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Abstract: Non-nutritive sweeteners represent an ingredient class that directly affects human health,
via the development of inflammatory processes that promote chronic diseases related to microbiota
dysbiosis. Several in vitro tests were conducted in the static GIS1 simulator. The aim of the study was
to highlight the effect of sweeteners on the microbiota pattern of healthy individuals, associated with
any alteration in the metabolomic response, through the production of organic acids and ammonium.
The immediate effect of the in vitro treatment and the influence of the specific sweetener type on the
occurrence of dysbiosis were evaluated by determining the biomarkers of the microbiota response.
The presence of the steviol reduced the ammonium level (minimum of 410 mg/L), while the addition of
cyclamate and saccharin caused a decrease in the number of microorganisms, in addition to lowering
the total quantity of synthesized short-chain fatty acids (SCFAs). The bifidobacteria appeared to
decrease below 102 genomes/mL in all the analyzed samples at the end of the in vitro simulation
period. Barring the in vitro treatment of steviol, all the sweeteners tested exerted a negative influence
on the fermentative profile, resulting in a decline in the fermentative processes, a rise in the colonic
pH, and uniformity of the SCFA ratio.
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1. Introduction

Sweeteners are a versatile food ingredient because of their low caloric content. In recent years,
several population groups have begun to use these products, even if they have normal blood sugar
levels. Sweetness perception is crucial for an individual’s acceptance of food, and the physiological
process depends upon the sweetener (maximum 4 mM concentration) and receptor interactions [1].
Two of the most important steps post intake are represented by the absorption and interaction with
the physiological processes in the human body. Sweeteners have even been found in breast milk, and
they directly impact the child’s responses to sweet taste during the growth period. Over the long term,
this high acceptance of sweet taste determines the incidence of diabetes at very young age [2].

The effect of sweeteners on human health has been extensively explored because of the incidence
of obesity and diabetes [3]. The biological effect on the microbiota is significant because the impact
of regular consumption helps to explain the progression of degenerative pathologies or cancer [4].
From recent studies, it is evident that a direct relationship exists between sweetener consumption,
the establishment of dysbiosis, and the development of neurodegenerative diseases [5]. Setting up
pre-diabetes is favored by the interaction of the microbiota with different types of sweeteners, which are
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increasingly being used in food [6]. Understanding the initiation of dysbiosis and pre-diabetic prognosis
necessitates a metabolomic approach, as a modern preclinical study method [7]. The physiological
mechanism is a reduction in the time of insulin sensitivity, which once initiated has a linear progression
until the pathology is established and manifested simultaneously with an increase in body weight [8].

Colonic pH variation could be associated with a reduction in insulin sensitivity—an important
feature in people diagnosed with type 2 diabetes. The regular consumption of sweeteners causes
the increased incidence of this pathology even at an early age, with the establishment of dysbiosis.
A biomarker was considered to be the Bacteroides strain level as an indicator of the ability of the
microbiota to control insulin resistance. The level of sweetener consumption is an essential factor that
is capable of disrupting the functional plasticity of the microbiota, and reflects a clinical risk factor [9].

In vitro studies in simulation systems are a viable alternative to in vivo assays. Dynamic
simulation aims at involving the entire physiological system in the digestion of the samples, as well as
the absorption of the essential nutrients. The static GIS1—Phase 2 system was adapted for the in vitro
dynamic transit, SHIME (Simulator of the Human Intestinal Microbial Ecosystem) being an accepted
example in the scientific community [10]. Previous studies [11] have reported that the modulating
response of the microbiota in this case was similar to that in vivo. The results revealed the modulation
ability of both the microbial and the metabolomic patterns [11]. This study intended to establish the
effect of the sweeteners on the microbiota pattern of healthy individuals, associated with alterations
in the metabolomic response, through the production of organic acids and ammonium. Untreated
healthy microbiota were used as the control to compare the affected pattern that was altered by the
in vitro treatment of different sweeteners.

