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Abstract: Despite significant advancements in screening, diagnosis, and treatment of non-small cell lung 
cancer (NSCLC), it remains the primary cause of cancer-related deaths globally. DNA damage is caused by 
the exposure to exogenous and endogenous factors and the correct functioning of DNA damage repair (DDR) 
is essential to maintain of normal cell circulation. The presence of genomic instability, which results from 
defective DDR, is a critical characteristic of cancer. The changes promote the accumulation of mutations, 
which are implicated in cancer cells, but these may be exploited for anti-cancer therapies. NSCLC has 
a distinct genomic profile compared to other tumors, making precision medicine essential for targeting 
actionable gene mutations. Although various treatment options for NSCLC exist including chemotherapy, 
targeted therapy, and immunotherapy, drug resistance inevitably arises. The identification of deleterious 
DDR mutations in 49.6% of NSCLC patients has led to the development of novel target therapies that have 
the potential to improve patient outcomes. Synthetic lethal treatment using poly (ADP-ribose) polymerase 
(PARP) inhibitors is a breakthrough in biomarker-driven therapy. Additionally, promising new compounds 
targeting DDR, such as ATR, CHK1, CHK2, DNA-PK, and WEE1, had demonstrated great potential 
for tumor selectivity. In this review, we provide an overview of DDR pathways and discuss the clinical 
translation of DDR inhibitors in NSCLC, including their application as single agents or in combination with 
chemotherapy, radiotherapy, and immunotherapy.
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Introduction 

DNA damage and genomic instability in non-small cell 
lung cancer (NSCLC)

In recent decades, lung cancer (LC) research has shown 
significant advancements in screening, diagnosis, and 
treatment, thanks to the rapid development of technologies 
such as low-dose computed tomography (LDCT) scan, 
minimal invasive techniques (1), stereotactic ablative 
radiotherapy (SABR), new targeted therapy, and new 
immunotherapy. These advancements have improved the 
survival rate of LC patients by 56% in men and 32% in 
women (2). Despite this progress, LC remains the leading 
cause of cancer death, with an estimated 2.2 million new 
cases and 1.8 million deaths recorded in 2020 (3).

LC has two major pathological subtypes: the predominant 
NSCLC (85%) and small cell lung cancer (SCLC; 15%). 
NSCLC can be further divided into lung adenocarcinoma 
(LUAD; 50%), squamous cell carcinoma (LUSC; 40–30%), 
and large cell carcinoma (LCC; 20–10%) respectively.

The stability of the genome is paramount to the survival 
and reproduction of all cells. Friedberg et al. reported that 
human body is subjected to between 10,000 and 1,000,000 
instances of DNA damage per day (4). DNA damage caused 
by endogenous (for example free radicals) (5,6) or exogenous 
(for example ionizing radiation) factors (7-9) can lead to 
genome instability and diseases such as cancer. DNA double 
strand breaks (DSBs) are the most severe type of damage, as 
accumulation of incorrectly repaired or unrepaired DSBs can 
cause mutation, genomic instability, or induce cell death (10). 

LC generally exhibits a distinct genomic profile 
compared with other tumors, with high somatic mutational 
burden (11). Smoking is the main cause of LC, accounting 
for 90% of cases, however, approximately 20% of newly-
diagnosed LUAD cases are attributed to non- or light-
smokers in developed countries now. Smokers have higher 
somatic mutational burden than non-smokers (12) and 
smokers carry additional genomic instability processes that 
are likely to contribute to tumor progression (13). NSCLC 
primary tumors exhibit high genomic diversity with 
heterogenous tumor driver mutations present that clones 
may not all carry the same mutation making it very difficult 
for the patient to benefit from targeted therapies.

DNA damage is repaired by specific cellular pathways 
during normal cell cycle. When DNA damage fails to be 
repaired or excised, the mutations will eventually trigger 
carcinogenesis. For instance, epidermal growth factor 
receptor (EGFR) exon 19 deletion corrected with decreased 

expression of ERCC1 impacts ERCC1 foci formation in 
response to DNA cross-link damage, contributing to DNA 
damage repair (DDR) deficiency (14). Germline variants 
of ataxia-telangiectasia mutated (ATM), tumor suppressor 
53 protein (TP53), breast cancer 2 (BRCA2), EGFR, and 
Parkinson’s Disease-Associated protein 2 (PARK2) had 
been linked to cancer risk in Mendelian disorders (15). 
Chromosomal instability may cause tumor heterogeneity 
and drug resistance, and epigenetic silencing of DNA repair 
genes may promote tumorigenesis. For instance, over 60% 
NSCLC cases present aneuploidy. Chromosomal instability 
elevates in the NSCLC patients with ROS1 fusion treated 
with crizotinib (16). In addition to mutations, epigenetic 
silencing of DNA repair genes may promote tumorigenesis. 
The Aurora kinase (AURK) family is involved in mitosis 
and chromosomal segregation. Abnormalities in AURK 
proteins can be associated with genomic instability. 
Overexpression of AURKA (17-22) or AURKB (23-25) 
was corrected with poor prognosis of overall survival (OS) 
in NSCLC. Some researches revealed that AURKA and 
AURAB was associated with resistance of EGFR-TKI (26-
28), chemotherapy (29-31) and/or radiotherapy (17,32,33) 
in LC in pre-clinical models.

Target therapy and immune checkpoint inhibitors (ICIs)-
based treatment with/without chemotherapy have been 
widely used in NSCLC. Despite a number of inhibitors had 
been developed for targeting EGFR, ALK, ROS1, KRAS, 
MET, NTRK, HER2 and RET, LUSC and LCC rarely 
present mutations in tyrosine kinase receptors compared 
with LUAD. 

DNA repair in NSCLC

Various DNA repair pathways, including direct reversal 
repair (DRR), base excision repair (BER), nucleotide 
excis ion repair  (NER),  mismatch repair  (MMR), 
non-homologous end joining (NHEJ), homologous 
recombination (HR), and interchain crosslinking repair, can 
circumvent DNA damage. 

DNA damage caused by various agents such as alkylation, 
oxidation, ultra-violet (UV) radiation, and cross-linking 
requires different repair mechanisms. The mechanism of 
DRR is involved in reversing the O-alkylated DNA damage 
caused by methylguanine methyl transferase (MGMT) (34). 
DRR also removes photolesions caused by UV radiation 
with DNA-photolyase (35,36). The activity of the DNA 
repair enzyme 8-oxoguanine DNA N-glycosylase (OGG), 
is associated with LC (37). BER can repair small base 
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lesion damage such as the damage on 8-oxo-7,8-dihydro-
2’-deoxyguanosine (8-OHdG) by radicals with DNA 
glycosylase, apurinic/apyrimidinic (AP) endonuclease, DNA 
polymerase and DNA ligase (38,39). The BER pathway is 
one component of the larger DDR system that repairs and 
works with other pathways.

The NER mechanism is responsible for repairing 
Cyclobutane pyrimidine dimers (CPD) and pyrimidine-
pyrimidone (6-4) photoproducts [(6-4)PP] caused by UV 
radiation (38). There is a group of proteins (XPA-XPG, 
RPA, CSA, CSB, ERCC6 and RAD23B, etc.) that are 
involved in NER process (40). In LC, Lys751Gln (41) and 
ERCC2-rs13181 (42) polymorphism pose significant risk in 
allele, heterozygote, and dominant comparisons. 

MMR corrects base mismatch pairs and small loops. 
MMR does it with MSH2, MSH6, MLH1, PCNA and RPA 
proteins by identifying the site of the insertion-deletion 
loop, removing the lesion site and replacing it with newly 
synthesized DNA (43). These repair mechanisms have been 
associated with different cancers, including LC. MMR 
deficiency (dMMR) leads to multiple mutations at repetitive 
DNA sequence stretches known as microsatellite instability 
(MSI). MSI-high/dMMR varies widely among different 
cancer types. In LUAD, it accounted for 0.53–1% while 
0.6% in LUSC respectively (44). 

Currently, ICIs had been approved for MSI-high/dMMR 
in solid tumors. The deficiency expression of MSH2 or 
MLH1 in LUAD has been associated with resistance to 
immunotherapy (44). A study had reported MSI-high/dMMR 
group demonstrated greater survival and responded to ICIs 
in NSCLC (45). The high tumor mutation burden (TMB) 
corrected with DDR gene mutations and mutations of DNA 
methyltransferase 3a (DNMT3A) and DDR pathway-related 
genes increased tumor-infiltrating lymphocytes (46) and were 
important predictive markers for OS in NSCLC (47).

