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Over 100 drugs and chemicals are associated with permanent hearing loss, tinnitus,

and vestibular deficits, collectively known as ototoxicity. The ototoxic potential of drugs

is rarely assessed in pre-clinical drug development or during clinical trials, so this

debilitating side-effect is often discovered as patients begin to report hearing loss.

Furthermore, drug-induced ototoxicity in adults, and particularly in elderly patients,

may go unrecognized due to hearing loss from a variety of etiologies because of a

lack of baseline assessments immediately prior to novel therapeutic treatment. During

the current pandemic, there is an intense effort to identify new drugs or repurpose

FDA-approved drugs to treat COVID-19. Several potential COVID-19 therapeutics are

known ototoxins, including chloroquine (CQ) and lopinavir-ritonavir, demonstrating the

necessity to identify ototoxic potential in existing and novel medicines. Furthermore,

several factors are emerging as potentiators of ototoxicity, such as inflammation

(a hallmark of COVID-19), genetic polymorphisms, and ototoxic synergy with co-

therapeutics, increasing the necessity to evaluate a drug’s potential to induce ototoxicity

under varying conditions. Here, we review the potential of COVID-19 therapies to induce

ototoxicity and factors that may compound their ototoxic effects. We then discuss

two models for rapidly detecting the potential for ototoxicity: mammalian auditory cell

lines and the larval zebrafish lateral line. These models offer considerable value for pre-

clinical drug development, including development of COVID-19 therapies. Finally, we

show the validity of in silico screening for ototoxic potential using a computational model

that compares structural similarity of compounds of interest with a database of known

ototoxins and non-ototoxins. Preclinical screening at in silico, in vitro, and in vivo levels

can provide an earlier indication of the potential for ototoxicity and identify the subset of

candidate therapeutics for treating COVID-19 that need to be monitored for ototoxicity

as for other widely-used clinical therapeutics, like aminoglycosides and cisplatin.
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INTRODUCTION

Drug-induced ototoxicity gained widespread recognition in the 1940’s due to the discovery
of hearing loss in patients receiving the then-novel aminoglycoside antibiotic streptomycin
(1). Since then, ototoxicity is increasingly recognized as an adverse outcome for a variety
of drug classes including other antimicrobial compounds (e.g., erythromycin, vancomycin),
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platinum-based chemotherapy agents (e.g., cisplatin,
carboplatin), loop diuretics (e.g., ethacrynic acid, furosemide,
bumetanide), and acetyl salicylic acid (1). More than 700
exogenous neurotoxic chemicals and chemical mixtures pose a
risk to sensory functions (2–4).

Ototoxicity encompasses both cochleotoxicity and
vestibulotoxicity. Cochleotoxicity is defined as drug-induced
damage to the peripheral auditory system, including cochlear
sensory hair cells, neurons, and supporting cells, resulting in
hearing loss and/or tinnitus. Similarly, vestibulotoxicity occurs
when drugs target the peripheral vestibular sensory cells, neurons
and supporting cells, leading to dizziness, vertigo, and loss of
balance. This paper will focus more on cochleotoxicity as less is
known about the vestibulotoxic effects of many drugs. However,
the in vitro and in vivo models we discuss for identifying
emerging ototoxins are likely applicable to both cochleotoxicity
and vestibulotoxicity.

In the current pandemic, symptoms such as hearing loss,
tinnitus, and dizziness have been reported by patients with
COVID-19 (5). Several repurposed drugs that are candidate
COVID-19 therapeutics also known to be ototoxic. Therefore,
drug-induced ototoxicity is likely prevalent in patients in
COVID-19 drug trials, underscoring the need to both evaluate
drug ototoxicity before clinical trials and for audiometric
monitoring of subjects in clinical trials (6). There are excellent
model systems to identify emerging ototoxins before these
drugs reach the clinic; it is not ideal if the potential for
ototoxicity first arises in patients after the therapeutic has
received regulatory approval for widespread clinical use (Phase
4). In vivo experiments in mammals are clearly ideal, as the
intact mammalian cochlea most closely resembles the human
cochlea. However, these are both time- and labor-intensive and
best for validating putative ototoxins identified by other means.
Alternative biological models provide excellent platforms for
rapid identification of putative ototoxins, including cochlear
cell lines and the larval zebrafish lateral line. Both models are
highly amenable to moderate- to high-throughput screening
for ototoxic potential in new drugs or compound libraries,
deciphering the molecular mechanisms of toxicity by known
ototoxins, and testing protective therapies [e.g., (7–11)]. We
review and discuss their advantages in identifying putative
ototoxins, including novel drugs and those being repurposed
as COVID-19 therapeutics. Both models provide an objective
system for screening without a priori assumptions about ototoxic
potential and for testing multiple drug combinations (12, 13).We
then discuss the untapped potential of in silico screening using
computational models; an approach widely used for toxicity
screening in other tissues such as the heart and liver (14–
16) but rarely for ototoxin identification (17, 18). We focus
on the strategic use of these systems and how researchers
can employ these biological and computational models for
identifying novel ototoxins.

Moreover, investigation of drug-induced ototoxicity has
usually involved healthy preclinical models, without considering
the disease setting, e.g., inflammation, co-treatment with other
drugs, and genetic susceptibility, in which these drugs are used
that can exacerbate ototoxicity. Thus, validating the potential

for ototoxicity should also be conducted in disease settings (19,
20). Here, we review ototoxic potential of several COVID-19
therapeutics and discuss factors that may exacerbate ototoxic
effects. Zebrafish models are also useful for understanding how
inflammation, drug–drug interactions, and other factors may
contribute to COVID-19 drug ototoxicity.