2. Materials and Methods

2.1. Chemicals

The reagents used were all of analytical grade (purity > 98%): DL-lactic acid and butyric acid
purchased from Fluka (Buchs, Switzerland), acetic acid from Riedel-de-Haën (Seelze, Germany),
L-(+)-tartaric acid, formic, citric acid, benzoic acid, succinic acid, malic acid, propionic acid,
DL-p-hydroxyphenyllactic acid (HO-PLA), sodium hydroxide, sodium chloride, glycerol, and
phenyllactic acid (PLA) bought from Sigma-Aldrich (Germany). Phosphoric acid 85% and oxalic acid
were supplied by Merck (Hamburg, Germany), cetyltrimethylammonium bromide (CTAB) from LOBA
Chemie (Fischamend, Austria), HPLC-grade water and 0.1 and 1 N sodium hydroxide solutions were
purchased from Agilent Technologies (USA). All solvents (Merck, Darmstadt, Germany) and solutions
were filtered through 0.2-µm membranes (Millipore, Bedford, MA, USA). Peptone water and MRS
broth media were purchased from Oxoid Ltd. (Hampshire, UK).

2.2. Obtaining the Sweetener Samples

Samples from eight of the most popular sweeteners marketed by different producers were locally
purchased (Table 1) [12]. Sample concentrations were about 40 mg active substance (more than 90%
purity). The sweetener doses were calculated to provide the sweetening equivalent of two tablespoons
of sugar (≈9 g). All the samples used were in commercial form and added during the in vitro tests in
the ascending phase of the human colon simulations.
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Table 1. Sample presentation and composition of the sweeteners.

Samples Composition Producer

Sodium cyclamate KClassic Sweetener
Sucralose Carrefour Quality BE

Sodium saccharin Biscol LTD, Israel
Steviol powder Kruger & Co., Germany

Steviol and brown sugar (1:1) Tate & Lyle Sugars, Tesco, UK
Steviol capsule Sly Nutricia SRL, Romania

White sugar Sugar Factory Diamant, Romania
Oligofructose from chicory Mărgăritar Sweet & Fit, AGRANA Zucker A.G. Vaslui, Romania

2.3. GIS1 In Vitro Model

GIS1—Phase 2, developed in the Pharmaceutical Biotechnology Lab in The Faculty of
Biotechnology, UASVM Bucharest, is an in vitro static system which simulates the transit through the
three segments of the human colon (www.gissystems.ro). The system uses a single simulation vessel,
a 500 mL Duran borosilicate glass bottle, at a constant operating temperature of 37 ◦C, with variable
pH controlled with 1 M sterile NaOH [10]: ascending colon, pH 6; transverse colon, pH 6.5; descending
colon, pH 7.0 [13]. Sterile CO2 was introduced via an auxiliary module adapted to the fermentation
system, and samples were drawn when the in vitro process culminated from the descending segment.
The inoculum was based on stool (feces) samples collected from healthy individuals (both sexes) using
peptone water over a 7-day stabilization period. Using a microbial load (fingerprint) the simulated
medium was inoculated with the equivalent of two tablespoons of sugar. Inoculation was done
concurrently by adding samples (sweeteners) that had been sterilized by filtration and dissolved in
0.9% NaCl.

The microbiome from healthy individuals was reconstituted from the samples (feces), according
to the ethical guidelines of UASVM Bucharest (ColHumB Registration number: 1418/23.11.2017;
www.colhumb.com). The volunteers (five individuals) were representative of both sexes and had not
received treatment with antibiotics or any other interfering drugs over the past 6 months, as these
agents could alter the microbiome fingerprint. All the samples were collected in 10% glycerol and
stored at −15 ◦C until use [14].

