora kinase B proteins. Thus, of the

genes in the G2/M specific gene cluster, among which are

essential regulators of mitosis, IER5 predominantly controls the

expression of Cdc25B. Therefore, IER5 induction would be

expected to strongly induce G2/M cell cycle arrest in AML cells.

In addition, we observed the number of cells in both S- and G2/

M-phase. In cell cycle, the G2/M checkpoint is a barrier to

aberrant cellular proliferation, and arrests damaged cells to allow

time for repair [17]. The expression of Cdc25B is initiated during

S-phase, peaking in G2 and declining in mitosis [18]. Cdc25B has

been reported to play a role in the control of entry into mitosis

after a DNA damage-activated checkpoint in cells [14,19,20]. In

AML cells, the Cdc25B participates in the G2/M checkpoint

recovery and its expression is upregulated, and the reduction of

Cdc25B expression induced the cell number of both S- and G2/

M-phase in AML cells [14]. Our data are consistent with the data

of the report [14]. Therefore, when TMPP induced the IER5

expression, the Cdc25B expression is reduced and G2/M

checkpoint is induced, and then the cells with S- and G2/M-

phase DNA contents is increased. Moreover, the population of

G2/M distribution is more significantly increased than that of S-

phase.

Cdc25 phosphatases, which are dual specificity phosphatases

and important regulators of G2/M transition regulators, regulate

entry into mitosis by regulating the activation of CDK1/cyclin B

[21]. The Cdc25 phosphatases activate the mitotic CDK

complexes by dephosphorylating the inhibitory Thr14 and

Tyr15 residues on CDK1 and CDK2 [22]. There are three

isoforms of the Cdc25 phosphatase; Cdc25A, Cdc25B and

Cdc25C, and all three isoforms have roles in G2/M progression.

It was previously believed that Cdc25A acts at the G1/S

transition, whereas Cdc25B and Cdc25C function mainly at the

G2/ M transition [21,23]. However, recent studies suggest that all

three CDC25 phosphatases function as regulators of both G1/S

and G2/M transitions [23]. It has also been reported that only

depletion of Cdc25A and Cdc25B delays entry into mitosis [24].

In contrast, all three Cdc25 isoforms are targets for checkpoint

kinase inactivation [25]. Cdc25A is destabilized by CHK1

phosphorylation in response to DNA damage [26]. Cdc25B is

specifically required for exit from the G2 phase checkpoint arrest

[27], and its stability has also been linked to responses to damage

[28]. Thus, it is believed that aberrant regulation of Cdc25

phosphatases causes tumorigenesis via dysregulation of the cell

cycle [22,29–31]. It has been suggested that Cdc25 phosphatases

are involved in deficient checkpoints during mitosis in malignant

transformation [22,32]. The activity of the Cdc25 phosphatases is

regulated by their phosphorylation status, their expression level

and their subcellular localization [22,32]. Abnormal expression of

Cdc25B has been reported in a number of carcinomas, such as

non-small cell lung cancer [29], colorectal carcinomas [32],

ovarian [33], esophageal [34,35], prostate [36], gastric [37] and

pancreatic [38] cancers. Thus, overexpression of Cdc25B is

believed to contribute to tumorigenesis by enhancing tumor

malignancy [21]. However, it remains unknown how Cdc25B

expression is translationally regulated. Currently, it has been

reported that Cdc25B is negatively regulated by p53 through Sp1

and NF-Y transcription factors [14]. The analysis of Cdc25B

promoter shows that the down-regulation of Cdc25B by p53 is

needed for the Sp1/Sp3 and NF-Y binding sites in Cdc25B

promoter, p53 binds to the Cdc25B promoter and mediates

transcriptional attenuation via the Sp1 and NF-Y transcription

factors. We have examined the relationship between IER5 and

Cdc25B promoter, and binding of Sp1 and NF-YB, which is one of

NF-Y subunits, by using ChIP assay in AML cell lines and AML-

derived ALDHhi/CD34+ cells. In leukemia cells, IER5 directly

binds to Cdc25B promoter. Moreover, when IER5 over-expressed,

the significantly reduced binding of NF-YB on the Cdc25B

promoter the release of anti-histone acetyltransferase p300, which

is known as a coactivator of NF-Y [15], was observed at upstream

of 1st exon of Cdc25B. On the other hand, we did not observe that

Figure 5. IER5 inhibits the colony formation of ALDHhi/CD34+ cells isolated from AML patients. A. Selection of ALDHhi/CD34+