ONSET OF COCHLEOTOXICITY

Several excellent reviews extensively describe cochleotoxicity, so
we only briefly summarize here as a prelude to discussing
ototoxic potential of COVID-19 therapeutics (21–23).
Cochleotoxicity requires that drugs or their toxic metabolites
gain access to cochlear tissues and fluids. Many hydrophilic
ototoxic drugs cross the strial blood-labyrinth barrier (BLB)
and enter strial tissues before clearing into the endolymph that
bathes the apical surfaces of sensory hair cells. The molecular
mechanisms by which these drugs cross the BLB remain
unknown, and different ototoxic drugs use likely different
pathways, e.g., the anti-cancer drug cisplatin likely utilizes OCT2
(organic cation transporter 2) and CTR1 (copper transporter
1) transporters (24, 25); while aminoglycoside antibiotics could
utilize TRPV1 (transient receptor potential V1) and TRPV4
channels (26–28). Once in the endolymph, ototoxic drugs
typically enter hair cells to induce their cytotoxic effect (29).
The predominant pathway for ototoxins to enter hair cells via
functional mechanoelectrical transduction (MET)-dependent
pathways, including passage through large, non-selective MET
channels permeable to organic cations (30–33). Besides killing
sensory hair cells, ototoxic drugs can also disrupt cochlear
biochemical and metabolic homeostasis to induce hearing
loss. Fibrocytes in the lateral wall are involved in multiple
processes such as potassium circulation, support of the blood
supply, and regulation of cochlear inflammatory responses
(34). Accumulation of ototoxic drugs in the stria vascularis
can ultimately damage the generation of the endolymphatic
potential (EP), leading to reduced auditory sensitivity due to
a reduced transduction current (35–37). Ototoxic drugs can
also damage spiral ganglion neurons disrupting transmission
of the mechanically transduced signals from hair cell to the
central auditory system for auditory perception (38, 39). While
ototoxicity manifests in several ways, hair cells are often a direct
or indirect target.

CANDIDATE COVID-19
PHARMACOTHERAPEUTICS WITH
KNOWN OTOTOXICITY

Viral infections such as measles can cause structural damage
to the inner ear and nervous system, leading to hearing loss
(40). COVID-19 infections are potentially, yet rarely associated
with hearing loss (41–43). However, hearing loss in patients may
also occur as adverse events following the use of therapeutics to
treat COVID-19 infections. Here, we review several known or
suspected ototoxins.
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Chloroquine and Hydroxychloroquine
Chloroquine (CQ) and hydroxychloroquine (HCQ) are
quinine-related compounds for treating malaria, systemic lupus
erythematosus, and rheumatoid arthritis. Chloroquine also
exhibits antiviral properties including inhibiting endosome-
mediated viral entry, viral uncoating, and proteolytic processing
(44, 45). The repurposing of CQ and HCQ to treat COVID-19 is
based on their potential to inhibit SARS-CoV-2 virus replication
in vitro (46). Common side effects of CQ and HCQ include
hearth arrhythmia, liver and kidney toxicity, hypoglycemia,
retinopathy, muscle weakness, and ototoxicity including
hearing loss, tinnitus, and balance deficits, as well as worsening
preexisting hearing loss (47–49). As members of the quinine
family, one transient ototoxic side effect of CQ and HCQ is a
reversible block of the MET channel (32). Radiolabeled CQ is
deposited in the stria vascularis and the planum semilunatum of
pigmented, but not albino, rats (50), potentially damaging the
melanin-containing cells in the stria vascularis, with secondary
lesions in sensory hair cells. However, CQ and HCQ can directly
to damage hair cells in the zebrafish lateral line, as discussed
below (51). The lack of clinical monitoring for CQ-induced
ototoxicity is a concern as CQ dosing in COVID-19 trials is
significantly higher than for malaria treatment (52).

Azithromycin
Azithromycin is a macrolide antibiotic with anti-inflammatory
and anti-viral properties and is used in combination with
CQ/HCQ to treat COVID-19. Side-effects associated with
azithromycin include sensorineural hearing loss, tinnitus, and
imbalance (45), with an increased risk of sensorineural hearing
loss in patients with chronic obstructive pulmonary disease
[COPD; (53)] Oral azithromycin induced reversible reductions
in transient evoked otoacoustic emissions (TEOAEs) in guinea
pigs (54). Middle ear delivery of azithromycin caused greater
damage to the inner hair cells than outer hair cells in a dose
dependent manner in the basal region of guinea pig cochleae
(24). Studies have shown that azithromycin combined with CQ
can speed COVID-19 recovery by reducing viral load (55), yet
the combined effects of administering both drugs simultaneously
on the hearing of COVID-19 survivors remain unknown.

Lopinavir-Ritonavir
Lopinavir-ritonavir is an anti-retroviral therapy for human
immunodeficiency virus (HIV) type I. This drug combination
was repurposed to significantly reduce acute respiratory
syndrome and mortality caused by Middle East respiratory
syndrome coronavirus (MERS-CoV) or SARS-CoV-1
infections and is therefore of interest for SARS-CoV-2 (56).
Although lopinavir-ritonavir may promote recovery in
patients hospitalized with severe COVID-19 (57), another
study showed no significant benefit when compared with
standard of care treatment (58). A case study showed reversible
bilateral hearing loss in patients with HIV type I after co-
treatment with lopinavir-ritonavir (59), although the mechanism
remains unknown.

Ribavirin
Ribavirin interferes with viral replication by inhibiting viral
mRNA synthesis and is used to treat respiratory syncytial virus
(RSV) infections, hepatitis C, and some viral hemorrhagic fevers.
In COVID-19 patients, triple therapy of ribavirin, lopinavir-
ritonavir, and interferon (IFN)-β-1b shortened hospital stays and
decreased viral shedding compared to lopinavir-ritonavir therapy
alone (60). Treatment with pegylated (PEG)-IFN/ribavirin
combination therapy caused severe unilateral or bilateral sudden
hearing loss that is reversible after treatment discontinuation in
some cases, but is permanent in others (45). There is limited
data on the ototoxic effects of ribavirin, and it is possible that
IFN/ribavirin ototoxicity is due to non-pegylated IFNs alone
rather than ribavirin. However, hearing loss caused by IFN
therapy is usually reversible (61), whereas (PEG)-IFN/ribavirin
therapy can cause permanent hearing loss (62), suggesting
that ribavirin itself may be ototoxic, with a potentiating or
synergistic effect where co-treatment with ribavirin exacerbates
IFN ototoxicity.

