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Abstract

The origin and deep history of retroviruses remain mysterious and contentious, largely because the diversity of retro-
viruses is incompletely understood. Here, we report the discovery of lokiretroviruses, a novel major lineage of retro-
viruses, within the genomes of a wide range of vertebrates (at least 137 species), including lampreys, ray-finned fishes,
lobe-finned fishes, amphibians, and reptiles. Lokiretroviruses share a similar genome architecture with known retro-
viruses, but display some unique features. Interestingly, lokiretrovirus Env proteins share detectable similarity with fusion
glycoproteins of viruses within the Mononegavirales order, blurring the boundary between retroviruses and negative
sense single-stranded RNA viruses. Phylogenetic analyses based on reverse transcriptase demonstrate that lokiretrovi-
ruses are sister to all the retroviruses sampled to date, providing a crucial nexus for studying the deep history of
retroviruses. Comparing congruence between host and virus phylogenies suggests lokiretroviruses mainly underwent
cross-species transmission. Moreover, we find that retroviruses replaced their ribonuclease H and integrase domains
multiple times during their evolutionary course, revealing the importance of domain shuffling in the evolution of
retroviruses. Overall, our findings greatly expand our views of the diversity of retroviruses, and provide novel insights
into the origin and complex evolutionary history of retroviruses.
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Introduction
Retroviruses infect a wide range of vertebrates (Gifford and
Tristem 2003; Hayward et al. 2015; Xu et al. 2018), and cause
various diseases in human populations, severely threatening
global public health. The replication of retroviruses requires
reverse transcription of viral RNA into double-stranded DNA
(dsDNA) and integration of viral dsDNA into host genomes
(Stoye 2012; Johnson 2019). Retroviruses occasionally infect
the host germ line, and can become vertically inherited as
endogenous retroviruses (ERVs) (Stoye 2012; Johnson 2019).
ERVs accumulated in the host genomes partially document
retroviral infections over time, and thus provide “molecular
fossils” for studying the deep history and macroevolution of
retroviruses as well as the evolution of ancient host–retrovi-
rus interactions (Stoye 2012; Johnson 2019).

The diversity of retroviruses has been extensively studied,
and nearly 70 exogenous retroviruses and thousands of ERVs
have been identified (Herniou et al. 1998; Hayward et al. 2015;
Xu et al. 2018; Walker et al. 2019). Currently, exogenous retro-
viruses are classified into two subfamilies, Orthoretrovirinae and
Spumaretrovirinae (Walker et al. 2019). Orthoretrovirinae
includes six genera (Alpharetrovirus, Betaretrovirus,
Gammaretrovirus, Deltaretrovirus, Epsilonretrovirus, and
Lentivirus), whereas Spumaretrovirinae (also known as foamy
virus) includes five genera (Bovispumavirus, Equispumavirus,

Felispumavirus, Prosimiispumavirus, and Simiispumavirus)
(Walker et al. 2019). Traditionally, ERVs have been grouped
into classes I, II, and III based on their close relatedness to
Gammaretrovirus, Betaretrovirus, and Spumaretrovirus
(Gifford and Tristem 2003; Gifford et al. 2018). However, the
classification systems between exogenous and endogenous
retroviruses are incompatible, and some ERVs cannot be read-
ily classified (Gifford et al. 2018; Xu et al. 2018).

Retroviruses share similarity with Metaviridae (the Ty3/
Gypsy retrotransposon), Pseudoviridae (the Ty1/Copia retro-
transposon), Belpaoviridae (the Bel/Pao retrotransposon),
and Caulimoviridae in terms of domain architecture and se-
quence homology (Xiong and Eickbush 1990; Krupovic et al.
2018). These five virus families are thought to originate from a
common viral ancestor, and have been unified into a single
virus order, Ortervirales (Krupovic et al. 2018). Phylogenetic
analyses based on reverse transcriptase (RT) suggest retrovi-
ruses are closely related to metaviruses (Doolittle et al. 1989;
Xiong and Eickbush 1990; Eickbush and Jamburuthugoda
2008; Krupovic et al. 2018). Retroviruses encode a dual ribo-
nuclease H (RH) domain: retroviruses acquired a new RH
domain, and the preexisting RH domain degenerated to be-
come the tether domain (Malik and Eickbush 2001;
Smyshlyaev et al. 2013; Ustyantsev et al. 2015). Sporadic phy-
logenetic analyses of RH suggest that retroviral RH is not
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monophyletic, and different retroviruses might have acquired
RH from different sources (Malik and Eickbush 2001;
Smyshlyaev et al. 2013; Ustyantsev et al. 2015; Gong and
Han 2018). However, much remains obscure about the origin
and deep history of retroviruses (Hayward 2017).