hematopoietic progenitor cells from the bone marrow of two healthy volunteers (#1 and #2) by FACS sorting. Region P denotes populations of
ALDHhi cells. Region R and S denote populations of CD34+ and CD34- cells in the ALDHhi population (Region P), respectively. Negative control, light
grey region; CD34-PE staining, dark grey region. B. Selection of ALDHhi/CD34+ hematopoietic progenitor cells from the bone marrow of two AML
patients (M1 and M2) by FACS sorting. Region P denotes populations of ALDHhi cells. Region R and S denote populations CD34+ and CD34- cells in
the ALDHhi population (Region P), respectively. Negative control, light grey region; CD34-PE staining, dark grey region. C. ALDHhi/CD34+ cells were
purified from a healthy volunteer (#1) and an AML patient (M1), and were cultured in semisolid methylcellulose media. The ALDHhi/CD34+ cells from
each source were left untransfected or were transfected with IER5 cDNA, or treated with TMPP (5 mM). After 14 days culture, the colony forming
ability of the cells was analyzed (left upper panel) and the cells were viewed using phase-contrast microscopy. Original magnification64 (left bottom
panels). Their mRNA expression of IER5 and Cdc25B was assessed using RT-PCR and quantitative RT-PCR (right panels). Colonies formed by these
ALDHhi/CD34+ cells (36102 to 56102 cells/plate) were counted following plating in semisolid methylcellulose media. Colony formation was evaluated
by determination of colony counts as a percentage of the corresponding control. The results are the means 6 SD of three independent experiments.
*P,0.01 compared with untreated control cells. RT-PCR results representative of three independent experiments are shown. GAPDH mRNA
expression is shown as an internal control. The ALDHhi/CD34+ cells whose IER5 mRNA expression was analyzed by quantitative RT-PCR were derived
from an AML patient (M1). The levels of the quantified RT-PCR products were normalized to GAPDH expression in the same sample and were then
expressed relative to the mRNA level of a normal control which was assigned a value of 1. D and E. Cell cycle analysis (D) and changes of
mitochondrial membrane potential (DYm) (E) in IER5 overexpressed or TMPP treated AML-derived ALDHhi/CD34+ cells. ALDHhi/CD34+ cells were
purified from an AML patient (M1), and were then transfected with IER5 cDNA or were treated with TMPP (5 mM). The IER5-transfected or TMPP-
treated cells were harvested after 3 days. The cell cycle distribution and the DYm of the ALDHhi/CD34+ cells was analyzed using flow cytometric
analysis. The FACS results are representative of three independent experiments. NC; Negative control.
doi:10.1371/journal.pone.0028011.g005
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IER5 interacts with Sp1 in AML cells. These results demonstrate

that the binding of IER5 on the Cdc25B promoter induced the

recruitment of coactivator p300, causing the inhibition of AML

cell proliferation and colony formation of AML-derived ALDHhi/

CD34+ cells through the down-regulation of Cdc25B.

We performed a colony formation assay using the ALDHhi/

CD34+ progenitor cells derived from two normal healthy

volunteers and two AML patients (M1 and M2). The number of

colonies was moderately reduced when normal ALDHhi/CD34+

progenitor cells were transfected with IER5 cDNA. In contrast,

colony numbers were significantly reduced when ALDHhi/CD34+

AML progenitor cells were transfected with IER5 cDNA or were

treated with TMPP. Moreover, the relative expression of Cdc25B

was decreased in colony forming cells when ALDHhi/CD34+

AML progenitor cells were treated with TMPP or were transfected

with IER5 cDNA. Moreover, when ALDHhi /CD34+ AML

progenitor cells were transfected with IER5 shRNA, the inhibitory

effects of TMPP on colony formation by TMPP were decreased in

colony forming cells. These results indicate that increased

expression of IER5 induced by TMPP reduced the number of

colony forming cells derived from AML progenitor cells through a

reduction in Cdc25B expression. Consistent with the idea that

IER5 and TMPP effects were mediated by a decrease in Cdc25B,

we found that over-expression of Cdc25B rescued both the

inhibitory effects of TMPP treatment and those of IER5 over-

expression in ALDHhi/CD34+ AML progenitor cells, resulting in

recovery of the colony forming activity of AML-derived ALDHhi/

CD34+ cells.

In conclusion, this study shows for the first time that IER5 over-

expression strongly inhibited AML-derived ALDHhi/CD34+ cell

proliferation and colony formation through a reduction in Cdc25B

expression, resulting in induction of G2/M cell cycle arrest.

Moreover, our data show that the reduction of NF-YB by IER5

inhibited the AML cell proliferation through the release of p300.

Therefore, IER5 induction could be an attractive potential target

for AML therapy.