Remdesivir
Remdesivir, an antiviral, adenosine nucleotide analog drug,
is currently the only FDA-approved COVID-19 therapy, with
significantly shortened hospital stays and reduced mortality rates
(63). Remdesivir inhibits viral replication by binding to RNA-
dependent viral polymerase, leading to early completion of RNA
transcription (64). There is as yet no direct study of remdesivir
ototoxicity, however, other adenosine nucleotide analogs, e.g.,
Rabavirin, can cause irreversible unilateral or bilateral hearing
loss and tinnitus after treatment in patients with chronic hepatitis
C (65), suggesting a potential ototoxic side effect for remdesivir.

Interferons
Interferons (IFNs) are released by numerous cell types to fight
invading pathogens, primarily viruses. Type I IFNs (IFN-α
and IFN-β) possess robust antiviral and immunomodulatory
capabilities and are produced via the TLR7/9-MyD88-interferon
regulatory factor (IRF) 7 pathway (66). Interferon therapy for
COVID-19 was tested due to the effectiveness of IFN-α and IFN-
β against SARS-CoV-1 in vitro (67). Recent clinical trials showed
that IFN-α therapy significantly reduced viral shedding and levels
of inflammatory biomarkers, whereas IFN-β therapy improved
virologic clearance; both therapies led to improved recovery in
patients with COVID-19 (68, 69). Clinical studies have shown
reversible hearing loss in patients receiving either IFN-α or
IFN-β therapy (61, 70) via an unknown mechanism, while co-
treatment with IFN and other therapies, such as ribavirin can lead
to permanent hearing loss (62). Elevated ABR thresholds were
observed in albino Swiss mice after treatment with IFN-α2A,
likely due to fibroblast cell toxicity in the spiral limbus (71). This
study also provided evidence that IFN toxicity may be due to a
reversible disturbance of cochlear metabolic homeostasis, rather
than structural damage.

Ivermectin
Ivermectin is a broad-spectrum antiparasitic drug repurposed to
treat COVID-19 based on an in vitro study showing inhibition
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of SARS-CoV-2 viral replication (72). Ivermectin is primarily
vestibulotoxic, including vertigo and dizziness (45), however,
there is very limited knowledge of the underlying mechanism(s).

RISK FACTORS THAT EXACERBATE
OTOTOXICITY

Ototoxicity can be exacerbated by other factors such as co-
morbidities and synergistic drug interactions. Here we briefly
discuss some primary factors that exacerbate ototoxicity.

Inflammation
Viral and bacterial infections typically induce inflammatory
responses that can modulate cochlear uptake of drugs or
change their cochlear pharmacokinetics and pharmacodynamics
(PK/PD), thereby modulating ototoxicity. Preclinical models
with systemic bacteriogenic inflammation (that did not alter
drug serum levels) increased cochlear uptake of aminoglycosides
and exacerbated the extent of cochleotoxicity (19). More
intense inflammatory responses can elevate serum levels
of aminoglycosides that presumptively worsen ototoxicity
outcomes (19). Inflammation also potentiates cisplatin-induced
ototoxicity (73). Permanent hearing loss is observed in
patients with multidrug-resistant tuberculosis (MDR-TB) due
to aminoglycoside ototoxicity, and individuals with MDR-TB
and HIV co-infection have a much higher risk developing
aminoglycoside-induced hearing loss compared to individuals
without HIV infection (74). Cochlear tissues also participate in
the inflammatory response induced by systemic immunogenic
stimuli, as well as middle ear or intra-cochlear immunogenic
stimuli from bacteria or cellular debris (19, 40, 75, 76).
Inflammation enhances cochlear uptake of ototoxins likely
through sensitization of drug permeant ion channels (e.g.,
TRPV1, TRPV4, TRPA1), strial vasodilation, and increased
permeability in the blood-strial and blood-perilymph barriers
(19, 22, 77). One hallmark of COVID-19 infection is a robust
systemic inflammatory response with high cytokine levels,
including IFNs, interleukins, and chemokines (78), involved in
the initiation, regulation, and resolution of immune response
against invading pathogens. Therefore, it is possible that
severe systemic inflammation in COVID-19 patients could
increase the risk of drug-induced hearing loss when therapeutics
used for treating COVID-19 infections are also known or
suspected ototoxins.

Renal Clearance
Renal insufficiency decreases the serum clearance of known
ototoxins like aminoglycosides and cisplatin from blood (79, 80),
resulting in increased cochlear exposure to circulating ototoxins
and therefore increased ototoxic damage. Major causes of renal
insufficiency include glomerulonephritis, high blood pressure,
or diabetes mellitus. Sepsis and acute inflammation can initiate
renal insufficiency and kidney failure (81), exacerbating inner
ear exposure to ototoxins. Renal insufficiency also occurs with
increasing age, along with the decreased glomerular filtration
rate associated with aging (82–85) and can partially account

for the increased incidence of aminoglycoside- and cisplatin-
induced ototoxicity in older patients. Risk factors for COVID-
19 morbidity include increased age and diabetes, suggesting that
patients hospitalized for COVID-19 may already have increased
risk for ototoxicity due to renal insufficiency.