While BER, NER and MMR fix single-strand break 
(SSB) repair, DSB repair requires HR, NHEJ and 
alternative end joining (alt-EJ) pathways. Homologous 
recombinant repair (HRR) is a complicated process pathway 
to repair DSB in S and G2 phases of the cell cycle. HRR 
faithfully duplicates the genome by providing the critical 
support for DNA replication and telomere maintenance due 
to its dependence on the existence of sister chromatids. For 
instance, in HRR, RAD51 is the core mechanism of RAD51 
filament formation and DNA strand invasion. This repair 
also plays a role in the repair of DNA interstrand crosslinks 
(ICLs) with the collaboration of NER through involvement 
of ERCC1 endonuclease (48). The NHEJ pathway is 

essential for repairing DSBs throughout the cell cycle, 
while alt-EJ assists in repairing the residual DSBs when 
NHEJ and HR are unavailable. The tumor suppressor gene 
TP53 plays an important role in cell cycle regulation, and 
frequent TP53 mutations may cause DNA damage, leading 
to tumorigenesis and metastasis. The repair of interstrand 
crosslinking requires Fanconi anemia (FA) active proteins. It 
was reported that 49.6% NSCLC patients identified having 
deleterious DDR mutations and associated with improved 
clinical outcomes of ICIs (49). The understanding of these 
repair mechanisms can help in the development of more 
effective therapies for LC and other cancers.

Targeting DDR pathways can be exploited as a means 
of cancer therapy. In the following sections, we will 
discuss several DDR inhibitors including their application 
as monotherapy or in combination with chemotherapy, 
radiotherapy and immunotherapy and demonstrate their 
current landscape of research in NSCLC for clinical use. 
We also discuss potential predictive biomarkers of response 
in the pre-clinical or clinical trials. The list of DDR 
inhibitors is presented in Table 1. 

Strategies for targeting the DDR in NSCLC

Single agent activity and determinants of sensitivity

Poly (ADP-ribose) polymerase (PARP) inhibitor
The PARP is a family of nuclear protein enzymes that are 
activated upon binding to damage DNA and involved in 
DDR. Inhibition of PARP impair repair of SSBs that leads 
to synthetic lethality in HR-deficient (such as deleterious 
of BRCA1/2) cells which unable accurately repair DSBs. 
Several PARP inhibitors have been approved by FDA 
against different cancers with or without HR-deficient 
such as olaparib, niraparib, rucaparib, talazoparib (50). 
The development of veliparib is not very successful, not 
very successful as it resulted in less PARP trapping and was 
inactive (51).

Studies on PARP1/2 inhibitor as a monotherapy had 
purported it as a novel therapeutic strategy for NSCLC 
cells with ERCC1-deficient (52), or deficiencies in HR 
genes [loss of function of BRCA1 and BRCA2, ATM 
and elevated RAD54L expression (53), or lysine methyl 
transferase 2C/D (KMT2C/D) mutation (54), or ELF3 
expression (55), or AXL expression (56)]. PPP2R2A is 
commonly downregulated in NSCLC cells, and loss of 
PPP2R2A may serve as a marker to predict sensitivity to 
PARP inhibitor (57).
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Table 1 List of DDR inhibitors in clinical trials

Type Inhibitor Selectivity/specificity Status

PARP inhibitor Niraparib PARP1/2 (IC50 =3.8 nM/2.1 nM) Approved in OC

Olaparib PARP1/2 (IC50 =5 nM/1 nM) Approved in OC, BC, mCRPC and 
pancreatic cancer

Talazoparib PARP1/2 (Kis: 1.2/0.85 nM) Approved in mCRPC and BC

Rucaparib PARP 1, 2 and 3 (IC50 =0.8, 0.5 and  
28 nM)

Approved in mCRPC and OC

Veliparib PARP1/2 (Ki =5.2 nM/2.9 nM) Phase 3 NSCLC

RP12146 PARP1/2 (IC50 =0.62 nM/0.44 nM) Phase 1 solid tumors

AZD5305 PARP1/2 (IC50 =3 nM/1,400 nM) Phase 1/2 solid tumors

IMP4297 PARP1/2 (IC50 =6.27 nM/1.57 nM) Phase 1 SCLC

Parimparib PARP1/2 (IC50 =0.83/0.11 nM) Approved in OC in China

ATR inhibitor Ceralasertib (AZD6738) ATR (IC50 =1 nM) Phase 3 NSCLC; phase 2 SCLC; phase 
2 solid tumors; phase 2 ovarian cancer; 
phase 1 HNSCC

M6620 (VX970, berzosertib, 
VE822)

ATR (IC50 =0.2 nM); >100-fold ATR vs. 
ATM/DNA-PK

Phase 2 SCLC; phase 1 solid tumors; 
phase 1 OC

BAY1895344 (elimusertib, 
NSC#810486)

ATR (IC50 =7 nM); >60-fold selectivity 
to ATR compared to PI3K/AKT/mTOR 
pathway

Phase 1 solid tumors

Gartisertib (M4344, YX-803) ATR (IC50 <0.2 nM); >100-fold selectivity 
PI3K

Phase 1 solid tumors

M1774 (tuvusertib) ATR (IC50 =5 nM) Phase 1/2 SCLC; phase 1 solid tumors

ATRN-119 ATR (IC50 =4 nM), ATM (>600-fold), DNA-
PK (>2,000-fold) and mTOR (>2,000-fold)

Phase 1 solid tumors

RP-3500 (camonsertib) ATR (IC50 =1 nM); 30-fold selectivity for 
ATR over mTOR (IC50 =120 nM) and 
>2,000-fold selectivity over ATM, DNA-
PK, and PI3Kα kinases

Phase 1/2 solid tumors

ART-0380 ATR Phase 1/2 solid tumors

ATG-018 ATR Phase 1/2 solid tumors and hematologic 
malignancies 

IMP9064 ATR Phase 1/2 solid tumors

AURKA inhibitor AS703569 (R763) ATR (IC50 =0.5 nM) Phase 1 solid tumors

Alisertib (MLN8237) Aurora A (IC50 =1.2 nM), >200-fold higher 
selectivity for Aurora A than Aurora B

Phase 3 peripheral T-cell lymphoma; 
phase 2 SCLC; phase 2 OC; phase 2 
AML; phase 2 DLBCL; phase 1/2 NSCLC

ENMD2076 Aurora A (IC50 =14 nM),  
B (IC50 =290 nM); Flt3 (IC50 =3 nM); 
VEGFR2 (IC50 =36 nM); KIT  
(IC50 =120 nM); Abl (IC50 =295 nM);  
Abl (T315I) (IC50 =81 nm)

Phase 2 OC; phase 2 TNBC; phase 1 
hepatocellular carcinoma; phase  
1 multiple myeloma

Table 1 (continued)
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Table 1 (continued)

Type Inhibitor Selectivity/specificity Status

MK5108 Aurora A (IC50 =0.084 nM),  
B (IC50 =27 nM), C (IC50 =19 nM)

Phase 1 solid tumors

VIC-1911 Aurora A (IC50 =0.4 nm) Phase 1 hepatocellular carcinoma; phase 
1 NSCLC

LY3295668 Aurora A (IC50 =0.8 nm),  
B (IC50 =1,038 nm)

Phase 1/2 NSCLC
Phase 1 SCLC

TAS-119 Aurora A (IC50 =1.0 nm), B (IC50 =95 nM) Phase 1 solid tumors

AURKB inhibitor Barasertib (AZD1152) Aurora A (IC50 =1 nm),  
B (IC50 =1,100 nm)

Phase 2/3 AML

Pan-AURK 
inhibitor 

Danusertib (PHA739358) Aurora A (IC50 =13 nm),  
B (IC50 =79 nm), C (IC50 =61 nm); Abl 
(IC50 =25 nm); VEGFR3 (IC50 =161 nm)

Phase 2 multiple myeloma; phase 2 
leukemia; phase 2 prostate cancer

AMG900 Aurora A/B/C (IC50 =5 nM/4 nM/1 nM); 
>10-fold selective for Aurora kinases than 
p38α, Tyk2, JNK2, Met and Tie2

Phase 1 hematologic malignancies; phase 
1 solid tumors

AT9283 Aurora A, B (IC50 =3 nm);  
JAK2 (IC50 =1.2 nm); Abl (T315I)  
(IC50 =4 nm); Flt3 (IC50 =10 nm)

