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Abstract
Automatic detection systems usually require large and representative training datasets in

order to obtain good detection and false positive rates. Training datasets are such that the

positive set has few samples and/or the negative set should represent anything except the

object of interest. In this respect, the negative set typically contains orders of magnitude

more images than the positive set. However, imbalanced training databases lead to biased

classifiers. In this paper, we focus our attention on a negative sample selection method to

properly balance the training data for cascade detectors. The method is based on the selec-

tion of the most informative false positive samples generated in one stage to feed the next

stage. The results show that the proposed cascade detector with sample selection obtains

on average better partial AUC and smaller standard deviation than the other compared cas-

cade detectors.

Introduction
Viola and Jones proposed an efficient cascade framework that rapidly discards negatives and
spends more time in positive candidates. The cascade framework is one of the most successful
practical products of vision research [1]. Some authors have proposed modifications to the
original cascade detector in order to improve the detection rate while maintaining or reducing
the false positive rate (see next Section). However, when the training dataset is imbalanced (the
number of negative samples far outnumbers the positive ones) classifier performance is
reduced [2]. In some detection problems such as face detection, medical lesion detection, or
pedestrian detection the negative set typically contains orders of magnitude more images than
the positive set. These training datasets are such that the positive set has too few samples and/
or the negative set should represent anything except the object of interest and this can give rise
to biased classifiers. Other authors have been demonstrated that negative sample selection
improves classification results [3].

Classifiers trained with imbalanced datasets can have a good error rate on the majority class
but not as good in the other. This is due to the classifiers training process which attempts to
obtain a good global error rate in most cases [4]. Therefore, a number of samples from the
majority class (the negative class) must be selected in order to obtain well-balanced training
datasets.
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In order to select samples, the most common strategy in practice is random selection. How-
ever, random selection may lead to a non-representative dataset [5]. Therefore, specific selec-
tion strategies have been proposed in the literature for discarding redundant information [6]
or improving classification results [7]. Moreover, to deal with imbalanced datasets, another
option is to obtain more samples of the minority class through oversampling [7].

In contrast to emerging classification algorithms such as SRC (Sparse Representation Classi-
fier) or CNN (Convolutional Neural Networks) [8, 9], cascade detectors are currently widely
used in real time detection and classification problems. However, cascade detector solutions
rely on the assumption of the independence between stages which is not held in practice [10].
Therefore, this paper focus on improving the cascade detector framework. A cascade detector
is proposed in which a selection is made of the false positives generated by the previous stage,
from the pool of all false positives generated. The subset of false positives is selected based on
their associated confidence scores obtained in the previous stage. With this method, each stage
uses the same number of negative samples than positive samples, thus keeping stage classifiers
balanced while maximizing stage independence. The methodology has been tested with three
different datasets for detecting faces, pedestrians and breast lesions on mammograms [4, 11,
12], and has been compared with Viola and Jones [1], Chen and Chen [13], and Soft [14] cas-
cade detectors in order to check that this sample selection is better than using random samples
to train new stages.

The rest of the paper is organized as follows. Section Background makes an overview of pre-
vious work focused on improving the original cascade framework. Section Materials and Meth-
ods describes the proposed cascade framework and the databases used. Finally, the results of
the comparative and the main conclusions are described in the last two sections respectively.

Background
Cascade detectors were introduced to perform object detection efficiently. The cascade struc-
ture is a set of classifiers with increasing complexities (simple and fast classifiers are on the first
stages). If a stage’s decision is positive the sample proceeds to the next stage. Otherwise it is dis-
carded without further processing (Fig 1). Thus, not all the features and stages are computed
and executed for all samples. In general, cascade detectors operate with high accuracyand are
currently used for several types of detection problems [10].

The first cascade detector was proposed by Viola and Jones. It consists of a cascade of
boosted classifiers based on Haar-like features which act as a single classifier [1]. In the original
framework, AdaBoost (Adaptive Boosting) was selected as the boosting algorithm for building
the stages [15–17]. By establishing the stage’s target minimum Dr close to 1 and the maximum
FPr to 0.5, cascades rapidly eliminate easy images in the first few stages and maintain positive
and difficult negative images until the last stages. Therefore, a cascade can be seen as a process
that detects positive samples by continuously filtering false positives. During the detection step
of the Viola-Jones cascade detector, a sliding-window is shifted over the input image and the
Haar-like feature set of the actual detector stage is calculated. Thus, only the needed features
are calculated each time.