Hypoxia, Anoxia, Ischemia
Viral infections can cause hearing loss by diminishing blood
supply to the cochlea, thereby reducing oxygen levels. Two
major complications in hospitalized COVID-19 patients are low
blood oxygen and respiratory distress, also called silent hypoxia.
It is suggested that silent hypoxia in patients with COVID-
19 is multifactorial: (i) the hypoxia inducible factor (HIF)
transcription factor responsible for inducing cellular responses
to hypoxia also increases ACE-2 expression that can facilitate
entry of the virus into cells; and (ii) hypoxia leads to more
severe tissue damage by contributing to the “cytokine storm”
and endothelial damage (86). These factors combined lead to
severe tissue damage and are a major cause of death resulting
from COVID-19. Cochlear hair cells require a sustained oxygen
supply due to high metabolic activity and are very sensitive to
hypoxia. In addition, disruption of the blood-oxygen supply will
have deleterious effects on the stria vascularis activity leading
to diminished cochlear potentials and histologic changes (36,
87). SARS-CoV-2 infection is also associated with an increased
risk of ischemia caused by blood clots in capillaries, including
the capillary beds in the stria vascularis, which may lead to
hearing loss. COVID-19 is associated with increased rates of both
arterial and venous thromboses in the pulmonary and systemic
vasculature. The well-accepted mechanism of thrombosis due to
COVID-19 starts with the innate immune system activation to
fight against SARS-CoV-2 invasion. Several factors are involved
in the activation of the contact pathway of coagulation, including,
innate immune cells, platelets, endothelial cells, intravascular
tissue factor, and neutrophil release of extracellular traps (88).
Thus, a reduced blood/oxygen supply to the inner ear can
enhance drug ototoxicity (89).

Potentiating and Synergistic Effects
Potentiated ototoxicity occurs when a non-ototoxic drug
(e.g., pancuronium bromide) or medical condition (e.g.,
inflammation, see above) is combined with an ototoxin,
resulting in increased ototoxicity. Vancomycin, a glycopeptide
antibiotic commonly prescribed in neonatal intensive care units
(90, 91), can exacerbate aminoglycoside-induced ototoxicity in
preclinical models (92). Loop diuretics are co-administered
with neuromuscular blocking agents, e.g., pancuronium bromide
or vecuronium bromide, for patients requiring respiratory
assistance (via intubation and ventilation), which can result in
potentiated cochleotoxicity (93, 94). Intubation and ventilation
are frequent procedures for patients with COVID-19 admitted to
intensive care units. The muscle relaxants required for intubation
may also potentiate the known ototoxicity of candidate COVID-
19 therapies.

Synergistic ototoxicity occurs when the ototoxic outcome of
combined treatment is greater than the sum of ototoxicity via
individual treatments. The co-administration of azithromycin
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and HCQ simultaneously heightens the risk of ototoxicity
(95). Loop diuretics are commonly used to reduce high blood
pressure and edema and can cause transient hearing loss when
administered alone. Loop diuretics block the Na+-K+-Cl− co-
transport of potassium into marginal cells, diminishing the EP
(35). By unknown mechanisms, this results in greater entry of
aminoglycosides into endolymph, and rapid hair cell death at
higher levels than when the aminoglycoside or loop diuretics
are delivered alone (96–98). Hospitalized COVID-19 patients
often receive several drugs in combination and may be at
additional risk for ototoxicity, even if individual drugs are
minimally ototoxic in healthy individuals. Auditory cell lines
and the zebrafish lateral line are robust platforms for testing
drug combinations and studies in cochlear cell lines demonstrate
synergistic cytotoxicity of proposed COVID-19 therapies (13), as
discussed below.

Genetic Polymorphisms
Susceptibility to ototoxicity can be enhanced by genomic
and mitochondrial polymorphisms. The mitochondrial
polymorphism A1555G and C1494T in the mitochondrial
gene MTRNR1 encoding the mitochondrial 12S ribosomal
subunit greatly exacerbates susceptibility to aminoglycoside-
induced ototoxicity (99, 100). Aminoglycoside interaction with
mitochondrial 12S ribosomal subunit results in inaccurate
translation of mitochondrial proteins, reducing protein synthesis
by up to 30–40% and a reduction in cellular respiration, leading
to hair cell death and hearing loss (101). A hair cell-specific
knockout of genomic Lmo4, a transcriptional regulator of
cellular apoptosis, enhances susceptibility to cisplatin-induced
ototoxicity (102), as do other genetic polymorphisms (103).
LMO4 promotes cell survival via JAK/STAT-mediated activation
of anti-apoptotic genes (102). It is currently unknown how
genetic polymorphisms may potentiate (or attenuate) ototoxicity
in COVID-19 patients.

Collectively, there is strong evidence that several candidate
therapeutics for COVID-19 in clinical trials are known or
potential ototoxins, and that medical conditions commonly
observed or co-therapeutics used in COVID-19 patients can
exacerbate ototoxicity. Given that most COVID-19 drugs to date
offer only modest improvement, such as shortening the hospital
stay by a few days, it’s important to focus attention on drugs
with minimal impact on hearing and vestibular function in those
hospitalized for COVID-19. With over 900 drugs in clinical
trials for COVID-19 alone, a moderate- or even high-throughput
screening of candidate COVID-19 therapeutics will offer an
excellent opportunity to determine the ototoxic potential of
these drugs to ensure optimal auditory and vestibular outcomes
in selecting safe and effective drugs for clinical treatment
of COVID-19.

MODELS FOR OTOTOXICITY STUDIES

Cochlear cell lines and the zebrafish lateral line offer several
advantages in that high-throughput screening is possible,
allowing researchers to interrogate a library of compounds to
identify potential ototoxins. These models are also amenable

to rapid dose- and time-response studies to fully explore
the parameter space occupied by a putative ototoxin before
embarking on more laborious mammalian studies. We expand
on these themes below.