2.4. Gut Microbiota Pattern Quantification by qPCR

The total microbial DNA was isolated from 1 mL of the culture using the PureLink
Microbiome DNA purification kit (Invitrogen, USA). The concentration and purity of the DNA were
measured with NanoDrop 8000 spectrophotometers (ThermoFisher Scientific, USA). Quantification
of the number of genome copies of the principally significant microbial groups from among
the human gut microbiota (Enterobacteriaceae family, Bacteroides–Prevotella–Porphyromonas group,
Lactobacillus–Lactococcus–Pediococcus group, Firmicutes phylum, Bifidobacterium genus) was done
by qPCR using the Applied Biosystem 7900HT Real Time-PCR system. Employing a pair of
universal primers for the prokaryotes, the bacterial content in each sample was determined. Bacterial
quantification was done by developing standard curves using serial dilutions of a known genomic
DNA concentration corresponding to Escherichia (E.) coli ATCC 10536, Lactobacillus (L.) plantarum
ATCC 8014, Bifidobacterium (B.) breve ATCC 15700, Enterococcus (E.) faecalis ATCC 29,212, and B. fragilis
DSM2151. The mass of genomic DNA was converted in copy number of 16S rRNA gene according to
the Applied Biosystems guide. The Power SyberGreen PCR Master Mix 2X (Applied Biosystems, USA),
and 40 ng total DNA were introduced into a qPCR reaction with a 20 µL volume. The amplification
conditions were 95 ◦C for 10 min followed by 40 cycles with 95 ◦C for 15 s and 60 ◦C for 60 s. Table 2
shows the sequence of the primers and prevailing conditions [14].

www.gissystems.ro
www.colhumb.com
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Table 2. Primer sequences and conditions used in the qPCR reaction.

Groups Sequence: 5′-3′ Primer
Conc. Slope Efficiency

(%) Reference

Prokaryote F CGG YCC AGA CTC CTA CGG G 0.2 µM −3.22 104.16 [15]
R TTA CCG CGG CTG CTG GCA C

Lactobacillus–Leuconostoc–Pediococcus
Group

F AGC AGT AGG GAA TCT TCC A 0.5 µM −3.51 92.70 [16]
R CAC CGC TAC ACA TGG AG

Bifidobacterium sp. F TCG CGT CYG GTG TGA AAG 0.3 µM −3.49 93.38 [16]
R CCA CAT CCA GCR TCC AC

Enterobacteriaceae Family F CAT TGA CGT TAC CCG CAG
AAG AAG C 0.3 µM −3.39 97.17 [15]

R CTC TAC GAG ACT CAA GCT
TGC

Bacteroides–Prevotella–Porphyromonas
Group

F GGTGTCGGCTTAAGTGCCAT 0.3 µM −3.32 99.68 [16]
R CGGAYGTAAGGGCCGTGC

Firmicutes Phylum F GGAGYATGTGGTTTAATTCGAAGCA0.5 µM −3.28 101.52 [17]

2.5. Organic Acids and Ammonia Quantification by Capillary Electrophoresis (CE)

The Ammonium Quanto fix kit (Macherey-Nagel GmbH & Co. KG, Duren, Germany) was used
to determine the quantity of ammonia [14].

The samples obtained after the in vitro simulation of the large intestine transit were centrifuged
at 5000× g at 4 ◦C for 10 min. The supernatants were then collected and filtered through a 0.22-µm
pore size filter (Millipore, Bedford, MA, USA) [14].

The organic acids were then separated by the capillary electrophoresis method developed earlier
using an Agilent CE instrument with a DAD detector and CE standard bare fused-silica capillary
(Agilent Technologies, Santa Clara, CA, USA) of 50 µm internal diameter and 72 cm total length (63 cm
effective length) [18]. The CE technique employed here falls under the reversed polarity category,
the operating conditions being an applied voltage of −20 kV; UV detection was done at 200 nm (direct
detection); sample injection was accomplished in hydrodynamic mode, 35 mbar/12 s, maintaining
the capillary at 25 ◦C constant temperature [19]. The background electrolyte used contained 0.5 M
of H3PO4 and 0.5 mM of CTAB as the cationic surfactant (pH adjusted with NaOH to 6.24) and 15%
methanol as the organic modifier. Filtration was performed through 0.2-µm membranes (Millipore,
Bedford, MA, USA) and degassing was done before use. The order of elution of the organic acids was
as follows: formic, oxalic, succinic, malic, tartaric, acetic, citric, propionic, lactic, butyric, benzoic, PLA,
and HO-PLA acids, in 20 min analysis time. The capillary was flushed between runs with 0.1 M NaOH
for 2 min, H2O for 2 min, and the background electrolyte for 4 min [14].