Many works have extended the original cascade classifier to improve its effectiveness and
efficiency. For example, Lienhart and Mydt in [18] proposed a cascade of Gentle AdaBoost
stages where the modified training of the stage classifiers results in an increased training speed.
However, training the new stages without considering any information from the previous ones
could produce overfitting. Sochman and Matas [19] proposed inserting the previous stage clas-
sifier at the start of the new stage before training it. Thus, previous information is taken into
account when building a new stage. Deng and Su [20] designed a cascade that improves the
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true positive rate while keeping the false alarm rate. If an image or a region is discarded at a
given stage, in this case it is not labelled directly as negative but it is labelled as probable posi-
tive. These samples are given a positive-sample likelihood according to the number of stages
that they have passed and the final classifier confidence assigned to them. Finally, a vote is per-
formed to obtain the final labels of these probable positives. Chen and Chen proposed a
method that can reduce the number of features needed at the cost of increasing the complexity
of the calculations [13]. This cascade detector combines AdaBoost and SVM stages. The
authors proposed adding some intermediate classifiers (called meta-stage classifiers) that use
the inter-stage information to learn new classification boundaries and improve the results. Sim-
ilarly to the Chen-Chen cascade detector, Cheng and Jhan combined AdaBoost and SVM
Stages [21] by modifying the original Viola-Jones cascade and replacing AdaBoost stages by
SVM stages when the number of features used is greater than a given threshold.

Other authors try to find a way to globally optimize cascades. Dundar and Bi [22] proposed
a joint cascade training method in which the parameters for a stage classifier were updated
depending on the performance of the other classifiers. In this case, a negative candidate sample
is classified as negative by the cascade when it is discarded by almost one of the stages. On the
contrary, to be labelled as positive, the sample is required to be accepted by all of them. Oliveira
et al. [23] formulate the problem of finding the cascade thresholds as an optimization problem.
To solve it, they used PSO (Particle Swarm Optimization) [24, 25]. In other works, such as the
ones from Raykar and Krishnapuram [26], Pujara et al. [27], or Saberian [28] the cascade is
globally optimized considering the trade-off between accuracy and cost and a function relating
these two parameters is optimized.

Finally, other proposed methods are based on single-stage cascades that reduce computa-
tional time. However, this improvement does not always entail good detection and false posi-
tive rates [29]. Grossmann [30] proposed building a cascade classifier from a single classifier
created by Boosting. The idea was to compute a subset of weak classifiers from a classifier with
many features and test the samples with it. If the sample is positive another subset is chosen

Fig 1. Viola-Jones cascade framework.

doi:10.1371/journal.pone.0133059.g001
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and tested. Following the same idea, in [14], Bourdev and Brandt proposed a one-stage cascade
detector called Soft cascade. The idea in this case is to train a long AdaBoost stage using T weak
learners.

Materials and Methods
Since we focus our attention on creating a balanced classifier, the selection of some of the nega-
tive samples (the same as positive samples) to train additional stages is proposed.

Proposed method
The selection of some samples from the negative set is not a trivial task [31]. While positive
training images can be preserved over the new stages, previous stage generated true negatives
should be discarded and false positives need to be selected so as to improve accuracy.

If a cascade is composed of several independent stages, the final detection rate, D, and the
false positive rate, F, are given by the product of stage rates as follows [1]:

D ¼
YN
i¼0

Di ð1Þ

F ¼
YN
i¼0

Fi ð2Þ

where N is the number of stages in the cascade.
Since a cascade composed of stages that are independent from each other achieves better

results [1, 10], the assumption in this work is that a stage must be trained using the FPs that
maximize the independence from the previous stage.

Let us now consider the following situation. A cascade has been trained up to a given stage,
and our aim is to select some of the false positives at that point to train the next stage. Let C be
the cascade, H the stage to be added and X the set of false positive samples selected for training
H. C and H are conditionally independent given X, written as C? H j X, if and only if:

PðC \ HjXÞ ¼ PðCjXÞPðHjXÞ ð3Þ

Let us now consider the following two conditions:

a) C and X are independent events. Therefore,

PðC \ XÞ ¼ PðCjXÞPðXÞ ¼ PðCÞPðXÞ ð4Þ
and

PðCjXÞ ¼ PðCÞ ð5Þ

b) H and X are dependent events. Thus, the conditional probability of H given X is:

PðHjXÞ ¼ 1; ð6Þ
their joint probability is defined as:

PðH \ XÞ ¼ PðHjXÞPðXÞ ¼ PðXÞ ð7Þ
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and the intersection of these two events is:

H \ X ¼ X ð8Þ

Since the joint probability of C andH given X can be defined based on the joint probability
of C,H, and X and the probability of X as

P ðC \ HjXÞ ¼ P ðC \ H \ XÞ
P ðXÞ ð9Þ

considering Eq (8), Eq (9) can be rewritten, in this case, as follows:

P ðC \ HjXÞ ¼ P ðC \ XÞ
P ðXÞ ð10Þ

At this point, considering Eq (4), P (C \ H|X) is equivalent to:

P ðC \ HjXÞ ¼ P ðCÞPðXÞ
P ðXÞ ¼ P ðCÞ ð11Þ

Finally, replacing Eqs (5) and (6) in Eq (11):

P ðC \ HjXÞ ¼ P ðCÞ ¼ P ðCjXÞ � 1 ¼ P ðCjXÞ P ðHjXÞ ð12Þ

This demonstrates that conditions a) and b) above make Eq (3) an equality. In other words,
the set of samples X that enforces conditions a) and b) make the new stage H independent.