Materials and Methods

Chemical synthesis and reagents
TMPP was prepared as previously described by reacting 4-

bromo-3-methyl-1-phenyl-2-phospholene 1-oxide with bromine

[1]. The reaction mixtures were extracted with chloroform,

washed with saturated NaCl solution, and dried with anhydrous

sodium sulfate. These reaction agents were then dissolved in

dimethyl sulfoxide (DMSO) (Sigma-Aldrich, St Louis, MO) and

diluted in culture medium immediately before use. The final

concentration of DMSO in all experiments was less than 0.01%,

and all treatment conditions were compared with vehicle controls.

Cytarabine (cytosine arabinoside, Ara-c) was purchased from

Sigma-Aldrich.

Cells and cell cultures
The human leukemia cell lines, KG-1, Kasumi-1 and U937,

were purchased from the American Type Culture Collection

(ATCC, Manassas, VA). YRK2 cells were harvested in our

Figure 6. IER5 expression inhibited the colony formation of AML ALDHhi/CD34+ cells through the regulation of Cdc25B expression.
A. ALDHhi/CD34+ cells were purified from an AML patient (M1) and were cultured in semisolid methylcellulose media. The ALDHhi/CD34+ cells were
either untransfected or were transfected with IER5 cDNA or with shRNA-#1, or -#2. After 14 days culture with or without TMPP (5 mM), the cells were
then analyzed for their colony forming ability. Colony formation of these ALDHhi/CD34+ cells (36102 to 56102 cells/plate) was assessed after plating
in semisolid methylcellulose media. B. Analysis of the mRNA expression of IER5 and Cdc25B in each colony using QRT-PCR and RT-PCR. C. The cells
were viewed using phase-contrast microscopy after 14 days culture with or without TMPP (5 mM). Original magnification 64. D. ALDHhi/CD34+ cells
were purified from an AML patient (M1) and were cultured in semisolid methylcellulose media. The ALDHhi/CD34+ cells were either untransfected or
were transfected with IER5 cDNA or Cdc25B cDNA. After 14 days culture with or without TMPP (5 mM), the cells were then analyzed for their colony
forming ability. Colony formation of these ALDHhi/CD34+ cells (36102 to 56102 cells/plate) was assessed after plating in semisolid methylcellulose
media. Colony formation was evaluated as a percentage of the corresponding control. E. Analysis of the mRNA expression of IER5 and Cdc25B in each
colony using QRT-PCR and RT-PCR. The levels of the QRT-PCR products were normalized to GAPDH expression in the same sample and were then
expressed relative to the mRNA level of a normal control which was assigned a value of 1. RT-PCR results representative of three independent
experiments are shown. GAPDH mRNA expression is shown as an internal control. The results are the means 6 SD of three independent experiments.
*P,0.01 compared with untreated control cells. F. The cells transfected with Cdc25B or IER5 cDNA were viewed using phase-contrast microscopy after
14 days culture with or without TMPP (5 mM). Original magnification 64.
doi:10.1371/journal.pone.0028011.g006

Figure 7. IER5-mediated negative regulation of Cdc25B expression through the reduction of NF-YB binding. The ALDHhi/CD34+ cells
purified from two AML patients (AML: M1) were either untransfected or were transfected with control DNA or IER5 DNA. After 14 days culture, cells
were cross-linked with 1% formaldehyde and ChIP was performed with either control antibody (IgG) or the anti-IER5 antibody. The precipitated DNA
was then assayed by real-time PCR using pairs (primer set 2) of oligonucleotides encompassing specific region of the Cdc25B promoter (left panel).
IER5-dependent changes in NF-YB binding (middle panel), and the bindings of coactivators, p300 (right panel) in Cdc25B promoter. The values of ChIP
efficiencies are given as % of input.
doi:10.1371/journal.pone.0028011.g007

IER5 Induced G2/M Cell Arrest

PLoS ONE | www.plosone.org 12 November 2011 | Volume 6 | Issue 11 | e28011



laboratory from bone marrow samples of AML (French-Ameri-

can-British (FAB) classification; M5a) patients after obtaining

informed consent. The KG-1, U937, and YRK2 cells were

cultured in RPMI 1640 media containing 10% heat-inactivated

fetal bovine serum (FBS), 2 mM L-glutamine, 100 mg/ml

streptomycin, and 200 U/ml penicillin (GIBCO-BRL, Gaithers-

burg, MD). Kasumi-1 cells were grown in RPMI1640 containing

20% FBS, 2 mM L-glutamine, 100 mg/ml streptomycin, and

200 U/ml penicillin. Primary leukemia cell specimens were

obtained from the bone marrow of two AML patients (FAB

classification; M1 and M2) before the start of any treatment, and

normal hematopoietic cells were extracted from healthy donors

(n = 2) after obtaining informed consent, which was written. We

obtained ethics approval for this study from the Institutional

Review Board of Hamamatsu University School of Medicine.