Cochlear Cell Lines
Many in vitro ototoxicity studies employ the HEI-OC1 cell
line. These cells, named for their “birthplace”—the House Ear
Institute, were derived from the organ of Corti of an embryonic
mouse from the H-2Kb-tsA58 (Immortomouse) transgenic line,
which allows for conditional immortalization of cells harvested
from these animals (8). HEI-OC1 cells, like other cultured cell
lines, offer the advantage of relative ease of use and amenability
to high-throughput screening. Putative ototoxins can be added
to the culture medium and cell density measured with standard
cell viability measures such as the MTT assay. One caution,
however, is that HEI-OC1 cells are not hair cells; like other cell
lines, they proliferate readily (at 33◦C, and differentiate over
2 weeks at 39◦C), while hair cells are post-mitotic and fully
differentiated. Cell viability assays are not sufficient to distinguish
between reduced cell viability and reduced cell proliferation.
Several studies have combined MTT assays for cell viability with
specific cytotoxicity or apoptosis assays (e.g., caspase activation
or Annexin-V labeling), leading to isolation of drugs that cause
auditory cell death (13, 104).

In 2016, the Kalinec group that created this cell line
conducted an exhaustive examination of HEI-OC1 cell responses
to several known ototoxins, including acetaminophen, cisplatin,
and multiple aminoglycoside antibiotics (7). While several
drugs reduced cell viability, including cisplatin, acetaminophen,
gentamicin, and neomycin, only cisplatin increased cytotoxicity.
Interestingly, both cisplatin and acetaminophen increased
caspase 3/7 activation, despite a lack of acetaminophen-induced
cytotoxicity. A similar disconnect between caspase activation
and cell death was noted in 2012 by Chen et al. in gentamicin-
treated HEI-OC1 cells (105). It is unclear why HEI-OC1 cells
do not show the expected cytotoxicity from aminoglycoside
exposure; Kalinec et al. speculated that surrounding cell types
(e.g., supporting cells) are necessary for “normal” ototoxic
responses (7). These studies demonstrate that while HEI-OC1
cells are valuable for studies of cisplatin cytotoxicity in the
auditory periphery, caution is warranted in extrapolating data
interpretation to inner ear hair cells.

HEI-OC1 cells have been widely used to study cellular
responses to known ototoxins, particularly cisplatin, and to
examine putative protective compounds. For example, dozens
of studies show that cisplatin-induced damage to auditory cells
is modulated by oxidative stress, inflammation, and autophagy
[e.g., (106–111)]. Several compounds effectively protect HEI-
OC1 cells from cisplatin toxicity, including antioxidants such as
alpha-lipoic acid and ebselen (106, 112, 113). Ebselen has now
advanced to clinical trials for cisplatin otoprotection, although
results are not yet available (clinicaltrials.gov). Interestingly,
the antidiabetic drug metformin also conferred protection from
cisplatin toxicity in HEI-OC1 cells (108). This finding was
recently confirmed in vivo in the zebrafish lateral line and
mouse cochlea, demonstrating concordance across multiple
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model systems (114). While cisplatin is a well-studied ototoxin,
these findings collectively demonstrate that HEI-OC1 cells are
a tractable system to understand ototoxic responses and test
potential therapies.

HEI-OC1 cells are also an excellent test bed for development
of less ototoxic variants of essential drugs. A particularly
interesting study used HEI-OC1 cells to determine the
relative toxicity of platinum-based anti-cancer compounds,
with the goal of developing a less toxic version of cisplatin
(115). Unfortunately, Monroe et al. (115) found that the
monofunctional platinum (II) compounds phenathriplatin and
pyriplatin were as cytotoxic to HEI-OC1 cells as cisplatin (115).
While these results did not lead to chemotherapy agents with
lower ototoxic potential, they highlight the strengths of cochlear
cell lines for rapid determination of potential ototoxicity before
candidate therapeutics are tested clinically.

A prescient 2014 study used HEI-OC1 cells to screen
several HIV retroviral agents and several drugs significantly
reduced viability of auditory cells, including efavirenz, ritonavir,
delavirdine, nelfinavir, and tenofovir (13). In some cases,
therapeutically-relevant combinations of HIV drugs (e.g.,
Combivir) weremore cytotoxic than their individual constituents
(AZT and lamivudine, i.e., cytotoxic synergy), raising concerns
for hearing loss as a side effect of long-term antiviral therapy
in HIV patients. These findings are of greater interest in light
of the COVD-19 pandemic. As discussed above, ritonavir-
lopinavar, currently in clinical trials for COVID-19, is reported
to cause hearing loss in HIV patients, but the mechanism is
unknown. In addition, in 2020 remdesivir received emergency
use authorization for hospitalized COVID-19 patients, despite
modest success in clinical trials (63, 116). While all drugs are
needed early in the COVID-19 pandemic, including those with
only limited benefit, studies like the one by Thein et al. in 2014
(13) showcase the need to rapidly identify emerging ototoxins
to guide selection of COVID-19 therapeutics with minimal
auditory side-effects. Cell lines are also an excellent platform for
mechanistic studies once ototoxicity is established.

HEI-OC1 cells and cochlear hair cells share many responses
to known ototoxins, including up-regulating pro-inflammatory
responses. For example, the cytokine TNF-α causes cytotoxicity
in HEI-OC1 cells and IFNγ exacerbates this damage (117),
suggesting that IFN therapy in COVID-19 patients could
potentiate hearing loss due to systemic inflammation in this
patient population. Further, the combination of TNF-α and IFNγ

increases HEI-OC1 cell sensitivity to cisplatin damage, while
reducing inflammatory cytokines attenuates cisplatin cytotoxicity
(117–119). We do not yet understand the extent to which
COVID-19 therapies, nor the disease itself, modulate cell type-
specific inflammation, nor the potential consequences of this
inflammation on hearing loss.

The auditory cell lines UB/OC-1 and UB/OC-2 share key
features with the HEI-OC1 line. The UB (University of Bristol)
lines were derived at embryonic day 13 (E13) from the organ
of Corti of the transgenic Immortomouse line (120). Originally
created to study cellular development and regeneration, UB/OC
cells express hair cell markers including the transcription factor
Brn3c and important hair bundle proteins Myo6 and Myo7a

(120). The UB lines and HEI line show relatively similar
sensitivity to cisplatin, with concentrations ∼20µM causing
significant loss of cell viability (105, 121). However, UB cells
are not frequently used for ototoxicity studies, with only a few
studies examining cellular damage and protection mechanisms
associated with the known ototoxins cisplatin or gentamicin
(121–124). To our knowledge, these cell lines have not been used
to identify and characterize novel ototoxins. They may, however,
be an untapped resource for high-throughput screens of putative
ototoxic compounds.