With regards to condition a), the output of the classifier is the posterior probability P (C|X).
When C and X are independent P (C \ X) = P (C)P (X) and, therefore P (C|X) = P (C). This
means that the output of the classifier must not depend on the input samples. This occurs when
the samples are on the classifier boundary, where the output of the classifier corresponds to ran-
dom guessing. This means that condition a) can be imposed by means of the selection of the clos-
est samples to the boundary of classifier C. On the other hand, condition b) is imposed by the
training process itself due to the fact that the classifier to train is fed with the selected training
samples.

Stages are trained using AdaBoost with decision stumps as weak learners. Fig 2 and Algo-
rithm 1 in Table 1 show the proposed cascade with sample selection. After each cascade stage,
some samples are selected from a pool of misclassified negative samples to create the stage
training negative dataset. The selection is performed using the above criteria.

Image datasets
To train and test the cascade detectors three different image datasets have been considered: the
CBCL facial dataset [11], the INRIA dataset of pedestrians [12] and a mammography lesions
dataset [4] (Fig 3).

The CBCL dataset is a public collection of images which includes a total of 31,022 images of
which 2,901 contain faces and 28,121 contain different backgrounds. All images are in grey
scale and have a resolution of 19 × 19 pixels.

The INRIA dataset is a public image set that was collected as part of the research work
described in [12]. The dataset contains 3,542 positive and 12,180 negative images for training
and testing pedestrian detectors. Images are normalized and have a resolution of 64 × 128 pixels.

The mammography dataset contains lesions from a database of mammograms provided by
local Hospitals. Lesions have been marked and extracted from the original images by
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Table 1. Proposed cascade training algorithm.

Require P = positive dataset

Pool = negative dataset

N = random subset of negative dataset with the same size than P

f = maximum stage false positive rate

d = minimum stage detection rate

F = maximum global false positive rate

Ensure H (x) = final cascade classifier

F0 = 0

D0 = 0

i = 0

while Fi > F do

i = i+1

ni = 0

Fi = Fi−1
while Fi > f*Fi−1 do

ni = ni+1

AdaBoost(P, N, ni)

[Fi, Di] evaluate()

while Di < d*Di−1 do

decrementClassifierThreshold()

end while

end while

newN = {}

if Fi > F then

for all Image I from Pool do

(eval, confidence) evaluate(I)

if eval = Negative then

Pool.delete(I)

end if

end for

select the size(P) samples from Pool with the smallest confidence values

end if

end while

doi:10.1371/journal.pone.0133059.t001

Fig 2. Proposed cascade framework training process.

doi:10.1371/journal.pone.0133059.g002
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Fig 3. Image samples from used datasets. CBCL dataset similar images (a-d), INRIA dataset similar images (e-h), and images frommammography
dataset (i-l). Images on the first two columns contain objects while the rest are negative samples.

doi:10.1371/journal.pone.0133059.g003
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radiologists. The dataset has 1,339 images which contain lesions and 4,300 images cropped
from the background. All images have been scaled to have a resolution of 500 × 500 pixels.

Feature sets
Although recent work based on compact bag-of-patterns (CBoPs) descriptors [32], hyperspec-
tral hypergraph of SIFT features [33], or the sparse auto-encoder (SAE) feature learning
method [34, 35] have shown good results recently, in this work features are kept simple in
order to better compare detector structures. For all datasets, two feature sets were obtained:
Haar-like [1] and statistical [4, 36] features.

The set of Haar-like features is traditionally used in Viola-Jones cascade detectors. Haar-like
features are commonly used in object detection and are similar to Haar wavelets [37]. Viola
and Jones proposed these features instead of original pixel values due to the complexity of
pixel-based detectors [1]. Haar-like features consider adjacent rectangular regions and start by
summing up pixel intensities in each region. Then, they calculate the difference between these
sums and finally, these differences are used by the detector. The main advantage of Haar-like
features over other features is their speed.

A simple rectangular Haar-like feature can be defined as the difference of the sum of the
pixel values inside two adjacent rectangles. These rectangles can be in any position and scale
within the original image. Basic Haar-like features are based on two adjacent rectangles. Viola
and Jones also defined 3-rectangle and 4-rectangle features. Thus, each feature represents a
specific characteristic of a particular area of the image, such as the existence (or not) of edges
or texture changes.