2.6. Statistical Analysis

All the parameters investigated were evaluated in triplicate, and the results were expressed as
the mean ± standard deviation (SD) values of three observations. The mean and SD values were
calculated using the IBM SPSS Statistics 23 software package (IBM Corporation, Armonk, NY, USA).
The significance level for the calculations was set as follows: significant, p ≤ 0.05; very significant,
p ≤ 0.01; and highly significant, p≤ 0.001, using the normal distribution of the variables. The differences
were analyzed by ANOVA followed by a Tukey post hoc analysis. Analysis and correlation of the
experimental data were done with the IBM SPSS Statistics software package (IBM Corporation, Armonk,
NY, USA) [14].

3. Results

3.1. Alteration in the Metabolomic Pattern Post Sweetener In Vitro Treatment

The quantity of ammonia synthesized is the crucial factor in microbiota modulation. A significant
drop (p < 0.05) in the ammonia was noted after the in vitro treatment with steviol and oligofructose
from chicory-containing sweeteners (Figure 1). In all the other cases, a minimum 10% increase was
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recorded for all samples, particularly for sucralose and sodium saccharin, with their passage through
the descending colon (data not shown).

In vitro sweetener treatment, including those chemically synthesized, exerted a stimulating effect
on the patterns. The rise in the SCFAs post sweetener in vitro treatment has been linked to the
stimulation of the in vivo transit [20]. Cyclamate and sucralose caused the same metabolomic response,
altering the ratio of the butyric and propionic acids when compared to the control sample. A direct
relationship was identified between steviol in vitro treatment and the butyrate quantity determined. A
significant butyrate value (p < 0.001) was recorded after steviol powder was added (Table 3). For this
sample, the exception made was the propionic acid synthesis, with about 100 µg/mL less than that of the
steviol capsule. These differences can be explained by the presentation of the samples, their dissolution,
as well as the presence of other compounds. From the results it is clear that the in vitro treatment of a
particular type of sweetener controls the metabolomic response of the microbiota.
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Figure 1. Quantity of ammonium (µg/mL) obtained after the in vitro tests through GIS1 as a measure
of the impact of consuming sweeteners on the metabolic activity of the microbiota. Different letters
indicate significant statistical differences (a: p ≤ 0.05; b: p ≤ 0.01; c: p ≤ 0.001), n = 3.

The molar ratios of the chief SCFAs are shown in Figure 2 and Figure S1. The microbiological
response was the one that generated significant differences in the in vitro treatment of all the sweeteners.
The oligofructose from chicory was the exception, where it seemed like a balance was struck compared
to the control sample. Steviol led to the most altered values of the molar ratio, while steviol powder
led to variations of about three times. These results indicate a change in the metabolomic response
even with steviol [21]. There was also an almost 10-fold decrease in the propionate after in vitro steviol
treatment. The data revealed a rise in the acetate/butyrate quantities, depending on the type of sample
presentation (Table 3).
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Table 3. Organic acid levels (µg/mL) obtained after the in vitro tests through GIS1 as a measure of the
impact of the sweeteners consumed on the metabolic activity of the microbiota.