Mononuclear cells (MNCs) were purified by Ficoll-Hypaque

density-gradient centrifugation.

Purification of leukemic blast cells based on ALDH
activity and CD34 expression

For 2-color staining, MNCs were stained with anti-CD34-

phycoerythrin (PE)-conjugated antibody (Becton Dickinson, San

Jose, CA) and the Aldefluor reagent (StemCo Biomedical,

Durham, NC) according to the manufacturer’s specifications and

were separated using fluorescence-activated cell sorting (FACS).

The ALDHhi cells were gated, and the CD34+ cells in the gated

ALDHhi population were sorted on a fluorescence-activated cell

sorter (Becton Dickinson). Sorted ALDHhi/CD34+ cell popula-

tions were collected in methylcellulose media (Methocut H4435;

StemCell Technologies, Inc., Vancouver, BC, Canada).

RT-PCR and Quantitative Real-Time PCR (QRT-PCR)
Total RNA was extracted from cells using the RNeasy system

(Qiagen, Tokyo, Japan), and 2 mg RNA was reverse transcribed

using a first strand cDNA synthesis kit (Roche, Indianapolis, IN).

PCR was performed using a DNA thermal cycler (model PTC

200; MJ Research, Watertown, MA). The sense and anti-sense

oligonucleotide sequences respectively of each primer were as

follows: IER5, 59-GGACGACACCGACGAGGAG-39, and 59-

GCTTTTCCGTAGGAGTCCCG-39; Cdc25B, 59-TCCAGG-

GAGAGAAGGTGTCT-39 and 59- TGTCCACAAATCCGT-

CATCT-39; GAPDH, 59- GAACAGCAACGAGTACCGGGTA-

39 and 59-CCCATGGCCTTGACCAAGGAG-39. PCR condi-

tions for IER5, Cdc25B, and GAPDH were: 28 cycles of dena-

turation at 96uC for 30 sec, annealing at 56uC for 30 sec, and

extension at 72uC for 30 sec. All RT-PCR experiments were

performed in duplicate. QRT-PCR was performed using SYBER-

Green dye and an ABI PRISM 7700 Sequence detector (Perkin-

Elmer/Applied Biosystems, Foster City, CA).

Plasmids and RNA interference
Full-length cDNAs encoding human IER5 and Cdc25B were

obtained by RT-PCR using human bone marrow cDNA (BD

Biosciences Clontech, Palo Alto, CA) as a template and were

cloned into the eukaryotic expression vector pcDNA3.1/V5-His

(Invitrogen, Carlsbad, CA). Sequences of recombinant IER5 and

Cdc25B cDNAs were verified using automated sequencing.

The vectors for RNA interference (RNAi) specific for human

IER5 were constructed based on the piGENE PUR hU6 vector

(iGENE Therapeutics, Tsukuba, Japan), according to the manu-

facturer’s instructions. We used the following targeting sequences:

IER5 shRNA #1; 59-CCTCATCAGCATCTTCGGT-39, and

IER5 shRNA #2; 59-CTGCATAAGAACCTCCTG-39. The

scrambled shRNA sequence, 59-GGACGAACCTGCTGAGA-

TAT-39, was used as a control. Vectors were transfected into cells

by using the Lipofectamine 2000 kit (Life Technologies, Gaithers-

burg, MD), according to the manufacturer’s instructions. The

transfection procedure was repeated 12 h after the first transfec-

tion, and cells were harvested at 48 and 72 h after the initial

transfection. Knockdown efficiency was consistently 60% to 70%,

as determined by RT-PCR measurement of IER5 mRNA.

Cell proliferation and viability assay
KG-1, Kasumi-1, U937 and YRK2 cells were transfected with

IER5 shRNA-#1 or -#2, with scrambled shRNA, or were left

untreated. After 3 days incubation, the cells were plated in six-well

plates at a density of 16104 cells per well. Cell proliferation was

measured by counting cells using a hemocytometer. AML cells

were seeded in 96-well, flat-bottom microplates at a density of

26104 cells per well. The cells were untransfected or were

transfected with scrambled shRNA or with IER5 shRNA-#1 or -

#2. Cells grown in complete medium without transfection were

used as controls. Cell proliferation was also assessed by counting of

viable cells on the indicated days using trypan blue (Sigma-

Aldrich) exclusion. The number of nonviable cells was determined

by counting of live cells that did not uptake trypan blue in a

hemocytometer and are reported as the percentage of untrans-

fected control cells. Each data point was performed in triplicate,

and the results are reported as mean counts 6 SD.