Zebrafish Lateral Line
In the last 20 years, the larval zebrafish lateral line has emerged
as an excellent model for rapid in vivo screening of putative
ototoxins, understanding ototoxic mechanisms, and developing
protective therapies. The lateral line is an externally-located
system of sensory organs (neuromasts) on the head and body
of the animal. Like auditory cell lines, lateral line hair cells
are exposed to the external medium, making drug incubation
and visualization a simple process. Unlike auditory cell lines,
however, each neuromast contains hair cells and supporting cells
and each hair cell receives both afferent and efferent innervation.
Therefore, the lateral line combines the convenience of a cell
line with the power of an in vivo preparation for sensory
perception assays.

Lateral line damage is most often analyzed using fluorescence
assays. Vital dyes such as DASPEI and FM1-43 are rapidly
and specifically taken up by lateral line hair cells and can be
visualized with fluorescent microscopy (125–127). DASPEI is a
mitochondrial potential dye commonly used for a rapid, holistic
assessment of hair cell health, while FM1-43 or fluorescently-
tagged aminoglycosides are taken up through MET channels at
the apical surface of the hair bundle and therefore serve as a
proxy for MET channel function (11, 128–130). Other vital dyes
include Yo-Pro-1 and DAPI; generally considered nuclear labels
for fixed tissue, both dyes are specifically taken up by lateral
line hair cells in an intact animal (127, 131). Often, screens
for potential ototoxins use a combination of dyes, allowing for
simultaneous visualization of multiple hair cell compartments
(9, 132). Figure 1 illustrates commonmethods for labeling lateral
line hair cells described in this paragraph.

In addition to vital dyes, several transgenic lines express hair
cell-specific fluorescent proteins, allowing for rapid hair cell
assessment. For example, the Tg(Brn3c:mGFP) line expresses
EGFP in the plasma membrane, while hair cells in the
myo6b:EGFP line express a cytosolic reporter (133, 134). Finally,
behavioral assays provide a strong counterpoint to cellular
assays. Zebrafish larvae show a dose-dependent reduction in
rheotaxis (orientation to water flow) after exposure to neomycin
or cisplatin (135, 136). Other groups have used startle response
assays to measure lateral line damage (137, 138). While
useful, behavioral assays should be interpreted with caution.
Acoustically-driven startle responses are mediated by both the
lateral line and inner ear, and bath application of ototoxins
preferentially damages the lateral line; the drug generally does
not rapidly penetrate the ear (137, 139). Therefore, an animal
can have few lateral line hair cells and still show a robust acoustic
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FIGURE 1 | Lateral line visualization using fluorescent markers. (A) Larval zebrafish head showing labeling with the vital dye DASPEI. White arrows denote examples

of labeled neuromasts. The orange arrow shows the olfactory epithelium, which also labels with DASPEI. (B) A single neuromast labeled with the vital dye FM 1–43,

that enters hair cells through the MET channel. (C) A single neuromast from a Brn3c:mGFP transgenic zebrafish, where hair cells express membrane-bound GFP

(green). This fish was also live incubated with DAPI (blue) to selectively label hair cell nuclei.

startle response. Similarly, rheotaxis depends onmultiple sensory
systems, including vision and tactile responses (140). Conducting
rheotaxis assays under far red light greatly reduces the visual
component of the response but somatosensory cues are still
present (135). Recently, transgenic fish lines engineered with
a fluorescent calcium reporter have provided detail on hair
cell function with single-cell resolution, allowing researchers to
distinguish toxic effects on MET vs. synaptic transmission (141,
142). Physiological and behavioral techniques are labor-intensive
and not suitable for high-throughput screening. However, they
provide an excellent complement to cell-based assays once a
putative ototoxin is identified.

Several studies have used the lateral line to screen drug
libraries for novel ototoxins. Ton and Parng (126) provided
proof-of-concept for this approach by demonstrating that
lateral line hair cells could be damaged by both known
ototoxins such as gentamicin and by suspected ototoxins,
including the chemotherapy agent vinblastine sulfate. Expanding
on this concept, Chui et al. interrogated a library of over
1,000 FDA-approved drugs and known bioactive compounds
and identified 95 potential hair cell toxins (12). Of these
initial “hits,” 21 compounds were verified on retest, including
antiprotozoals such as pentamidine and the anticholinergic
compound propantheline. Both compounds damaged lateral
line hair cells in a dose-dependent manner (12). Further, both
drugs also damaged hair cells in utricular explants from the
adult mouse, demonstrating concordant toxicity between the
lateral line and mammalian inner ear. A smaller screen of
88 antineoplastic agents by Hirose et al. detected 13 hair
cell toxins (143). Some compounds, such as the microtubule
inhibitor vinorelbine and the tyrosine kinase imatinib, were
already considered suspected ototoxins based on scattered
case reports (144–147), but the zebrafish study was the first
to confirm hair cell cytotoxicity with either drug. The anti-
cancer screen also identified novel putative ototoxins, including
sunitinib, another tyrosine inhibitor. In 2020, a targeted
study by Davis et al. showed that CQ and HCQ damaged
lateral line hair cells and observed similar damage in mouse

cochlear cultures (51). This study provides further evidence
for the suspected ototoxicity of these compounds—a particular
concern given their use in COVID-19 patients as we previously
described. In COVID-19 trials, CQ/HCQ has been given in
combination with azithromycin, another potential ototoxin,
but it’s unclear the degree to which these drugs interact to
cause hair cell toxicity. Rapid ototoxicity models offer excellent
benefits for time-sensitive investigations and allow for studies of
drug–drug interactions.