Fig 4 depicts the basic set of Haar-like features used by Viola and Jones [1]. This set consists
of three types of features based on 2, 3 and 4 rectangles. In the case of the 2-rectangle features,
the obtained value represents the difference between the sum of the pixels within two rectangu-
lar regions. These regions have the same size and shape and may be horizontally or vertically
adjacent. Features based on three rectangles calculate the sum within the two outer rectangles

Fig 4. Base Haar-like rectangle features.

doi:10.1371/journal.pone.0133059.g004
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and this value is subtracted from the sum in the central rectangle. Like 2-rectangle features,
these rectangles may be horizontally or vertically adjacent. Finally, the 4-rectangle features cal-
culate the difference between diagonal pairs of rectangles.

The statistical feature sets have been drawn from the histograms and the co-occurrence matri-
ces by means of the 1st-order statistics (mean, mode, variance, 1st quartile, 2nd quartile, 3rd quar-
tile, interquartile range, value range, entropy, asymmetry, and kurtosis) and 2nd-order texture
statistics (Haralick coefficients) [38]. These features are listed in detail in [36]. The angles and dis-
tances used to calculate the co-occurrence matrices are α = {0o, 45o, 90o, 135o} and d = {1, 3, 5, 10,
15} respectively. These features are shown with their definitions in Tables 2 and 3.

Results and Discussion
In this section, the cascades proposed by Viola and Jones [1], Chen and Chen [13], the Soft cas-
cade [14] and the proposed cascade with sample selection (Algorithm 1 in Table 1) are com-
pared. All of these algorithms have been modified and implemented to have the same boosting
algorithm, AdaBoost [15], and to use Decision Stumps as weak learners [39]. Other ensemble
classification methods can be used as stage classifiers [40]. In addition, two sets of features
(Haar-like and statistical) were obtained for the three databases (CBCL, INRIA, and Mammog-
raphy) and used to train all the detectors. In the experiments, the performance of the different
cascade detectors was assessed by means of the (10fcv) method for training and testing. The

Table 2. First-order statistics.

Feature Definition

1. Mean PN�1
i¼0 ihðiÞ

2. Mode ijh(i) = max(h)

3. Variance PN�1
n¼0 ði � mÞ2hðiÞ

4. 1st quartile N
4
; even N

Nþ1
4
;odd n

5. 2nd quartile 2N
4
; even N

2Nþ1
4

;odd n

6. 3rd quartile 3N
4
; even N

3Nþ1
4

;odd N

7. Interquartile Range #6—#4

8. Minimum ijh(i) > 0 and ∄j < ijh(j) > 0

9. Maximum ijh(i) > 0 and ∄j > ijh(j) > 0

10. Value Range Max(h(i)) − Min(h(i))

11. Entropy PN�1
i¼0 hðiÞlogðhðiÞÞ

12. Asymmetry 1
s3

PN�1
n¼0 ði � mÞ3hðiÞ

13. Kurtosis 1
s4

PN�1
n¼0 ði � mÞ4hðiÞ

Where:

h is the normalized image histogram

N is the number of gray levels

doi:10.1371/journal.pone.0133059.t002
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Table 3. Second-order statistics.

Feature Definition

1. Energy PN�1
i¼0

PN�1
j¼0 pði; jÞ2

2. Correlation PN�1
i¼0

PN�1
j¼0
ðijÞpði;jÞ�mxmy

sxsy

3. Contrast PN�1
n¼0

n2
PN�1
i¼0

PN�1
j¼0

pði; jÞ; ji − jj = n

4. Variance PN�1
i¼0

PN�1
j¼0
ði � mÞ2pði; jÞ

5. Sum Average P2ðN�1Þ
i¼0 ipxþyðiÞ

6. Sum Entropy P2ðN�1Þ
i¼0 pxþyðiÞlogðpxþyði; jÞÞ

7. Sum Variance � P2ðN�1Þ
i¼0
ði � 6Þ2pxþyðiÞ

8. Entropy �PN�1
i¼0

PN�1
j¼0

pði; jÞlogðpði; jÞÞ

9. Difference Variance PN�1
i¼0

i2px�yðiÞ

10. Difference Entropy �PN�1
i¼0

px�yðiÞlogðpx�yði; jÞÞ

11. Correlation Inf. 1 HXY�HXY1
maxðHX;HYÞ

12. Correlation Inf. 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� expð�2ðHXY2� HXYÞp

13. Homogeneity 1 PN�1
i¼0

PN�1
j¼0

pði;jÞ
1þði�jÞ2

14. Homogeneity 2 PN�1
i¼0

PN�1
j¼0

pði;jÞ
1þji�jj

15. Cluster Shade PN�1
i¼0

PN�1
j¼0
ði þ j � mx � myÞ3pði; jÞ

16. Cluster Prominence PN�1
i¼0

PN�1
j¼0
ði þ j � mx � myÞ4pði; jÞ

17. Autocorrelation PN�1
i¼0

PN�1
j¼0 ðijÞpði; jÞ

18. Dissimilarity PN�1
i¼0

PN�1
j¼0 j i � j j pði; jÞ

19. Maximum Probability max(p(i, j)); i, j = [0. . .N − 1]

Where:

p is the image co-occurrence matrix

N is the number of gray levels

mx ¼
PN�1

i¼0
PN�1

j¼0 ipði; jÞ; pxðiÞ ¼
PN�1

j¼0 pði; jÞ
my ¼

PN�1
i¼0

PN�1
j¼0 jpði; jÞ; pyðjÞ ¼

PN�1
i¼0 pði; jÞ

sx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN�1

i¼0 pxðiÞði � mxÞ2
q

; sy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN�1
j¼0

pyðiÞði � myÞ2
s

pxþyðkÞ ¼
PN�1
i¼0

PN�1
j¼0

pði; jÞ, i+j = k, k = 0. . .2(N − 1)

px�yðkÞ ¼
PN�1
i¼0

PN�1
j¼0

pði; jÞ, ji − jj = k, k = 0. . .N − 1

HXY ¼ �PN�1
i¼0

PN�1
j¼0 pði; jÞlogðpði; jÞÞ

HXY1 ¼ �PN�1
i¼0

PN�1
j¼0 pði; jÞlogðpxðiÞpyðjÞÞ

HXY2 ¼ �PN�1
i¼0

PN�1
j¼0 pxðiÞpyðjÞlogðpxðiÞpyðjÞÞ

HX and HY are the entropies of px and py

doi:10.1371/journal.pone.0133059.t003
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kfcv training/testing process was carried out fixing the same training parameters for all cascade
detectors. The minimum stage Dr was set to 1 and the maximum stage FPr was set to 0.5. The
global FPr was adjusted to values 0.02, 0.05, 0.1, and 0.2. Therefore, comparisons are to be
made only over the cascade structures and they do not include any variation on the boosting
technique, the weak learner, or the features used.

On the other hand, since the proposed method selects a number of misclassified negative
samples (see Section Proposed method), the other cascades were modified to randomly select
the same number of samples. This was done in order to ensure that all methods access the
same amount of samples. The same random selection was performed in the first stage of the
proposed cascade framework due to the lack of previous stage confidence information.

In order to better examine the results and select the best detector independently of the class
distribution over the population, Receiver Operating Characteristic curves (ROCs) were
obtained [41]. Once ROC curves are obtained for each detector and global FPr target value, the
partial area under the curve (pAUC) is calculated [42–44]. This has been proposed in the litera-
ture as an alternative measure to the full AUC [43]. The partial AUC summarizes test accuracy
over a relevant region of the ROC curve. To see the importance of this, consider the two ROC
curves of Fig 5. If the two curves are compared, it is possible to notice that curve A represents a
better performance than curve B on the first part, that is, when FPr is low. Thus, the higher
pAUC value on the first part of the ROC curve, the better Dr over the selected FPr interval. In
this work, the FPr interval selected to compute the pAUC ranges between 0 and 0.5 since 0.5 is
the random guessing error of a two-class problem. Table 4 shows the average pAUCs obtained
for each detector, database and feature set. A graphical representation of the results is shown in
Fig 6.

Since pAUC differences can be small in some cases, the standard deviation, σ, has also been
computed for each case in order to compare the results obtained. From the results in Table 4, it
is possible to conclude that the proposed cascade detector with sample selection is better than
the other methods considered. It obtains better pAUC than the rest of the detectors with ran-
dom sample selection for CBCL+Haar-like, INRIA+Haar-like, INRIA+Statistical and Mam-
mography+Statistical. For the CBCL+Statistical combination, the detector which obtained
higher pAUC was the Viola-Jones detector with random sample selection. For Mammography
+Haar-like the best results have been obtained with the Soft cascade. In these two specific
cases, a lower σ has been achieved by the proposed cascade. The smallest values of σ are
obtained by the Chen-Chen detector but it also has the lowest pAUC values. These values
range between 0 and 0.0032. The following detector with the smallest σ values is the proposed
one with values ranging between 0.0044 and 0.0113. Values of σ between 0.0051 and 0.0123 are
obtained by the Viola-Jones detector. Finally, the Soft cascade obtains the highest σ values
ranging between 0.0125 and 0.0648.

Conclusions
In this work a cascade detector with sample selection is proposed for improving cascade detec-
tors. The method is based on adding new stages with a selection of the accumulated misclassi-
fied negative samples generated from running the detector until the previous stage, keeping the
same number of positive and negative samples.