Phase 2 hematologic malignancies

APE1 inhibitor Methoxyamine (TRC-102) APE1 (IC50 =~50 mM) Phase 2 NSCLC; phase 1/2 solid tumors

Lucanthone APE1 (IC50 =5 μM) Phase 2 glioblastoma

E3330 (APX3330) APE1 (IC50 =5 μM) Phase 1 solid tumors

Gossypol (AT-101) APE1 (IC50 =2.5 μM) Phase 2 NSCLC; phase 2 hematologic 
malignancies; phase 2 glioblastoma; 
phase 2 prostate cancer

DNA-PK inhibitor Nedisertib (peposertib, M3814, 
MSC2490484A) 

DNA-PK (IC50 <3 nM) Phase 1/2 rectal cancer; phase 1/2 SCLC

VX-984 (M9831) DNA-PK (IC50 =88±64 nM) Phase 1 solid tumors

CC-115 DNA-PK (IC50 =0.013 μM);  
mTOR (IC50 =0.021 μM)

Phase 1 solid tumors

AZD7648 DNA-PK (IC50 =0.6 nM), >100-fold 
selective against 396 other kinases

Phase 1/2 solid tumors

LY3023414 (samotolisib) DNA-PK (IC50 =4.24 nM);  
mTOR (IC50 =165 nM); PI3Kα, PI3Kβ, 
PI3Kδ, PI3Kγ (IC50 =6.07 nM, 77.6 nM, 
38 nM, 23.8 nM)

Phase 2 NSCLC; phase 2 solid tumors; 
phase 2 prostate cancer; phase 2 
endometrial cancer; phase 2 PDAC; phase 
2 TNBC

Voxtalisib (XL765, SAR245409) DNA-PK (IC50 =150 nM);  
mTOR (IC50 =157 nM); PI3K (IC50s =39, 
113, 9 and 43 nM for p110α, p110β, 
p110γ and p110δ)

Phase 2 OC; phase 1/2 BC; phase 2 
lymphoma; phase 1 NSCLC; phase 1 
glioblastoma

XRD-0394 ATM and DNA-PK Phase 1 solid tumors

Table 1 (continued)
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Table 1 (continued)

Type Inhibitor Selectivity/specificity Status

WEE1 inhibitor ZN-c3 (NCT04158336) WEE1 (IC50 =3.9 nM) Phase 2 pancreatic cancer; phase 2 OC; 
phase 2 uterine serous carcinoma; phase 
1/2 AML

Debio0123 (NCT03968653) WEE1 (IC50 =0.8 nM) Phase 1 solid tumors; phase 1 SCLC; 
phase 1/2 glioblastoma

AZD1775 (adavosertib, MK1775) WEE1 (IC50 =5.2 nM) Phase 2 pancreatic cancer; phase 2 OC; 
phase 2 uterine serous carcinoma; phase 
2 TNBC; phase 2 SCLC; phase 2 NSCLC

IMP7068 WEE1 Phase 1 solid tumors

SY-4835 WEE1 Phase 1 solid tumors

CHK1/CHK2 
inhibitor 

Prexasertib (LY2606368) CHK1 (IC50 <1 nM); CHK2 (IC50 =8 nM); 
RSK1 (IC50 =9 nM)

Phase 2 OC; phase 2 SCLC

MK8776 (SCH900776) CHK1 (IC50 =3 nM), 500-fold selectivity 
against CHK2

Phase 2 hematologic malignancies

GDC-0575 (ARRY-0575, RG774) CHK1 (IC50 =1.2 nM) Phase 1 solid tumors

GDC-0425 CHK1 (IC50 =3 μM) Phase 1 solid tumors

PHI-101 CHK2 Phase 1 ovarian cancer

BBI-355 CHK1 Phase 1/2 solid tumors

PEP07 CHK1 (IC50 =1 nM); CHK2 (IC50 =1,630) Phase 1 solid tumors

SRA737 CHK1 (IC50 =1.4 nM), >1,000-fold 
selectivity against CHK2 and CDK1

Phase 1 solid tumors

LY2603618 (rabusertib) CHK1 (IC50 =7 nM);  
CHK2 (IC50 =12,000 nM)

Phase 1 NSCLC

LY2880070 CHK1 (IC50 <0.001 μM) Phase 1 solid tumors

DDR, DNA damage repair; PARP, poly (ADP-ribose) polymerase; OC, ovarian cancer; BC, breast cancer; mCRPC, metastatic castration-
resistant prostate cancer; NSCLC, non-small cell lung cancer; SCLC, small cell lung cancer; ATR, ataxia telangiectasia and Rad3 related 
protein; HNSCC, head and neck squamous cell carcinoma; AML, acute myeloid leukemia; DLBCL, diffuse large B-cell lymphoma; TNBC, 
triple negative breast cancer; AURK, Aurora kinase; DNA-PK, DNA-dependent protein kinase; PDAC, pancreatic ductal adenocarcinoma.

In advanced NSCLC, PARP inhibitor shows limited 
antitumor activity. Two trials tested olaparib maintenance 
in NSCLC patients with chemosensitivity; compared with 
placebo, a trend toward longer progression-free survival (PFS; 
16.6 vs. 12.0 months) and OS (59.4 vs. 31.3 months) (58);  
compared with standard of care (SoC), no significant 
PFS (2.7 vs. 2.7 months) and OS (14.3 vs. 14.1 months) 
differences were observed (59). In the SAFIR02-lung trial, 
2.1% (8/379) patients with pathogenic BRCA1/2 mutation 
indicated limited sensitivity to olaparib (60). Antitumor 
activity of niraparib single-agent was noted in NSCLC 
in the phase I dose-escalation trial; tumor shrinkage 
occurred in all two enrolled NSCLC patients, one BRCA2 

mutation carrier had stable disease (SD) for 175 days, the 
other previous heavily treated patient maintained SD for  
316 days (61). Talazoparib failed to show sufficient level of 
efficacy with 4% (1/24) overall response rate (ORR) and 
54% (13/24) disease control rate (DCR) in LUSC with 
HRR deficiency [alteration in ATM, ataxia telangiectasia and 
Rad3 related protein (ATR), BRCA1, BRCA2, or PALB2] 
in a phase 2 Lung-MAP subgroup S1400G (62). In another 
subgroup S1900A of Lung-MAP, with rucaparib, the study 
chose stage IV NSCLC patients with high genomic loss 
of heterozygosity (LOH) and/or BRCA1/2 mutated and 
progression on or after platinum base chemotherapy and/
or programmed death (ligand) 1 (PD1/PD-L1) antibody; 
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the study showed activity with 7% ORR (4 patients: 3 
BRCA1/2-mutated and 1 LOH-high) and 7.8 months OS (63) 
respectively.

In these EGFR mutated LC patients, low BRCA1 
mRNA levels were associated with longer PFS in erlotinib-
treated patients and acquired resistance of EGFR-
TKI treatment could promote the sensitivity of PARP  
inhibitors (64). A case report showed that olaparib with 
dacomitinib could prolong the survival of NSCLC patients 
with leptomeningeal metastasis (65). When compared 
combination of gefitinib and olaparib with solely gefitinib, 
the combination did not provide significant benefit (10.9 vs. 
12.8 months) in a phase II trial (66); this could be attributed 
to high BRCA1 mRNA expression and low mRNA 
expression of CtIP (67). The phase I study of niraparib in 
combination with osimertinib in EGFR-mutated advanced 
LC is underway (NCT03891615) (Table 2).

AZD5305 is a second generation, highly selective PARP1 
inhibitor. It is currently in phase I/II trial as monotherapy 
and in combination with other treatment in solid tumors 
which including NSCLC (Table 2).

ATR inhibitors
ATR and ATM are the members of the phosphatidylinositol 
3-kinases-related kinases (PIKK) family of serine/threonine 
protein kinases. ATR is one of the two apical regulators 
in the DDR pathway of active cellular response includes 
cell cycle checkpoints and DNA repair. ATM share similar 
function and structure with ATR.

ATR and ATM are prime targets of DDR inhibitors. 
ATR inhibitor has demonstrated therapeutic potential 
activity in cancer treatment. 