Samples Formic Acid Lactic Acid Benzoic Acid Phenyllactic Acid HO-Phenyllactic Acid

Control 34.21 ± 5.35 nd 1.71 ± 0.10 17.60 ± 0.36 44.58 ± 0.76

Sodium cyclamate 49.63 ± 3.70 c nd 1.71 ± 0.05 a 24.19 ± 0.18 b 48.81 ± 0.89 a

Sucralose 41.29 ± 3.40 b nd 1.60 ± 0.07 a 38.50 ± 1.99 c 56.48 ± 1.57 b

Sodium saccharin 32.13 ± 1.18 a nd 1.34 ± 0.1 c 28.86 ± 1.02 a 53.49 ± 1.36 b

Steviol powder 12.68 ± 0.98 a nd 7.87 ± 0.15 b 179.22 ± 4.46 c 72.96 ± 1.36 b

Steviol and brown sugar 46.85 ± 1.96 c 314.43 ± 5.89 b 12.06 ± 0.12c 120.35 ± 4.15 a 41.83 ± 1.07 c

Steviol capsule nd nd 2.74 ± 0.09 a 42.52 ± 0.52 b 118.15 ± 1.40 a

White sugar 313.51 ± 8.56 b 291.52 ± 5.60 a 23.66 ± 0.23 a 8.68 ± 1.29 a 141.00 ± 0.24 c

Oligofructose from
chicory 435.74 ± 3.93 c nd 3.90 ± 0.13 c 55.96 ± 0.75 c 42.38 ± 0.17 b

Different letters mean significant statistical differences (a: p ≤ 0.05; b: p ≤ 0.01; c: p ≤ 0.001), n = 3; nd: not determined.
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Figure 2. Molar ratio between the acetic, propionic, and butyric acids obtained after the in vitro tests
through GIS1 as a measure of the impact of the sweeteners consumed on the metabolic activity of
the microbiota. Different letters indicate significant statistical differences (a: p ≤ 0.05; b: p ≤ 0.01; c:
p ≤ 0.001), n = 3.

Another microbiological response to the in vitro treatment of sweeteners was the raised benzoic
acid, PLA concentrations, and the HO-PLA in the culture media containing steviol powder, steviol and
brown sugar, and white sugar.

Bifidobacteria and lactobacilli produced significant quantities of PLA and HO-PLA in vitro, using
phenylalanine and ά-ketoglutarate [22]. These compounds appear to play a crucial part as antimicrobial
and antioxidant compounds [23,24]. Apart from these metabolic compounds, benzoic acid released
by the Serratia marcescens has been found to play a role in inhibiting the formation of reactive oxygen
species in the neutrophils [22].
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The higher concentrations of these compounds in the samples post sweetener treatment may have
been caused by the multiplication of the bacterial populations that synthesize them or by the presence
in the environment of certain compounds that stimulate the synthesis of these metabolic compounds.
Other organic acids (e.g., oxalic, succinic, malic, tartaric, and citric acids) were not determined after
in vitro tests.

3.2. Alterations in the Microbiota Pattern Post Sweetener In Vitro Treatment

From the findings shown in Figure 3, significant differences were evident between the samples
containing different sweeteners. Considering the general bacterial cells, the highest values were obtained
for the sodium cyclamate, sucralose, sodium saccharin, and steviol powder samples (109 genomes/mL),
and the lowest value for the oligofructose from chicory sample (107 genomes/mL). For the steviol and
brown sugar, steviol capsule, and white sugar samples, however, the number of bacterial cells achieved
108 genomes/mL.
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In most samples, the enterobacteria revealed about 108 genomes/mL, barring the steviol capsule
and oligofructose from chicory samples, where they decreased, respectively, to 105 genomes/mL and to
106 genomes/mL. In addition, the Bacteroides–Prevotella–Porphyromonas groups revealed lower values in
these two samples, achieving the minimum detection threshold (101 genomes/mL).