The proposed sample selection was compared with other cascade detectors using random
sample selection in six different scenarios combining three different datasets with two different
feature sets. The effectiveness of the methods was assessed through the average partial AUC
from the ROC curves obtained with 10fcv. The results show that the proposed cascade detector
with sample selection obtains better pAUC and smaller σ than the rest of the detectors in all
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Fig 5. Two ROCs, A and B, with the same AUC but different pAUC.

doi:10.1371/journal.pone.0133059.g005
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cases except for CBCL+Haar-like and Mammography+Statistical database and feature set com-
bination. However, in these two cases the obtained values from σ are smaller for the proposed
method. Moreover, the Soft cascade method shows large variations between the results
obtained in most of the cases, which is not appropriate while training detectors.

Since the proposed approach does not rely on a specific type of cascade classifiers, it can be
generalised to other cascade types. In future work, the sample selection and other training
parameters for training cascades will be analysed jointly. We plan to employ our method for
medical lesion detection problems which require examining a large number of negative
regions.
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Table 4. pAUC results.

CBCL INRIA MAMMOGRAPHY

Haar-like Statistical Haar-like Statistical Haar-like Statistical

(a) Chen-Chen cascade detector

pAUC 0.3833 0.3666 0.3521 0.3727 0.2816 0.3384

σ 0.000 0.0032 0.0020 0.0023 0.0032 0.0027

(b) Viola-Jones cascade detector

pAUC 0.4842 0.4814 0.4359 0.4860 0.3458 0.3972

σ 0.0051 0.0061 0.0116 0.0093 0.0109 0.0123

(c) Soft cascade detector

pAUC 0.4364 0.4264 0.3940 0.4458 0.3679 0.3950

σ 0.0591 0.0468 0.0648 0.0406 0.0125 0.0386

(d) Proposed cascade detector with FP selection

pAUC 0.4845 0.4788 0.4391 0.4865 0.3398 0.4047

σ 0.0044 0.0054 0.0089 0.0063 0.0102 0.0113

Results obtained from applying the different cascade detectors over the different dataset and feature set

combinations. The table shows the average pAUC values with their corresponding standard deviation σ.

The best pAUC for each pair of database and feature set is highlighted in bold.

doi:10.1371/journal.pone.0133059.t004
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Fig 6. Average pAUC results of the different cascade detectors using the six dataset and feature set combinations. The lines on top of the bars
represent the standard deviation.

doi:10.1371/journal.pone.0133059.g006

Sample Selection for Training Cascade Detectors

PLOS ONE | DOI:10.1371/journal.pone.0133059 July 21, 2015 14 / 16



References
1. Viola PA, Jones MJ. Rapid Object Detection using a Boosted Cascade of Simple Features. In: CVPR

(1: ); 2001. p. 511–518.

2. Ganganwar V. An overview of classification algorithms for imbalanced datasets. International Journal
of Emerging Technology and Advanced Engineering. 2012; 2:2250–2459.

3. Wei L, Liao M, Gao Y, Ji R, He Z, Zou Q. Improved and Promising Identification of Human MicroRNAs
by Incorporating a High-quality Negative Set. IEEE/ACM Transactions on Computational Biology and
Bioinformatics. 2014; 11:192–201. doi: 10.1109/TCBB.2013.146

4. Vállez N, Bueno G, Deniz O, Dorado J, Seoane JA, Pazos A, et al. Breast density classification to
reduce false positives in CADe systems. Computer methods and programs in biomedicine. 2014; 113
(2):569–584. doi: 10.1016/j.cmpb.2013.10.004

5. Korting TS, Fonseca LMG, Castejon EF, Namikawa LM. Improvements in Sample Selection Methods
for Image Classification. Remote Sensing. 2014; 6:7580–7591. doi: 10.3390/rs6087580

6. Zhang L, Gao Y, Xia Y, Lu K, Shen J, Ji R. Representative Discovery of Structure Cues for Weakly-
Supervised Image Segmentation. Multimedia, IEEE Transactions on. 2014;p. 470–479. doi: 10.1109/
TMM.2013.2293424

7. Zou Q, Wang Z, Guan X, Liu B, Wu Y, Lin Z. An Approach for Identifying Cytokines Based on a Novel
Ensemble Classifier. BioMed Research International. 2013;p. 11 pages.

8. Bin Gan JZ Chun-Hou Zheng, Wang HQ. Sparse Representation for Tumor Classification Based on
Feature Extraction Using Latent Low-Rank Representation. BioMed Research International. 2014;p. 7
pages.

9. Zhang Y, Zhao D, Sun J, Zou G, Li W. Adaptive Convolutional Neural Network and Its Application in
Face Recognition. Neural Processing Letters. 2015;p. 1–11.