Several compounds targeting ATR are moving to 
clinical trial stage. M6620 (VX970/Berzosertib/VE822) 
was well tolerated, with preliminary antitumor responses 
observed in a patient with metastasis colorectal cancer 
(mCRC) harboring ATM loss and AT-rich interactive 
domain-containing protein 1A (ARID1A) mutation 
reached complete response (CR) and 29 months PFS (68). 
Ceralasertib (AZD6738) monotherapy was well tolerated 
and resulted in confirmed partial response (PR) and a 
high proportion of prolonged SD in advanced tumors 
of PATRIOT trial (69). BAY1895344 (Elimusertib, 
NSC#810486) was tolerable and had antitumor activity in 
patients with various advanced solid tumors with certain 
DDR deficiency including ATM loss (70). M4344 (YX-803) 
is currently in phase I single-agent or in combination with 
carboplatin study to determine the safety and maximum 

tolerated dose (NCT02278250). The trial of M1774 
as monotherapy and in combination with niraparib is 
recruiting the patients with metastatic or locally advanced 
unresectable solid tumors including a group to explore the 
biomarker of loss of function mutations in the genes for 
ARID1A, ATM, or alpha thalassemia/mental retardation 
syndrome X-linked (ATRX) and/or (death-domain-associated 
protein) DAXX (NCT04170153). There are no ongoing 
trials in NSCLC with ATR inhibitor monotherapy, but in 
combination with other anti-cancer treatments, M1774, 
M6620 and AZD6738 are currently on the development of 
phase II/III studies as listed in Table 2. 

AURK inhibitor
AURK belongs to a family (known as AURKA, AURKB 
and AURKC) of highly conserved serine and threonine 
kinases that function as key regulators of the mitosis 
process. AURKA and AURKB constitutes potential targets 
in NSCLC. Several agents inhibited to AURK have been 
developed, AURKA inhibitors (TC-A2317, alisertib/
MLN8237, ENMD2076, MK5108, VIC1911, LY3295668, 
TAS-119), AURKB inhibitors (Quercetin, GSK 1070916, 
barasert ib/AZD1152)  and pan-AURK inhibi tors 
(danusertib/PHA739358, AMG900, AT9283).

MK-5108 had proven anticancer activity in NSCLC 
in  v i tro  as  monotherapy or  in  combinat ion with 
chemotherapies (71). AT9283 is a multi-targeted kinase 
inhibitor of tyrosine and serine/threonine kinases including 
Aurora A and B, JAK2, and Abl. AT9283 alone indicated 
well tolerated, antiproliferative and apoptotic activity and 
demonstrated SD (≥6 months) in esophageal cancer (n=1), 
NSCLC (n=2) and colorectal cancer (CRC; n=1) in a phase 
I dose escalation study (72). 

Danusertib (PHA-739358) is a small-molecule pan-
aurora kinase inhibitor. A trial reported that danusertib 
single-agent reached marginal antitumor activity, the 
progression free rate at 4 months (PFR-4) was 10.4% (5/48) 
in NSCLC (all histotypes), 16.1% (5/31) in LUSC and 0% 
(0/14) in SCLC (73). Another phase II study evaluated the 
efficacy of danusertib alone in advanced treated NSCLC 
in a Simon two-stage design; 3/19 patients were PFR-4 in 
stage I, the antitumor activity was better in LUSC better 
than non-squamous NSCLC (nsqNSCLC) (PFS: 6.4 vs.  
2.2 months, OS: 10.6 vs. 7.6 months); 5/31 evaluable 
squamous patients were PFR-4 in stage II (74).

Tanaka et al. (75) discovered AURKB inhibitors as potent 
enhancers of osimertinib-induced apoptosis and combined 
EGFR-TKI and AURKB inhibitor could overcome EGFR-
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Table 2 Ongoing clinical trials of DDR inhibitor in NSCLC 

Drug Indication Title of the study Combination Phase Biomarker Identifier

Olaparib NSCLC SAFIR02_Lung - Efficacy of Targeted Drugs 
Guided by Genomic Profiles in Metastatic 

NSCLC Patients

Monotherapy 2 BRCA NCT02117167

AZD1775 
(adavosertib, 
MK1775)

sqNSCLC AZD1775 Plus Carboplatin-Paclitaxel in 
Squamous Cell Lung Cancer

Chemotherapy 2 NA NCT02513563

Methoxyamine 
(TRC-102)

NSCLC Methoxyamine Hydrochloride, Pemetrexed 
Disodium, Cisplatin, and Radiation Therapy in 
Treating Patients With Stage IIIA-IV Non-small 

Cell Lung Cancer

Chemoradiotherapy 1 NA NCT02535325

Ceralasertib 
(AZD6738)

NSCLC National Lung Matrix Trial: Multi-drug Phase II 
Trial in Non-Small Cell Lung Cancer

Durvalumab 2 NA NCT02664935

Niraparib Solid tumor; 
NSCLC

Study of Niraparib, TSR-022, Bevacizumab, 
and Platinum-Based Doublet Chemotherapy in 

Combination With TSR-042

TSR-042 1 NA NCT03307785

Olaparib; 
ceralasertib 
(AZD6738)

NSCLC Phase II Umbrella Study of Novel Anti-cancer 
Agents in Patients With NSCLC Who Progressed 

on an Anti-PD-1/PD-L1 Containing Therapy

Durvalumab + AZD6738; 
durvalumab + olaparib

2 NA NCT03334617

Rucaparib nsqNSCLC Rucaparib and Pembrolizumab for Maintenance 
Therapy in Stage IV Non-Squamous Non-Small 

Cell Lung Cancer

Pembrolizumab 1/2 NA NCT03559049

Olaparib NSCLC Study of Durvalumab+Olaparib or Durvalumab 
After Treatment With Durvalumab and 

Chemotherapy in Patients With Lung Cancer 
(ORION)

Durvalumab + 
chemotherapy

2 NA NCT03775486

Ceralasertib 
(AZD6738)

NSCLC Precision Immuno-Oncology for Advanced Non-
small Cell Lung Cancer Patients With PD-1 ICI 

Resistance

Durvalumab 2 NA NCT03833440

Niraparib NSCLC Niraparib in Combination With Osimertinib in 
EGFR-Mutated Advanced Lung Cancer

Osimertinib 1 EGFR-
mutated 

NCT03891615

Olaparib nsqNSCLC Study of Pembrolizumab With Maintenance 
Olaparib or Maintenance Pemetrexed in First-
line (1L) Metastatic Nonsquamous Non-Small-

Cell Lung Cancer (NSCLC) (MK-7339-006, 
KEYLYNK-006)

Pembrolizumab 3 NA NCT03976323

Olaparib sqNSCLC A Study of Pembrolizumab (MK-3475) With 
or Without Maintenance Olaparib in First-line 
Metastatic Squamous Non-small Cell Lung 

Cancer (NSCLC, MK-7339-008/KEYLYNK-008)

Pembrolizumab 3 NA NCT03976362

Alisertib 
(MLN8237)

NSCLC Alisertib in Combination With Osimertinib in 
Metastatic EGFR-mutant Lung Cancer

Osimertinib 1 EGFR-
mutated 

NCT04085315

Table 2 (continued)
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Table 2 (continued)

Drug Indication Title of the study Combination Phase Biomarker Identifier

Talazoparib sqNSCLC Combination Treatment (Talazoparib Plus Avelumab) 
for Stage IV or Recurrent Non-Squamous Non-

Small Cell Lung Cancer With STK11 Gene Mutation 
(A LUNG-MAP Treatment Trial)

Avelumab 2 STK11 
gene 

mutation

NCT04173507

M6620 (VX970, 
berzosertib, 
VE822)

NSCLC Testing the Addition of an Anti-cancer Drug, 
Berzosertib (M6620, VX-970), to the Usual 

Treatments (Carboplatin and Gemcitabine) and 
to Pembrolizumab for Patients With Advanced 
Squamous Cell Non-small Cell Lung Cancer

Pembrolizuma + 
chemotherapy

1/2 NA NCT04216316

Olaparib NSCLC Study of Pembrolizumab With Concurrent 
Chemoradiation Therapy Followed by 

Pembrolizumab With or Without Olaparib in 
Stage III Non-Small Cell Lung Cancer (NSCLC) 

(MK-7339-012/KEYLYNK-012)

Pembrolizumab + 
chemoradiotherapy

3 NA NCT04380636

Niraparib NSCLC Placebo-controlled Study Comparing Niraparib 
Plus Pembrolizumab Versus Placebo Plus 

Pembrolizumab as Maintenance Therapy in 
Participants With Advanced/Metastatic Non-

small Cell Lung Cancer

Pembrolizumab 3 NA NCT04475939

Alisertib 
(MLN8237)