Detection of changes in mitochondrial membrane
potential (DYm)

To detect DYm, cells (16104 cells/well) that were transfected

with IER5 cDNA or treated with TMPP were incubated in 24-well

plates. After 3 days, cells were labeled with DiOC6 (40 nM in

culture medium) at 37uC for 20 min. After washing in PBS,

cellular uptake of DiOC6 was analyzed using flow cytometry.

Cell cycle analysis
Cellular DNA content was analyzed using propidium iodide (PI)

(Sigma-Aldrich) staining. The cells were stained with 50 mg/ml PI

on day 3 post-transfection. The relative DNA content per cell was

measured using flow cytometry and an Epics Elite flow cytometer

(Coulter Immunotech, Marseille, France). The percentage of cells

in G1, S, and G2/M phases was calculated using the ModFit

program (Becton Dickinson, San Jose, CA).

Western blot analysis
Cells transfected with scrambled shRNA or with IER5 shRNA-

#1 or -#2 were harvested after 3 days. Western blot analysis was

performed using the following antibodies: goat polyclonal anti-

IER5 (Abcam, Cambridge, UK); Rabbit polyclonal anti-Cdc25B,

anti-CHK1, anti-WEE1 and anti-Aurora-B; mouse monoclonal

anti-Cyclin B1 and anti-Survivin, all from Santa Cruz. To ensure

equal protein loading, Western blotting of actin, used as an

internal control, was carried out using a mouse monoclonal anti-

Actin antibody (C-4; ICN, Aurora, OH).

Chromatin immunoprecipitation assay
U937 and AML-derived ALDHhi/CD34+ cells were untrans-

fected or transfected with control DNA, or IER5 DNA. After 3

days, the cells were crosslinked with 1% formaldehyde for 15

minutes at room temperature, washed twice with ice-cold

phosphate-buffered saline (PBS), and harvested. ChIP assay was

performed by using Simple ChIP Enzymatic Chromatin IP Kit

(Cell Signaling Technology, Beverly, MA), according to the
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manufacturer’s recommendations. Immunoprecipitated DNA and

input DNA were treated with RNase A (Sigma-Aldrich) and

proteinase K (Roche), and extracted with phenol:chloroform. For

ChIP analysis of IER5, Sp1, Sp3, NF-YB, DNMT1, and p300,

anti-IER5 antibody (Abcam), anti-Sp1 (Santa Cruz), anti-Sp3

(Santa Cruz), anti-NF-YB (Santa Cruz), anti-DNMT1 (Abcam),

and anti-p300 (Santa Cruz) with protein G-conjugated agarose

beads were incubated to make each antibody-conjugated agarose

beads. Anti-rabbit IgG antibody was used as an isotype control.

DNA that underwent ChIP was analyzed by conventional and

quantitative PCR, and data are presented as percentage of input as

determined with Applied Biosystem’s SDS software Absolute

Quantification protocol. Sense and anti-sense oligonucleotide

sequences respectively of each primer for PCR were as follows:

Set 1 (nucleotide position; -424 to -126), (S1) 59-AGCCGGGTT-

GACAGAGGGAGAC-39, and (AS1) 59-AACGGTGGAAC-

TAGGAATGGA–39, Set 2 (nucleotide position; -96 to +120),

(S2) 59- AAGAGCCCATCAGTTCCGCTTG -39, and (AS2) 59-

CCCATTTTACAGACCTGGACGC -39.

Colony forming assays
Colony forming assays were performed by plating purified

populations of cells at concentrations ranging from 16103 to

26103 cells into methylcellulose media (Methocut H4435; Stem

Cell Technologies). Colonies were enumerated under light

microscopy (Zeiss, Munchen, Germany) following incubation for

14 days at 37 uC and 5% CO2.

Isolation of progenitor cells and QRT-PCR of progenitor
cells

Following colony formation, each colony was harvested using a

glass syringe, and all cells of the same colony were pooled and

washed. An RNeasy system was used to extract total RNA from

approximately 56104 cells from each colony.

Statistical analysis
Data are representative of at least three experiments with

essentially similar results. These results are expressed as the means

6 standard deviations (SD) or standard error of the means as

indicated. Statistical analyses of the data were performed using

Student’s t-test. P values less than 0.05 were considered statistically

significant.
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