10. Saberian M, Vasconcelos N. Boosting Algorithms for Detector Cascade Learning. Journal of Machine
Learning Research. 2014; 15:2569–2605.

11. MIT Center For Biological and Computation Learning—CBCL Face Database;. Available from: http://
www.ai.mit.edu/projects/cbcl.

12. Dalal N, Triggs B. Histograms of Oriented Gradients for Human Detection. In: International Conference
on Computer Vision & Pattern Recognition. vol. 2; 2005. p. 886–893.

13. Chen YT, Chen CS. A cascade of feed-forward classifiers for fast pedestrian detection. In: Proceedings
of the 8th Asian conference on Computer vision—Volume Part I. ACCV’07; 2007. p. 905–914.

14. Bourdev L, Brandt J. Robust object detection via soft cascade. In: Computer Vision and Pattern Recog-
nition, 2005. CVPR 2005. IEEE Computer Society Conference on. vol. 2; 2005. p. 236–243.

15. Freund Y, Schapire RE. A Short Introduction to Boosting. In: Proceedings of the Sixteenth International
Joint Conference on Artificial Intelligence. Morgan Kaufmann; 1999. p. 1401–1406.

16. Schapire RE, Singer Y. Boosting and Rocchio applied to text filtering. In: Proceedings of the 21st
Annual International Conference on Research and Development in Information Retrieval. vol. 14;
1998. p. 771–780.

17. Serrano I, Deniz O, Bueno G, Kim TK. Fast fight detection. PLoS one. 2015; 10(4).

18. Lienhart R, Maydt J. An extended set of Haar-like features for rapid object detection. In: International
Conference on Image Processing. vol. 1; 2002. p. 900–903. doi: 10.1109/ICIP.2002.1038171

19. Sochman J, Matas J. Inter-Stage Feature Propagation in Cascade Building with AdaBoost. In: ICPR (1:
); 2004. p. 236–239.

20. Deng Y, Su G. Face detection based on fuzzy cascade classifier with scale-invariant features. Interna-
tional Journal of Information Technology. 2006;p. 108–116.

21. ChengWC, Jhan DM. A cascade classifier using Adaboost algorithm and support vector machine for
pedestrian detection. In: 2011 IEEE International Conference on Systems, Man, and Cybernetics;
2011. p. 1430–1435.

22. Dundar MM, Bi J. Joint optimization of cascaded classifiers for computer aided detection. In: Proceed-
ings of IEEE Conference on Computer Vision and Pattern Recognition; 2007. p. 1–8.

23. Oliveira LS, Britto ASJ, Sabourin R. Improving Cascading Classifiers with Particle SwarmOptimization.
International Conference on Document Analysis and Recognition. 2005; 0:570–574.

24. Eberhart RC, Kennedy J. A new optimizer using particle swarm theory. In: Proceedings of the sixth
international symposium on micro machine and human science. vol. 1; 1995. p. 39–43. doi: 10.1109/
MHS.1995.494215

Sample Selection for Training Cascade Detectors

PLOS ONE | DOI:10.1371/journal.pone.0133059 July 21, 2015 15 / 16

http://dx.doi.org/10.1109/TCBB.2013.146
http://dx.doi.org/10.1016/j.cmpb.2013.10.004
http://dx.doi.org/10.3390/rs6087580
http://dx.doi.org/10.1109/TMM.2013.2293424
http://dx.doi.org/10.1109/TMM.2013.2293424
http://www.ai.mit.edu/projects/cbcl
http://www.ai.mit.edu/projects/cbcl
http://dx.doi.org/10.1109/ICIP.2002.1038171
http://dx.doi.org/10.1109/MHS.1995.494215
http://dx.doi.org/10.1109/MHS.1995.494215


25. Espinosa-Aranda, Jose Luis and Garcia-Rodenas, Ricardo and Angulo, Eusebio. A framework for
derivative free algorithm hybridization. In: Adaptive and Natural Computing Algorithms. Springer Berlin
Heidelberg; 2013. p. 80–89.

26. Raykar VC, Krishnapuram B. Designing efficient cascaded classifiers: Tradeoff between accuracy and
cost. In: Proceedings of the 16th ACM International Conference on Multimodal Interaction; 2010.
p. 853–860.

27. Pujara J, Daumé H, Getoor L. Using classifier cascades for scalable e-mail classification. In: Proceed-
ings of the 8th Annual Collaboration, Electronic messaging, Anti-Abuse and Spam Conference; 2011.
p. 55–63.

28. Saberian MJ, Vasconcelos N. Boosting Algorithms for Detector Cascade Learning. Journal of Machine
Learning Research. 2014; 15:2569–260.