NSCLC Osimertinib in Combination With Alisertib or 
Sapanisertib for the Treatment of Osimertinib-
Resistant EGFR Mutant Stage IIIB or IV Non-

Small Cell Lung Cancer

Osimertinib 1 EGFR-
mutated 

NCT04479306

BAY1895344 Solid tumor; 
NSCLC; 
SCLC

Testing the Addition of an Anti-cancer Drug, BAY 
1895344, to the Usual Chemotherapy Treatment 

(Cisplatin, or Cisplatin and Gemcitabine) for 
Advanced Solid Tumors With Emphasis on 

Urothelial Cancer

Chemotherapy 1 NA NCT04491942

Olaparib NSCLC; 
SCLC

Olaparib (LYNPARZA) Plus Durvalumab (IMFINZI) 
in EGFR-Mutated Adenocarcinomas That 

Transform to Small Cell Lung Cancer (SCLC) 
and Other Neuroendocrine Tumors

Durvalumab 2 EGFR-
mutated 

NCT04538378

Olaparib NSCLC A Platform Study of Novel Agents in 
Combination With Radiotherapy in NSCLC

Radiotherapy 1 NA NCT04550104

Talazoparib Solid tumor; 
NSCLC

The Rome Trial From Histology to Target: 
the Road to Personalize Target Therapy and 

Immunotherapy

Monotherapy 2 BRCA1/2, 
ATM, other 
HRD status

NCT04591431

AZD5305 Solid tumor; 
NSCLC; 
SCLC

Study of AZD5305 as Monotherapy and in 
Combination With Anti-cancer Agents in Patients 

With Advanced Solid Malignancies

AZD5305 monotherapy; 
AZD5305 + paclitaxel; 
AZD5305 + carboplatin 

with or without paclitaxel; 
AZD5305 + trastuzumab 
deruxtecan; AZD5305 + 

datopotamab deruxtecan; 
AZD5305 + camizestrant

1/2 NA NCT04644068

Niraparib MPM; 
NSCLC

UNITO-001- Study in HRR/PDL1 Positive MPM/
NSCLC

Dostarlimab 2 HRR/PD-L1 
positive

NCT04940637

Table 2 (continued)
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Table 2 (continued)

Drug Indication Title of the study Combination Phase Biomarker Identifier

Niraparib Solid tumor; 
LC

Niraparib in the Treatment of Patients With 
Advanced PALB2 Mutated Tumors

Monotherapy 2 PALB2 
mutated

NCT05169437

Methoxyamine 
(TRC-102)

nsqNSCLC Testing the Addition of an Anti-Cancer Drug, 
TRC102, to the Usual Chemotherapy Treatment 

(Pemetrexed, Cisplatin) During Radiation 
Therapy for Stage III Non-Squamous Non-Small 

Cell Lung Cancer

Durvalumab + 
chemoradiotherapy

2 NA NCT05198830

Ceralasertib 
(AZD6738)

NSCLC A Phase III Study of Ceralasertib Plus 
Durvalumab Versus Docetaxel in Patients With 
Non Small Cell Lung Cancer (NSCLC) Whose 

Disease Progressed On or After Prior Anti PD (L)1 
Therapy And Platinum Based Chemotherapy

Durvalumab 3 NA NCT05450692

Olaparib NSCLC Randomized Trial Comparing Standard of 
Care Versus Immune- Based Combination in 

Relapsed Stage III Non-small-cell Lung Cancer 
(NSCLC) Pretreated With Chemoradiotherapy 

and Durvalumab

Durvalumab + 
chemotherapy

2 NA NCT05568212

Parimparib NSCLC Pamiparib (BGB-290) Was Used in EGFR-TkIs 
Resistant Non-small Cell Lung Cancer

Chemotherapy 1 EGFR-
mutated 

NCT05573373

AZD5305 Solid tumor; 
NSCLC

Phase I/IIa Study for AZD5335 as Monotherapy 
and in Combination With Anti-cancer Agents in 

Participants With Solid Tumors

AZD5335 monotherapy. 
AZD5335 + AZD5305

1/2 NA NCT05797168

M1774 nsqNSCLC M1774 in Combination With Cemiplimab in 
Participants With Non-Squamous NSCLC 

(DDRiver NSCLC 322)

Cemiplimab 1/2 NA NCT05882734

Ceralasertib 
(AZD6738)

NSCLC A Study to Investigate Efficacy and Safety of 
Ceralasertib Plus Durvalumab in Participants 

Aged ≥ 18 Years With Advanced or Metastatic 
Non-small Cell Lung Cancer Whose Disease 

Progressed on or After Prior Anti-PD-(L)1 
Therapy and Platinum-based Chemotherapy

Durvalumab 2 NA NCT05941897

VIC-1911 NSCLC Phase I Clinical Study of VIC-1911 Combined With 
Osimertinib in the Treatment of Advanced Non-
small Cell Lung Cancer With EGRF- Mutation

Osimertinib 1 EGFR-
mutated

NCT05489731

VIC-1911 NSCLC A Phase 1a/1b Study of Aurora Kinase A 
Inhibitor VIC-1911 Monotherapy and in Combination 

With Sotorasib for the Treatment of KRAS G12C-
Mutant Non-Small Cell Lung Cancer

Sotorasib 1 KRAS 
G12C-
mutant

NCT05374538

LY3295668 NSCLC A Phase Ib/II Trial to Evaluate Safety, Tolerability 
and Efficacy of Aurora Kinase Inhibitor 

LY3295668 in Combination With Osimertinib 
for Patients With EGFR-Mutant Non-Small Cell 

Lung Cancer

Osimertinib 1 EGFR-
mutated

NCT05017025

DDR, DNA damage repair; NSCLC, non-small cell lung cancer; BRCA, breast cancer gene; sqNSCLC, squamous non-small cell lung 
cancer; NA, not applicable; nsqNSCLC, non-squamous non-small cell lung cancer; SCLC, small cell lung cancer; MPM, malignant pleural 
mesothelioma; ATM, ataxia telangiectasia mutated; HRD, homologous recombination deficiency; HRR, homologous recombinant repair; 
LC, lung cancer.



Translational Lung Cancer Research, Vol 13, No 2 February 2024 385

© Translational Lung Cancer Research. All rights reserved.   Transl Lung Cancer Res 2024;13(2):375-397 | https://dx.doi.org/10.21037/tlcr-23-742

TKI resistance. Alisertib (MLN8237) treatment restored 
the susceptibility of resistant cells to EGFR-TKIs and 
partially reversed the epithelial-mesenchymal transition 
(EMT) process (76). The phase II trial tested single agent 
alisertib in patients had undergone two or fewer previous 
cytotoxic regimens; it was noted that the objective response 
in ten of 48 participants with SCLC and one of 23 patients 
with NSCLC (77). In patients with recurrent or metastatic 
EGFR wild-type NSCLC, the combination of erlotinib 
and alisertib was tolerable and effective (with one patient 
was PR >10 cycles and 5 patients were SD) in a phase I/
II study (78). The combination of alisertib and osimertinib 
was an acceptable safety profile and established 10% (1/10) 
ORR in patients with advanced EGFR mutated LUAD who 
experienced progression on osimertinib monotherapy (79). In 
a phase 1b study of osimertinib plus alisertib or sapanisertib 
for osimertinib-resistant EGFR-mutant (EGFRm) NSCLC, 
osimertinib plus alisertib (n=20) showed median PFS was  
1.9 months, ORR (5%) and DCR (40%) (80). There are two 
ongoing clinical trials using AURKA inhibitors VIC-1911 
or LY3295668 in combination with osimertinib in EGFR 
mutant NSCLC (NCT05489731) (NCT05017025). 

AURKA amplification is reported in NSCLC, and 
AURKA signaling may mediate adaptive resistance to 
KRAS inhibition. A study to research VIC-1911 combine 
with sotorasib for treatment of KRAS mutant NSCLC is 
ongoing (NCT05374538).

Apurinic/apyrimidinic endonuclease 1 (APE1) inhibitor
Human APE1 is an essential BER protein that is known to 
be processing of potentially cytotoxic a basic DNA damage 
site. The overexpression of APE1 was associated with DNA 
repair capacity and poor survival in solid tumors (81). APE1 
could serve as a potent target of antitumor drugs and several 
APE1 inhibitors have been developed. There are three 
types of APE1 inhibitors, including APE1 nuclease activity 
inhibitor (such as, methoxyamine/TRC-102, lucanthone), 
APE1 redox activity inhibitor (E3330/APX3330) and 
inhibitors of the APE1/nucleophosmin (gossypol/AT-101).