In this study, we systematically screened the presence of
ERVs within the deuterostome genomes and report the dis-
covery of a novel major lineage of retroviruses, referred to as
lokiretroviruses, in the genomes of a wide range of verte-
brates. Lokiretroviruses exhibit a genome architecture similar
to known retroviruses, but display a number of unique fea-
tures. Evolutionary analyses of lokiretroviruses and retrovi-
ruses sampled previously provide novel insights into the
diversity and the complex evolutionary history of retroviruses.

Results

The Discovery of Lokiretroviruses
Initially, we employed a similarity search and phylogenetic
analysis combined approach to search for the genetic ele-
ments that are closely related to retroviruses within the deu-
terostome genomes. Interestingly, we identified a lineage of
retrotransposons that form a sister group to all the known
retroviruses within the genomes of species from five verte-
brate classes, including Petromyzontida, Actinopterygii (at
least 120 species within 36 orders), Sarcopterygii,

Amphibian, and Reptile (fig. 1A and supplementary fig. S1,
Supplementary Material online). This retrotransposon lineage
is referred to as lokiretroviruses, following the name of Loki,
the cunning trickster god in Norse mythology. To further
characterize lokiretroviruses, we reconstructed lokiretrovirus
consensus sequences for 24 representative vertebrate species
(supplementary data set S1; fig. S1, Supplementary Material
online).

The consensus sequences comprise at least three predicted
genes (gag, pol, and env) flanked by two long terminal repeats
(LTRs) (fig. 1B). For the putative Gag protein, we found a large
part of it shares significant structural similarity with murine
leukemia virus (MuLV) capsid (CA) (confidence ¼ 97.83%)
and Ty3 (belonging to Metaviridae) CA (confidence ¼
95.23%) (fig. 1C). The lokiretrovirus pol gene encodes all the
retroviral enzymes, including protease (PR), RT, RH, and inte-
grase (IN). Like retroviruses, the lokiretrovirus genomes also
encode a degraded RH domain known as the tether domain
between RT and RH domains (fig. 1B). The lokiretrovirus Env
proteins possess signal peptide, fusion peptide, coiled-coil (CC)
motif, transmembrane (TM) domain, and a RXKR proteolytic
cleavage site (fig. 1D). Unexpectedly, the lokiretrovirus Env
proteins share detectable sequence similarity with the fusion-
glycoproteins (pfam No.: PF00523) of Paramyxoviridae
and Pneumovirinae within the Mononegavirales order
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FIG. 1. Distribution and genome structure of lokiretrovirus. (A) Distribution of endogenous lokiretrovirus. Orange circles indicate the presence of
endogenous lokiretroviruses. The empty orange circle indicates highly degraded endogenous lokiretroviruses in Testudines. The first column of
numbers represents the number of genomes used to screen lokiretroviruses. The second column of numbers represents the number of genomes
where lokiretroviruses were identified. (B) Consensus genome structure of lokiretrovirus. The lokiretrovirus genome encodes at least three ORFs
(gag, pol, and env) flanked by two LTRs. Some lokiretrovirus genomes encode an additional smc gene. (C) Comparison of capsid (CA) secondary
structure among Loki-Str (the lokiretrovirus from Salmo trutta), MuLV (PDB accession No.: 6HWW.A), and Ty3 (PDB accession No.: 6R24.D). The
helices and arrows represent a-helices and b-strands, respectively. “T” and “S” indicate hydrogen bonded turn and bend, respectively. (D) Model of
lokiretrovirus Env protein. Sp, fp, cc, and tm represent signal peptide, fusion peptide, coiled-coil motif, and transmembrane domain, respectively.
RXKR is the cleavage site. The alignment between Loki-Str Env and the consensus sequence of fusion glycoprotein F0 (pfam No.: PF00523) was
shown.
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(e-value¼ 2.2� 10�7; fig. 1D). Unlike retroviruses, some lokir-
etrovirus genomes encode a protein homologous to structural
maintenance of chromosomes (SMC) proteins that bind DNA
and function in many aspects of chromosome dynamics
(Harvey et al. 2002) (supplementary fig. S2, Supplementary
Material online). The smc gene appears to be acquired during
the evolution of lokiretroviruses (supplementary fig. S2,
Supplementary Material online). Taken together, our results
demonstrate that lokiretroviruses share similar genome archi-
tecture with retroviruses, and display several unique features.