29. Zhang C, Zhang Z. Boosting-Based Face Detection and Adaptation. Morgan and Claypool; 2010.

30. Grossmann E. Automatic Design of Cascaded Classifiers. In: SSPR/SPR; 2004. p. 983–991.

31. Carpenter SE, Small GW. Selection of optimum training sets for use in pattern recognition analysis of
chemical data. Analytica Chimica Acta. 1991; 249(2):305–321. doi: 10.1016/S0003-2670(00)83002-0

32. Ji R, Duan LY, Chen J, Huang T, GaoW. Mining Compact Bag-of-Patterns for Low Bit Rate Mobile
Visual Search. Image Processing, IEEE Transactions on. 2014; 23(7):3099–3113. doi: 10.1109/TIP.
2014.2324291

33. Ji R, Gao Y, Hong R, Liu Q, Tao D, Li X. Spectral-Spatial Constraint Hyperspectral Image Classification.
Geoscience and Remote Sensing, IEEE Transactions on. 2014; 52(3):1811–1824. doi: 10.1109/
TGRS.2013.2255297

34. Su SZ, Liu ZH, Xu SP, Li SZ, Ji R. Sparse auto-encoder based feature learning for human body detec-
tion in depth image. Signal Processing. 2015; 112:43–52. Signal Processing and Learning Methods for
3D Semantic Analysis. doi: 10.1016/j.sigpro.2014.11.003

35. Li SZ, Yu B, WuW, Su SZ, Ji RR. Feature learning based on SAEPCA network for human gesture rec-
ognition in RGBD images. Neurocomputing. 2015; 151, Part 2:565–573. doi: 10.1016/j.neucom.2014.
06.086

36. Bueno G, Vállez N, Deniz O, Esteve P, Rienda MA, Arias M, et al. Automatic breast parenchymal den-
sity classification integrated into a CADe system. In: Int. J. Computer Assisted Radiology and Surgery;
2011. p. 309–318.

37. Papageorgiou CP, Oren M, Poggio T. A General Framework for Object Detection. In: Proceedings of
the Sixth International Conference on Computer Vision. ICCV’98. Washington, DC, USA: IEEE Com-
puter Society; 1998. p. 555–562.

38. Haralick R, Sternberg S, Zhuang X. Image Analysis Using Mathematical Morphology. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence. 1987 July; 9(4):532–550. doi: 10.1109/TPAMI.
1987.4767941

39. Decision Stump. In: Sammut C, Webb G, editors. Encyclopedia of Machine Learning. Springer US;
2010. p. 262–263.

40. Lin C, ChenW, Qiu C, Wu Y, Krishnan S, Zou Q. LibD3C: Ensemble classifiers with a clustering and
dynamic selection strategy. Neurocomputing. 2014; 123:424–435. doi: 10.1016/j.neucom.2013.08.004

41. Fawcett T. An introduction to ROC analysis. Pattern Recognition Letters. 2006; 27(8):861–874. doi: 10.
1016/j.patrec.2005.10.010

42. Dodd LE, Pepe MS. Partial AUC Estimation and Regression. Biometrics. 2003; 59(3):614–623. doi: 10.
1111/1541-0420.00071

43. Walter SD. The partial area under the summary ROC curve. Statistics in Medicine. 2005; 24(13):2025–
2040. doi: 10.1002/sim.2103

44. Ma H, Bandos AI, Rockette HE, Gur D. On use of partial area under the ROC curve for evaluation of
diagnostic performance. Statistics in Medicine. 2013; 32(20):3449–3458. doi: 10.1002/sim.5777

Sample Selection for Training Cascade Detectors

PLOS ONE | DOI:10.1371/journal.pone.0133059 July 21, 2015 16 / 16

http://dx.doi.org/10.1016/S0003-2670(00)83002-0
http://dx.doi.org/10.1109/TIP.2014.2324291
http://dx.doi.org/10.1109/TIP.2014.2324291
http://dx.doi.org/10.1109/TGRS.2013.2255297
http://dx.doi.org/10.1109/TGRS.2013.2255297
http://dx.doi.org/10.1016/j.sigpro.2014.11.003
http://dx.doi.org/10.1016/j.neucom.2014.06.086
http://dx.doi.org/10.1016/j.neucom.2014.06.086
http://dx.doi.org/10.1109/TPAMI.1987.4767941
http://dx.doi.org/10.1109/TPAMI.1987.4767941
http://dx.doi.org/10.1016/j.neucom.2013.08.004
http://dx.doi.org/10.1016/j.patrec.2005.10.010
http://dx.doi.org/10.1016/j.patrec.2005.10.010
http://dx.doi.org/10.1111/1541-0420.00071
http://dx.doi.org/10.1111/1541-0420.00071
http://dx.doi.org/10.1002/sim.2103
http://dx.doi.org/10.1002/sim.5777