Species included within phylum Firmicutes occurred in large numbers, particularly for sodium
saccharin, steviol powder, steviol and brown sugar, and steviol capsule, while their numbers decreased
by one unit in samples sodium cyclamate, sucralose, white sugar, and oligofructose from chicory. In the
case of the oligofructose from chicory sample, the large number of species within phylum Firmicutes
could be linked to the development of the Lactobacillus–Leuconostoc–Pediococcus species, where their
numbers were roughly equal, achieving 107 genomes/mL. Bifidobacterium sp. were found to be low in
number in all the samples analyzed, registering below 102 genomes/mL.

4. Discussion

The main goal of this study was accomplished by demonstrating the effects of different sweeteners
on the human microbiota pattern. One of the most significant findings was the dramatic drop in
the number of bifidobacteria after adding the steviol capsule, white sugar, and oligofructose from
chicory (Figure 3). The results showed similarity to the data drawn from colorectal cancer patients, and
revealed a direct link between the synthesis of SCFAs and modulation of the microbial pattern [25].
When the steviol samples were added in powder form alone or combined with brown sugar (steviol
powder and steviol and brown sugar), the number of bifidobacteria was higher than in the control or
in the other samples. These results suggest that steviol products could be used as a carbon source by
these strains. Thus, when steviol and brown sugar were consumed, the pH of the medium declined
(pH < 5). This behavior was characteristic of the descending colon segments, which contained a high
number of lactic bacteria. The pH drop was accompanied by the presence of different organic acids
(e.g., acetic and lactic acids) in higher amounts (Table 3) upon the administration of steviol powder
plus brown sugar (p ≤ 0.05) and white sugar. Sweeteners produced by chemical synthesis caused the
pH values to increase (>7.5) for saccharin and sucralose (p ≤ 0.05; Figure S2). Reports revealed an
increase in the number of Gram-negative bacteria—coliforms in particular—which negatively affected
the microbiota balance.

Sucralose and sodium saccharin caused a decrease in the number of genomes belonging to
Firmicutes, which had a direct correlation with the SCFA level. This behavior was reported in an
earlier study, which established the impact of various antibiotics on the SCFAs and precursors of
biomarkers [26]. The in vivo effect bears similarity to sucralose in vitro treatment, a compound that can
induce the development of inflammatory processes [27]. This finding has been linked to disturbances
in the normal microbial pattern, which caused dysbiosis and some alterations in a few physiological
functions. This behavior precedes the development of degenerative pathologies [28]. Changes in
the microbiota patterns trigger glucose intolerance—one of the stimuli causing type 2 diabetes [29].
Modification of the microbiota pattern corresponds to alterations in the glucose tolerance because the
Bacteroides species are significant in metabolism regulation [9]. The establishment of dysbiosis was
attributed to the rise in the number of the coliform strains that induced the pH to increase and high
resistance to long-term modulation of the microbiota [9,29].

By using an improved in vitro static model, the steviol-based sweeteners were shown to have a
similar effect to that resulting from prebiotic in vitro treatment. However, no negative physiological
changes were observed [30]. From these data (Figure 2 and Figure S1), it is obvious that the in vitro
treatment with the steviol-containing products mirrored that of fiber consumption (oligofructose from
chicory contains approximately 60% fiber). For the in vitro steviol capsule treatment, the propionic
acid/butyric acid ratio [31] was balanced, and similar was seen with oligofructose from chicory. For the
other samples, an increase in the butyrate concentration was identified as a biomarker to maintain
colon health. The resulting values (Figure S1) offer an explanation for a decline in health status after
the sweetener in vitro treatment and the occurrence of dysbiosis.



Genes 2019, 10, 535 9 of 12

Modification of the metabolomic pattern after in vitro sweetener treatment was the cause of the
microbiota modulation. Sweeteners are generally unaffected by the gastrointestinal environment
(neither in low pH nor in bile salts) and do not undergo biotransformation [32]. In addition, some
sweeteners (e.g., saccharin) are mostly absorbed in the stomach, and our system does not allow us
to highlight this process [32]. A reduced metabolic activity of the microbiota was noted. The results
of this study did not confirm an earlier in vivo study, which stated that in vitro sucralose treatment
induced an alteration in the number of Enterobacteriaceae [33]. The differences were understood to be a
result of the types of experiments conducted, as well as of the specificity of the tested microbiota.