In addition to FDA-approved drugs, unregulated natural
products also represent a potential cause of unrecognized
hearing loss. Natural products come from a diverse array of
sources, are accessible over the counter, and are often used
as chemical scaffolds for drug development. Neveux et al.
screened a library of 502 natural products in 2017 and identified
nine putative ototoxins, including kaempferol and quercetin;
two of the major components of the popular supplement
Gingko biloba (131). Pharmacologic inhibition of the hair cell
MET channel attenuated hair cell damage, suggesting that
like aminoglycoside antibiotics, these plant flavonols entered
hair cells in a transduction-dependent manner (105). However,
ototoxicity of kaempferol and quercetin has yet to be confirmed
in vivo in mammals.

As discussed above, genetic polymorphisms play a role in
susceptibility to aminoglycoside ototoxicity. It is likely that the
same polymorphisms, or those not yet identified, modulate
ototoxicity by other drugs such as COVID-19 therapeutics.
The zebrafish lateral line was previously used for a large-scale
screen to identify novel genetic regulators of aminoglycoside-
induced hair cell damage (9). This study demonstrated that
mutations in several cilia-associated genes attenuate neomycin-
induced hair cell damage, including genes associated with
intraflagellar transport (9, 148). Follow-up studies demonstrated
that mutations in the chloride/bicarbonate exchanger slc4a1b
and the transcription factor gcm2 also attenuate lateral line hair
cell damage from both aminoglycosides and cisplatin (128, 149).
Similar screens are necessary to identify genetic modulators
of ototoxic responses to other drugs, particularly CQ/HCQ,
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azithromycin, and other COVID-19 therapeutics with known or
suspected ototoxic potential.

Computational Modeling
Computational models are an increasingly powerful tool to
predict drug toxicity in an unbiased manner and are commonly
used to predict cardio- or hepato-toxicity (14, 150–152). These
models use molecular structure, physiochemical properties, and
other drug fingerprints to compare a novel compound or suite of
compounds to a database of known toxins and non-toxins [e.g.,
(14, 15, 153)]. The models then return an estimate of toxicity
for further validation in vitro or in vivo. Models increasingly
employ machine learning algorithms such as neural networks,
Bayesian, and deep learning approaches and regularly achieve
70–90% accuracy (14, 154, 155).

Most cardiac toxicity models focus on identifying drugs that
interact with a single target; the human ether-a-go-go related
gene (hERG), which encodes a voltage-gated potassium channel
critical for cardiac function (15, 153, 156). Having a single
target simplifies the model: what is the likelihood that the
novel structure in question can serve as a ligand for hERG? By
contrast, hepatoxicity comprises a heterogenous set of compound
classes including protein kinase inhibitors, herbal supplements,
and anti-cancer agents (157–159). Models of drug-induced liver
injury predict phenotypic toxicity rather than specific ligand
binding and therefore resemble ototoxicity in terms of the
complexity needed for predictive power.

Despite the power of in silico approaches to identify emerging
toxins, we know of only two published studies that have
developed algorithms for ototoxicity (17, 18). Both used a
Bayesian approach and trained their models on a dataset of
ototoxins and non-ototoxins. They then tested their models
using a test set composed of a subset of their original
training set, achieving accuracies of 85–88%. However, both
studies used flawed data to train their model, as their training
dataset of non-ototoxic compounds contained drugs for which
ototoxicity is reported in the literature. For example, both
studies included the chemotherapy agents gallium nitrate and
lapatinib in their dataset of ear-safe compounds, despite clinical
reports of ototoxicity (160) or demonstrated hair cell toxicity
in animal models (161). Flawed training datasets will yield less
accurate predictions of ototoxicity when applied to new chemical
structures. Published models should also use in vitro or in vivo
assays to validate predicted toxins, and proposed models should
be applied to new compounds not in the training dataset. These
approaches are important steps to address the need for rapid,
accurate in silico identification of emerging ototoxins. In silico
approaches are defined by their use of computer models. Here, in
silico screening involves the use of chemical structures to identify
a subset of compounds with potentially similar structure-activity
relationships, i.e., ototoxicity, that can then be tested in vitro or
in vivo.

We have adapted published computational toxicity models
to identify ototoxins based on chemical structure. Here, we
briefly describe one such model to illustrate the validity of
a robust computational approach to ototoxicity prediction. A
complete description of the model is beyond the scope of

this review and will be published elsewhere. In this example,
our model shares features with published ototoxicity models
but we use a smaller but well-validated training dataset with
strict classification of ototoxic vs. non-ototoxic drugs based on
peer-reviewed literature drawn from PubMed. As input, we
use isomorphic SMILES (simplified molecular-input line-entry
system) data for each drug derived from PubChem; this format
uses line notation to describe chemical structure as a series
of fingerprints and is commonly used for toxicology modeling
(151, 159, 162). This model uses a binary classifier approach
where positive scores represent ototoxicity and negative scores
represent non-ototoxicity. Predictions are based on summing
a weighted Tanimoto Similarity Index (T) for the given test
compound (c) across each compound in the training set
(database of known ototoxins, o, and non-ototoxins, n). Known
ototoxin and non-ototoxin comparison scores are summed as
separate values and multiplied by separate weights as seen
in Equation (1). This approach allows us to analyze a test
compound’s ototoxic and non-ototoxic potential independently,
improving prediction accuracy in our preliminary studies.
Tanimoto-based approaches have been used for similar models of
liver toxicity (152).