APE1 inhibitors induced DNA damage, apoptosis, 
pyroptosis, and necroptosis in NSCLC cell line A549 and 
NCI-H460 and impeded cancer progression in NCI-H460 
mouse model (82). E3330 (APX3330) is highly selective 
inhibitor of apurinic/APE1/redox factor-1 (Ref-1). The 
anti-tumor effect of E3330 had been demonstrated in 
preclinical model in NSCLC (83). CRT0044876, a 
selective APE1 endonuclease inhibitor, inhibited the AP 
endonuclease, 3’-phosphodiesterase, and 3’-phosphatase 

activities of APE1. CRT0044876 showed no cytoxic effect 
in either NSCLC cell line A549 or NCI-H460 (82). 

Overexpression APE1 promoted chemotherapy and 
EGFR-TKI resistance in NSCLC (84). Pre-clinical 
models suggested that AT-101 might serve a promise drug 
candidate for overcoming EGFR-TKIs resistance in H1975 
cells harboring EGFRL858R/T790M (85). A phase II trial of 
erlotinib and AT-101 in advanced EGFR-mutated NSCLC 
patients found 1 PR, 1 minor response (MR) and 3 SD in 
the enrolled six patients (NCT00988169). 

DNA-dependent protein kinase catalytic subunit 
(DNA-PKcs) inhibitor
DNA-PK is a member PIKK family, which consists of a 
DNA-PKcs and a regulatory heterodimer Ku (Ku70/Ku80). 
DNA-PK plays a key role in repair of DSBs via NHEJ and 
it also involves in many other cellular processes. Reduced 
DNA-PK repair was associated with the risk of LC. 

AZD7648, a highly specific and potent DNA-PK 
inhibitor, had anti-tumor activity in A549 NSCLC cell lines 
and xenograft models derived from LCs (86). The best ORR 
of nedisertib (peposertib, M3814, MSC2490484A) was 
SD in a phase I trial including two NSCLC patients (87). 
XRD-0394 is a dual kinase inhibitor of both ATM gene 
and DNA-PK. CC-115, inhibition of mTOR kinase and 
DNA-PK, was tested in vitro across a panel of 123 cancer 
cell lines including 39 LC cell lines and it potently inhibits 
proliferation and induces apoptosis in many cancer cell 
lines (88). In phase I trial, CC-115 showed clinical activity 
in endometrial carcinoma (CR, n=1, >4 years), head and 
neck squamous cell carcinoma (HNSCC), Ewing sarcoma, 
glioblastoma multiforme, castration-resistant prostate 
cancer (CRPC), and chronic lymphocytic leukemia (CLL) 
(PR, n=2 and SD, n=4), but it was found to cause apoptosis 
in NSCLC (n=1) (89).

In addition, as PIKKs have similar sequence to 
phosphatidylinositol-3 kinases (PI3Ks), the development 
of these inhibitors can base on small molecule inhibitors of 
PI3K. LY3023414 (samotolisib), a dual PI3K/mammalian 
target of rapamycin (mTOR) inhibitor, displayed PR of a 
patient with endometrial cancer harboring PIK3R1 and 
Phosphatase and tensin homolog (PTEN) truncating 
mutations and 13 (28%) additional patients had a decrease 
in target lesions by up to 30%, but the all 3 patients of 
NSCLC were no response in the first-in human phase I 
trial (90). XL765 (voxtalisib, SAR245409) is a new chemical 
entity that inhibits the kinases PI3K and mTOR. No partial 
response reported with XL765 and erlotinib in NSCLC 
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patients treated with EGFR inhibitor previously in phase I 
trial (91).

WEE1 inhibitor
WEE1 inhibitor, is a selective inhibitor of the WEE1 
kinase, a key regulator of the G2/M and S phase cell-cycle 
checkpoints. 

AZD1775 (adavosertib) is a highly selective, small 
molecule inhibitor of protein kinase Wee1 which allows 
cells to with a deregulated G1 checkpoint to progress. 
AZD1775 single agent demonstrated efficacy and well 
tolerated in mouse xenograft model in TP53-mutated 
subgroup of KRAS-mutated NSCLC (92). There are 61 
clinical trials registered in CTG (https://clinicaltrials.gov) 
about AZD1775 from 2008. AZD1775 showed its antitumor 
activities especially in these cancers harbor DNA damage, 
such as mCRC with RAS and TP53 mutated (93). However, 
in a biomarker-driven phase 2 umbrella trial for patients 
with recurrent SCLC, no patient had partial response for 
ADZ1775 alone in 47 patients with different biomarkers in 
4 groups (94). The scientists have not found the effective 
strategy to launch this product whatever the predictive 
biomarkers for response or in combination with other anti-
cancer agents. 

Another four compounds ZN-c3 (NCT04158336), 
Debio0123 (NCT03968653), IMP7068 (NCT04768868) 
and SY-4835 (NCT05291182) are currently in phase I trial 
in solid tumors which including NSCLC (Table 2).

CHK1 and CHK2 inhibitor
The cell cycles regulatory kinase, CHK1 and CHK2, 
coordinate with DDR pathways and immediate targets 
of the kinases ATM/ATR. CHK1/2 inhibitors have 
development for a long time, numerous compounds step 
towards slowly because of the complexity of optimizing 
dose and schedule selection and major questions mark over 
the efficacy. The dual CHK1/CHK2 inhibitor XL-844 
(EXEL-9844) was terminated trials in 2008. PF0047736 was 
terminated to develop in 2012 in advanced cancers. SNS-
032 (BMS-387032), a potent inhibitor of cyclin-dependent 
kinases 2, 7 and 9, demonstrated limited clinical activity 
in solid tumors. Prexasertib (LY2606368) demonstrated 
activity in different cancers, including 2 (4.4%) patients 
with squamous cell cancers (SCCs) (95), 4 (20%) patients 
with SCCs (96), 3 (5.2%) patients with SCLC (97) and 
one (11.1%) BRCA wild type triple negative breast cancer 
(TNBC) (98), however, one NSCLC patient had no 
response (95).

Researchers consider how to combine CHK1 inhibitors 
with other compounds or to find proper biomarkers to 
get more encouraging data. In pre-clinical model, the low 
levels of POLA1, POLE, and POLE2 protein expression 
in NSCLC and CRC cells corrected with CHK1 inhibitor 
sensitivity (99). UCN-01 (7-hydroxystaurosporine), the 
first CHK1/CHK2 inhibitor, contributed the antitumor 
activity in vitro and in vivo using A549 human LUAD cell 
line (100) and enhance the effective of radiation in cells 
with diminished TP53 activity (101,102). CHK1 expression 
in LUADs corrected with poor tumor differentiation and 
worse patient level and could be a predictive marker for 
CHK1 inhibitor (MK-8776) sensitivity in vitro study (103). 
Two patients (6.7%) showed partial response (melanoma 
and cholangiocarcinoma) in MK8776 monotherapy or in 
combination with gemcitabine phase I trial, however, one 
LUAD only have 1.43 months PFS (104). 

Combinations with chemotherapy agents

In chemotherapy, cytotoxic drugs distort the chemical 
structure of DNA leading to inhibition of normal DNA 
replication. It makes strong rationale to combine DDR 
inhibitors with chemotherapy to enhance the DNA-
damaging effect in cancer cells.

PARP inhibitor with chemotherapy
The combination of DDR inhibitors (such as PARP 
inhibitor) in selected HR-deficient tumors cause synthetic 
lethality, lead to genomic instability and cell death (105). 
Mechanistic studies indicated that PARP inhibitor plus 
cisplatin could lead to sustained DSBs, prolonged G2/M cell 
cycle arrest and more pronounced apoptosis preferentially 
in NSCLC cells with low ERCC1 expression (106), or 
PTEN deficient (107). Pre-clinical studies demonstrated 
antitumor efficacy of PARP inhibitor adding in different 
chemotherapy agents in NSCLC (108). In combination of 
veliparib and carboplatin/paclitaxel (CP) confirmed safety 
and preliminary efficacy with 55% (6/11) ORR in a phase 
I Japanese NSCLC cohort (109). In the following phase 
II trial of untreated advanced NSCLC, the veliparib-CP 
group showed favorable trend in ORR, PFS and OS vs. CP 
alone [PFS: 5.8 vs. 4.2 months, hazard ratio (HR) =0.72, 
P=0.17; OS: 11.7 vs. 9.1 months, HR =0.80, P=0.27] in 
all evaluable patients; patients with squamous histology 
had better outcomes (PFS: HR =0.54, P=0.098; OS: HR 
=0.73, P=0.24) (110). However, no therapeutic benefit of 
adding veliparib to first line chemotherapy in phase III 
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trial, but risk of death was decreased by 34% in the LP521 
population (110), and history of recent smoking was most 
predictive factor for veliparib-CP (111). In another phase 
III trial, there was no significant improvement of OS with 
veliparib plus chemotherapy in patients with nsqNSCLC, 
but improved OS in the LP52+ subgroup (112).