The study showed that the microbial load was reduced, even with in vitro steviol treatment
(e.g., steviol capsule). This limits the plasticity of the microbial pattern to exogenous factors. In our
case, the behavior was due to the selective consumption (use as carbon source) of the sweetener by the
lactic bacteria strains [6]. Also, it was supported by acetic acid (Table 3) and lactic acid synthesis, for
steviol and brown sugar and white sugar [34].

Microbiota control demonstrated that in vitro sweetener treatment caused the fermentation
processes to escalate, due to the selective use of these compounds. This behavior was evident for
oligofructose from chicory, and the steviol action on the metabolomic profile was confirmed by an
earlier study on the effect of fiber on healthy donors [35]. According to earlier studies [36], steviol
was shown to be able to enhance the glucose uptake, revealing an effect similar to human insulin.
The partially contradictory in vitro data can also be explained by the limitations of using a static
simulator. Further, the final pattern revealed a specific signature, affected directly by the carbon
source and selective modulation of the microbiota. Steviol significantly raised the quantity of the
SCFAs (Table 1), and the phenomenon mirrored the in vivo behavior of obese individuals, where
the assimilation of the SCFAs increases the daily calorie intake [37]. The increased quantity of
the SCFAs was also related to supporting the physiological function of the colon by promoting an
anti-inflammatory response. In vitro steviol treatment data lend support, via the SCFAs content, to the
fact that it does not exert any negative effect on the body [38].

This study is relevant when considering large-scale sweetener consumption, by demonstrating
their impact on the colon microbiota. The metabolomic modulation by the steviol was demonstrated
by the complete metabolism compared to the rest of the samples [6,39]. Some differences were noted
between the samples containing steviol, which can be explained as one of the effects of product
presentation (powder, tablet, or combination with other compounds). Steviol capsule along with
oligofructose from chicory determined a significant decrease in the Gram-negative strains, and also
in bifidobacteria. The sodium cyclamate, sodium saccharin, steviol powder, and steviol with brown
sugar induced an increase in bifidobacteria. The possible presence of other compounds (e.g., carrier
ingredients; Table 1) may represent one of the limitations of this study. In our study, one example is
sodium bicarbonate, which is present in small quantities in steviol capsules. Though the presence of
this ingredient does not have a negative effect, and it is considered to prevent type 2 diabetes incidence,
in our research the quantities were too small to express an effect and to have an influence on microbiota
activities [40]. The results of the study refer to the effects of these sweeteners on the microbiota starting
from the action of the major active compound in the sweetener composition. Other minor compounds
(e.g., excipients, carrier ingredients, or the presence of other minor sweeteners) may have a synergistic
role, amplifying the effect of the principal active compound [41].

5. Conclusions

In conclusion, the study has proved that both the fermentative response and microbial diversity
were altered after in vitro sweetener treatment. Non-nutritional sweeteners were found to induce
toxicity [42], expressed by the instauration of dysbiosis. Any alteration in the microbial and metabolomic
patterns causes physiological dysfunctions which can trigger the incidence of chronic diseases [43].
On the other hand, understanding the effect of sweeteners on some groups of microorganisms from
colon microbiota gives us the possibility of modulating the pattern, by supplementing the diet with
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certain sweeteners. The in vitro steviol treatment induced a rise in the SCFA synthesis, not related to the
variations in the genome counts, which limited the physiological response. In the future, determining
the antioxidant response to steviol will have to be considered for its use as a nutraceutical and for
modulating the metabolomic pattern.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/10/7/535/s1.
Figure S1: SCFAs levels (µg/mL) obtained after the in vitro tests through GIS1, Figure S2: pH values obtained
during the in vitro tests (descending segment) through GIS1.
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