Scorec =
∑

αoTo,c +

∑
βnTn,c (1)

Our model is 75% accurate at predicting ototoxic vs. non-
ototoxic structures. Accuracy was based on application of a
confusion matrix that used 70% of our dataset to train the
model and the remaining 30% as probe structures to classify
ototoxins through the application of Equation (1) (Figure 2A).
In this example, the model identified more predicted non-
ototoxins then ototoxins, consistent with the over-representation
of non-ototoxins in the training dataset. As proof of concept,
we used our model to query a PubChem database of ∼10,000
drugs to determine the model’s ability to identify new ototoxins.
Of the 180 predicted ototoxins, some, such as kanamycin,
were known ototoxins represented in our training dataset,
while other predicted ototoxins were not previously reported
in the literature. We then tested three putative ototoxins in
the zebrafish lateral line to validate hair cell toxicity using vital
dye labeling methods described above for lateral line studies
(Figures 2B–E). The chemotherapy agent vindesine and the
anti-hypertensive isradipine both killed hair cells, while the
antioxidant dihydromyricetin did not cause damage, even at
concentrations five times higher than ototoxic doses of vindesine
or isradipine (Figure 2E). Collectively, Figure 2 illustrates how
computational and experimental approaches can be combined
to identify new ototoxins. This strategy should be highly useful
when applied to databases of COVID-19 therapeutics, allowing
researchers to rapidly identify potential ototoxins based on
chemical structure, then opportunities to validate these ototoxins
in auditory cell lines or the lateral line system.

Future ototoxicity modeling efforts will benefit from deep
learning approaches such as convolution neural networks.
Unfortunately, these algorithms traditionally rely on large
datasets. Recent advances in few-shot learning and data
augmentation methods allow for deep learning approaches
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FIGURE 2 | Illustration of how computational and experimental approaches can be combined to identify new ototoxins. (A) Confusion matrix output demonstrating

accuracy of our Tanimoto-based algorithm. We used 70% of our ototoxin database to train the model and 30% of our database as probe structures to test accuracy.

The model correctly predicted 14 of 21 ototoxins (66%) in the probe test set and 60 of 71 non-ototoxins (84%) for an average accuracy of 75%. (B–E) We then used

our model to predict ototoxicity from the PubChem database of ∼10,000 ototoxins and validated predicted ototoxins in vivo in the zebrafish lateral line. (B) Vindesine

and isradipine are toxic to lateral line hair cells. Confocal images show the M2 neuromast from fish treated for 24 h with DMSO (vehicle control, left), 10µM vindesine

(middle), or 10µM isradipine (right). Hair cells were live-labeled with DAPI. The scale bar on the left panel = 5µm and applies to all images. (C–E) Quantification of hair

cell numbers in five head neuromasts per fish. Numbers were summed to arrive at one value per animal. (C) Vindesine significantly damages hair cells at all

concentrations tested [One-way ANOVA, F (3, 35) = 268.4, p < 0.0001]. (D) Isradipine also caused significant hair cell loss [F (3, 36) = 10.97, p < 0.0001]. 50µM

isradipine was toxic to fish (data not shown). (E) Dihydromyricetin did not cause hair cell loss [F (3, 36) = 2.42, p = 0.07]. Bonferroni-corrected post-hoc tests indicate

significant differences from controls ****p < 0.001. N = 9–10 animals per group, data are presented as mean + s.d. and dots represent individual animals.

using small datasets—an excellent fit for the relative paucity of
validated ototoxins in our training dataset (163–165). Another
option is to use transcriptomic data for model fitting, either in
lieu of or in addition to molecular fingerprints. For example,
in 2019, Wang et al. used gene expression signatures of drug-
induced liver injury as input data to train a deep neural
network to predict hepatotoxicity based on transcriptomics
profiles (166). Multiple studies have characterized the hair
cell transcriptome after exposure to aminoglycosides and
cisplatin (167–170). These gene expression profiles could provide
input data to train ototoxicity prediction models based on
transcriptome signatures for novel compounds. Finally, future
models could be trained to identify drug–drug interactions
that increase ototoxic potential; an effort that is sorely needed
to address the many medications administered to COVID-
19 patients.

CONCLUSION

Over 100 drugs are known or suspected ototoxins and
hundreds of new candidate otoprotectants are developed in

research labs each year. Therefore, we argue that ototoxicity
screening should be a required step in the drug development
process. Use of rapid models such as auditory cell lines,
larval zebrafish, and computational models make it relatively
easy for researchers to screen lead compound libraries for
ototoxicity and to select non-ototoxic leads for further preclinical
development. Such screening can be done in-house by larger
organizations; and given the number of labs that specialize
in these high-throughput models, there are ripe opportunities
for collaboration between drug development groups and
ototoxicity researchers.

As of June 2021, there were more than 3,000 trials testing
clinical interventions on over 900 drugs. It would require a
Herculean effort for any one group to initiate audiometric
studies at this scale—a consortium approach is required. Further,
given the hundreds of drugs and their various dosing regimens
in clinical trials, it is crucial to begin audiometric screening.
Although we have spoken to several experts in human ototoxicity
monitoring in the U.S. and Europe, none were aware of
clinical trials collecting audiometric data, as called for by
multiple researchers (45, 49, 171, 172). Preclinical screening at
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in silico, in vitro, and in vivo levels as described above can
provide an earlier indication of the potential for ototoxicity
and identify the subset of candidate therapeutics for treating
COVID-19 that need to be monitored for ototoxicity as for
other widely-used clinical therapeutics, like aminoglycosides and
cisplatin (100, 173, 174).

The model systems we describe have been used to identify and
characterize new ototoxins, probe mechanisms of damage, and
to rapidly identify novel protectants. Otoprotectant identification
stems from the same characteristics that make these models
so valuable for ototoxin studies because researchers can
screen large numbers of putative protective compounds. To
date, most of the otoprotection work has focused on an
important but limited number of known ototoxins, particularly
aminoglycoside antibiotics and platinum-based chemotherapy
agents. When it comes to emerging ototoxins, particularly
those in consideration as COVID-19 therapeutics, there is
little work on the otoprotection side of the equation; an area
ripe for exploration using rapid in vitro, in vivo, and in
silicomodels.
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