ATR inhibitor with chemotherapy
ATM loss by immunohistochemistry with ab32420 
antibody was found in 41% (61/147) cases in LUAD 
cells and suggested to be a predictive biomarker for 
ATR inhibitor with cisplatin (113). A phase I study, with 
AZD6738- carboplatin, observed two PRs with low ATM or 
SLFN11 protein expression and 53% (18/34) SD patients; 
unconfirmed PR was found in a local advanced LUAD with 
four cycles of prior treatment (114). 

Four (8.3%) patients  (non-previously received 
gemcitabine) achieved PR with berzosertib and gemcitabine 
including a patient present with LUAD with no response of 
prior multiple chemotherapies (115). In the following phase 
Ib trial, berzosertib with gemcitabine in advanced and pre-
treated NSCLC, four patients reached PR (4/38, ORR: 
10.5%) and 18 patients had SD; in the exploratory cohort, 
ORR was 30% (3/10) in high LOH and 11% in low LOH, 
33% (2/6) in high TMB, 12.5% (2/16) in intermediated 
TMB and 0% (0/3) in low TMB (116). 

Testing the addition of BAY1895344 to chemotherapy 
for advance solid tumors is ongoing (NCT04491942), 
which is listed in Table 2.

APE1 inhibitor with chemotherapy
The phase I study published that 15 out of 25 patients with 
TRC-102 and pemetrexed evaluate SD or better, including 
LUSC (n=3) and nsqNSCLC (n=1) (117). Two clinical 
trials indicated that TRC-102 with temozolomide had 
anti-tumor activities in advanced solid tumor, with PR in a 
pancreatic neuroendocrine tumor (PNET) and prolonged 
SD in a NSCLC patient (5.5 months) (118), and PR (n=4, 1 
NSCLC, 2 OCs, 1 CRC) (119).

WEE1 inhibitor with chemotherapy
WEE1 inhibition with TP53 mutation can disrupt both 
G1/S and G2/M, resulting in synthetic lethality and 
enhancing chemotherapy cytotoxicity. A phase II study of 
AZD1775 and carboplatin/pemetrexed in 1st line metastatic 
nsqNSCLC presented 4 (29%) patients reached PR (one 
patient with AZD1775 alone for one year) and one patient 
had TP53 mutation. Another phase II study of AZD1775 

plus docetaxel in recurrent NSCLC showed 3 (9%) patients 
evaluated PR (120). 

Some clinical trials use WEE1 inhibitor, but its clinical 
development hampered higher grade 3 toxicities when 
added to standard treatments and no effective predictive 
biomarkers. There are ongoing trials conducting WEE1 
inhibitors with other agents, such as chemotherapy, 
radiat ion,  PARP/ATR inhibitor  (NCT02513563, 
NCT0333084, NCT02511795), anti-PD-1/PD-L1 
inhibitor, which are listed in Table 2.

CHK1/2 inhibitor with chemotherapy
Cells may remain viable as a result of upregulation of 
commentary mechanism with CHK1/2 inhibitor alone and 
make more susceptible to extrinsic DNA damage, which 
cause the interest of combination. 

LY2603618 (rabusertib), a small molecule selective 
inhibitor CHK1 inhibitor, may enhance the effects of 
antimetabolites. LY2603618 with pemetrexed- cisplatin 
demonstrated that median PFS was significantly longer 
(4.7 vs. 1.5 months, P=0.022) in phase II study in patient 
with advanced cancers (121). With treatment GDC-0575 
(ARRY-0575, RG774) and gemcitabine, four patients 
achieved confirmed partial responses with GDC-0575, 
including one NSCLC (593+ days on study), two sarcomas 
and TNBC with TP53 mutation (122). 

Combinations with radiotherapy and/or chemoradiotherapy 
(CRT)

Radiotherapy can cause targeted DNA damage, which leads 
to the combination of DDR inhibitors and/or chemotherapy 
had been considered to ongoing clinical research. Most 
advanced NSCLC patients may have brain metastasis and 
radiation therapy has been an available tool in that kind of 
patients, which causes the strategy about the combination of 
DDR inhibitors and whole brain radiation therapy (WBRT).

The result of phase I study was encouraging safety and 
preliminary efficacy of veliparib plus WBRT in NSCLC 
with brain metastases (123), regrettably, no statistically 
significant differences in OS, intracranial response rate, 
and time to progression between the treatment arms 
were observed in the phase II randomization trial (124). 
Inhibition of AZD6738 could improve radiotherapy in 
preclinical models of NSCLC (125). A parallel dose-
escalation study of AZD6738 combined with palliative 
radiotherapy in solid tumors is underway (NCT02223923). 
These data will provide the basis to leverage the potential 
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radio-sensitization properties of a DDR inhibitor in 
combination with radiation in a variety of therapeutic 
settings.

Two phase I studies evaluate PRAP inhibitors plus 
CRT in patients with stage III NSCLC; Veliparib-CRT 
demonstrated acceptable safety and antitumor activity with 
an PFS of 19.6 months (126). A dose-finding study followed 
by a phase II randomization trial of CRT with or without 
veliparib (SWOG 1206); PFS was not difference between 
the two arms, while the OS was improved at 1 year 89% 
and 54%, respectively (127). The combination strategy was 
proved well tolerated and encouraging response with 20% 
(3/15) CR, 80% (12/15) PR and 49% of 2-year PFS rate in 
stage III nsqNSCLC (128) in the following phase I trial. 

Combinations with other molecular targeted agents

DDR inhibitor-DDR inhibitor combination
Targeting enzymes in the same pathway also appears to have 
a synthetically lethal effect. Combination with different 
DDR inhibitors can induce synthetic lethality and also 
overcome acquired resistance to single agent. 

As these mutations (such as BRCA1, BRCA2, ATM) 
alter the HRR pathway, there is increased reliance on other 
DDR pathways. ATR inhibitors overcame the bypass of 
BRCA1/2 in fork protection and PARP inhibitor resistance 
of BRCA-deficient cancers cells (129). Studies disclosed that 
combination of PARP inhibitor and ATR inhibitor induced 
death for ATM-deficiency cells of LUAD (130). Tumor 
reduction was observed in breast, prostate, pancreatic and 
ampullary cancers in AZD6738-olaparib group in a phase I 
trial (131). The signal of activity was seen with ceralasertib 
plus olaparib in recurrent platinum-resistant OC with 
BRCA1 mutation (132). In the pre-clinical models, 
KRAS-mutated NSCLC caused the increased levels of 
DNA damage and replication stress, which provided that 
inhibition of DDR was a promising strategy for olaparib 
plus AZD1775 (133). AZD7648 potentiated the activity of 
olaparib in xenograft and PDX models in NSCLC (134). 

Some studies demonstrated replication fork arrest, 
ssDNA accumulation, replication collapse and synthetic 
lethal interaction between ATR inhibitor and other target 
inhibitors. The potential benefit of combination ATR 
inhibitor (VE-821) and CHK1 inhibitor (AZD7762) was seen 
in H460 lung tumor xenografts (135). PPP2R2A deficiency 
provided a biomarker to treat NSCLC with ATR and CHK1 
inhibitor in pre-clinical study (136). The study confirmed 
the dependency on p53 mutation and ATM function for 

sensitivity to ATR inhibition by treating p53-mutated 
NSCLC cells with ATR inhibitor (VE-821) and ATM 
inhibitor (KU55933) (137). The effect of WEE1 inhibitor 
and ATR inhibitor was observed in NSCLC cell line (138). 

Combination of other target agents
Some actionable oncoproteins can directly or indirectly 
regulate DDR and cell cycle checkpoint pathways, raising 
possibility of combination strategy with DDR inhibitors 
and other target agents.

PARP inhibitors have a strong synergistic interaction 
with type I protein arginine methyltransferase (PRMT) 
inhibition. Methylated p53 re-activation and induction 
of massive apoptosis (PRIMA-1Met) (APR-246) strongly 
synergized with olaparib in NSCLC cell lines (139) and 
Methylthioadenosine phosphorylase (MTAP)-negative 
NSCLC and certain cancer cells were resistant to PARP 
inhibitors (140). DNA methyltransferase inhibitors 
(DNMTi) created a BRCAness phenotype through 
downregulating expression of HRR and NHEJ genes, 
leaded to combinatorial PARP inhibitor and DNMTi 
therapy robustly sensitize NSCLC cells to ionizing 
radiation in vitro and in vivo (141). Bloom syndrome protein 
(BLM) helicase inhibitor (ML216) with PARP inhibitor 
improved the radiosensitivity of olaparib resistant NSCLC 
cell (142).

A phase 1b study, the Notch inhibitor Crenigacestat 
(LY3039478) in combination with LY3023414 in patients 
with advanced solid tumors, demonstrated poorly tolerated 
and response (0% ORR and 18.8% DCR) (143). In metastatic 
LUSC, LY3023414 vs. necitumumab vs. LY3023414 plus 
necitumumab exhibited significant benefit with event-
free survival (EFS; 14.2 and 32.4 vs. 38.9 days) (144).  
LY3214996 (ERK1/2 inhibitor) plus LY3023414 and 
additive abemaciclib (CDK4/6 inhibitor) resulted in 
synergistic inhibition of tumor growth in PDX models of 
RAS-mutant LC (145). 

However, these combination of doublet inhibitors are 
still in early exploratory status, the overlapping toxicity 
creates a whole new challenges of dose selection.

Combinations with immunotherapy

ICIs which target PD-1 and PD-L1 can enable the immune 
system to recognize and target cancer cells. Over recent 
decade, ICIs with single agent or combination of other 
therapy has dramatically expanded for the treatment of 
LC from neoadjuvant to last line. However, ICIs vary 
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in their activity across different cancer types. Several 
biomarkers are associated with increase ICI response are 
PD-L1 expression, TMB, MSI or MMR-deficient. It is 
also explored that alteration of DDR genes related to high 
TMB and response of ICIs improvement. Unlike targeting 
genes mutation in cancer cells, the immune environment 
is complex, which lead future research shift to immune 
response effectiveness of combination therapy rather 
than identification biomarkers. Cancer causing genomic 
instability induce changes in the tumor environment and 
stimulate the generation of neoantigens on cancer cells, 
increasing the tumor response to immunotherapy and 
suggesting an effective therapeutic strategy to combine 
DDR inhibitors and immunotherapy. 

Pre-clinical trial  demonstrated PARP inhibitor 
potentiated IFN-γ-induced PD-L1 expression in NSCLC 
cell lines, enhanced in ERCC1-deficient contexts, promoted 
cellular immune response (146). Veliparib combined with 
nivolumab and platinum doublet CT was tolerated and had 
promising antitumor activity (confirmed objective response 
rate was 40%, and best ORR was 64%) in patients with 
advanced NSCLC in phase I dose escalation study (147). 
Olaparib-durvalumab indicated an acceptance toxicity and 
response in breast cancers (148) and mCRPC in the two 
phase II trials (149). Olaparib plus PD-1/PD-L1 inhibitor 
demonstrated response in two NSCLC patients with 
germline BRCA2 S497* (150) or BRCA2 G25085 (151). In 
the phase 2 JASPER trial, Niraparib-pembrolizumab as first 
line therapy showed clinical activity; 56.3% (9/16) ORR and 
8.4 months PFS was found in cohort 1 [tumor proportion 
score (TPS) ≥50%]; 20% (4/20) ORR and 4.2 months 
PFS was discovered in cohort 2 (TPS 1–49%) in advanced 
NSCLC (152). 

As PARP inhibitor plus immunotherapy shows promising 
therapeutic strategy in NSCLC, ongoing investigations are 
underway to evaluate the efficacy and safety. A phase I/II 
trial test rucaparib-pembrolizumab as maintenance therapy 
in stage IV nsqNSCLC after treatment of carboplatin, 
pemetrexed, and pembrolizumab (NCT03559049). A 
phase III trial treat pembrolizumab with concurrent 
chemoradiation therapy followed by pembrolizumab with 
or without olaparib in stage III NSCLC (NCT04380636) 
and a phase II trial compare SoC vs. olaparib-durvalumab 
in relapsed stage III NSCLC pretreated with CRT and 
durvalumab (NCT05568212). The phase III ZEAL-1L 
study is to compare the efficacy and safety of niraparib-
pembrolizumab as maintenance therapy vs. placebo-
pembrolizumab in patients who had SD or response to 

pembrolizumab plus platinum-based first-line induction 
chemotherapy for advanced NSCLC without known 
driver mutation (NCT04475939). A phase II study take 
talazoparib-avelumab in stage IV or recurrent nsqNSCLC 
with pathogenic STK11 mutation (LUNG-MAP Sub-
Study) (NCT04173507). Please refer Table 2 for ongoing 
trial in LC.

Besides PARP inhibitors, the ATR inhibitors in 
combination with ICIs have been in clinical development. 
In a phase 2 trial, AZD6738-durvalumab had promising 
antitumor activity among patients with metastatic 
melanoma who had failed ICIs therapy (153). Beyond 
melanoma, AZD6738-durvalumab in advanced NSCLC 
of D5330C00004 trial also published encouraging date; 
1 CR and 3 PRs (2 confirmed and 1 unconfirmed) out of 
21 patients were found in advanced NSCLC (n=3) and 
HNSCC (n=1) irrespective of PD-L1 expression (131). In 
HUDSON umbrella trial, AZD6738-durvalumab provided 
effective activity compared with durvalumab alone in ATM 
mutation tumors (n=18) with median ORR at 13.3% and 
a median PFS of 7.43 months and 100% of patients were 
followed through after 6 months (154). 

Based on the previously studies result, more trials start 
to investigate the efficacy and safety of the combination 
of ATR inhibitors and immunotherapy (Table 2); a 
phase III study to evaluate AZD6738-durvalumab vs. 
docetaxel in advanced NSCLC progressed prior treatment 
(NCT05450692); AZD6738-durvalumab for advanced 
NSCLC patients with ICI resistance (NCT03833440); 
M1774 in combination with cemiplimab in nsqNSCLC 
(NCT05882734); testing the addition of berzosertib to 
carboplatin and gemcitabine and to pembrolizumab for 
advanced LUSC (NCT04216316).

It is also interesting to combine WEE1 inhibitor with 
immunotherapy. Antitumor activity was observed with a 
DCR for the overall cohort of 36% in a phase I study to 
investigate preliminary activity of AZD1775-durvalumab in 
patients with advanced solid tumors (155).

A phase II  tr ia l  of  TRC102 in combination of 
pemetrexed, cisplatin and radiation therapy followed 
by durvalumab in patients with stage III nsqNSCLC is 
underway (NCT05198830).

Conclusions

Genomic profiling helps identify promising DDR targets 
of NSCLC, such as PARP, ATR, CHK1, CHK2, WEE1, 
AURK, DNA-PK, APE1. Medicine targeting these proteins 
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are in various phase of preclinical or clinical development 
within different cancer types. The first approved DDR 
inhibitor, PARP inhibitors, have been used in certain 
patients with BRCA mutated. However, few DDR 
inhibitors run into phase 3 trial in NSCLC. Single agents of 
some DDR inhibitors show antitumor activity in NSCLC 
but limited. To improve the outcome, predictive biomarkers 
should be developed to optimize the response and an 
improve understanding of primary and acquired resistance 
mechanisms. The combination strategy of DDR inhibitors 
is usually chemotherapy and/or radiotherapy, which can 
enhance the effects. Combination of other target agents 
have demonstrated clinical potential and some of them 
step into clinical trials. Genomic instability of NSCLC 
influences innate and acquired immunity. Combination 
of DDR inhibitor and immunotherapy would be one of 
the most attractive future areas of research in NSCLC. 
While combine DDR inhibitor with different agents, their 
interactions should be considered. The appropriate dosing 
and scheduling of each agent to minimize toxicity adverse 
events and maximize benefits is critical factor for optimizing 
outcomes. In conclusion, we believe that comprehensive 
preclinical research into biology of DDR and clinical study 
progress in the DDR target agents, will lead great advances 
in the near future.
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