Lokiretroviruses Are Sister to Known Retroviruses
To explore the relationship between lokiretroviruses, retrovi-
ruses, and other orterviruses, we performed phylogenetic
analyses based on RT proteins, and found lokiretroviruses
are sister group to all the known retroviruses (supplementary
figs. S3, S4A, and data set S2, Supplementary Material online).
Furthermore, we performed phylogenetic analyses of lokire-
troviruses, representative retroviruses, and metaviruses based
on RT proteins using two different alignment methods. Our
phylogenetic analyses show that retroviruses and lokiretrovi-
ruses form two independent clades with robust supports
(lokiretrovirus monophyly: ultrafast bootstrap approximation
[UFBoot]¼ 100% for both alignments; retrovirus monophyly:
UFBoot ¼ 97% for both alignments) (fig. 2A, supplementary
data sets S3 and S4, Supplementary Material online).
Lokiretroviruses form a sister group to known retroviruses
with robust supports (UFBoot¼ 100% for both alignments),
but do not fall within the diversity of sampled retroviruses

(fig. 2A, supplementary data sets S3 and S4; fig. S3 and data set
S2, Supplementary Material online). Therefore, our phyloge-
netic analyses demonstrate that lokiretroviruses are sister to
retroviruses sampled to date, and represents a novel major
lineage of retroviruses.

Frequent Interspecies Jump by Lokiretroviruses
We observed that the lokiretrovirus phylogeny is generally
incongruent with the host phylogeny (especially for ray-
finned fishes), indicating that lokiretroviruses might have un-
dergone frequent host switching (fig. 2B). For instance, differ-
ent from vertebrates, the lokiretrovirus from Anguilla rostrata
(a ray-finned fish) rather than lamprey lokiretroviruses branch
earliest within the lokiretrovirus tree. Then, we quantitatively
compared the phylogeny of lokiretroviruses with that of their
vertebrate hosts using an event-based approach. We assem-
bled two data sets: one includes all of the 24 consensus
sequences of Petromyzontida (2), Actinopterygii (17),
Sarcopterygii (1), and Amphibian (4), and the other includes
17 lokiretrovirus consensus sequences from Actinopterygii.
We found no statistically significant congruence between vi-
rus and host phylogenies for both data sets with exception of
one set of event costs (table 1). Taken together, these results
suggest that lokiretroviruses evolved mainly through frequent
cross-species transmission.

Complex Evolution of Retrovirus RH Domain
Retrovirus genomes encode a dual RH domain (Malik and
Eickbush 2001; Ustyantsev et al. 2015). They acquired a new
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RH domain during their evolution, and the preexisting RH
domain degenerated into a short domain known as “tether”
(Malik and Eickbush 2001; Ustyantsev et al. 2015).
Interestingly, we found lokiretrovirus genomes also encode
a dual RH domain (fig. 1B). The tether domain of lokiretrovi-
rus shares detectable structure and sequence similarity with
MuLV tether domain (confidence¼ 100%; sequence identity
¼ 24%) and HIV-1 tether domain (confidence ¼ 99%; se-
quence identity ¼ 15%) (fig. 3A). Moreover, the putative
tether domain of lokiretrovirus also share significant similarity
with the RH domain of Saccharomyces cerevisiae Ty3 (meta-
virus) (confidence ¼ 100%; sequence identity ¼ 32%)
(fig. 3A). It follows that lokiretroviruses and retroviruses are
indeed closely related, and the degeneration of the preexisting
RH domain that is closely related to metavirus RH occurred
before the most recent common ancestor of lokiretroviruses
and retroviruses.

To explore how retrovirus RH originated and evolved, we
performed phylogenetic analyses of the RH domain. We
found that retroviruses do not form a monophyletic group,
but cluster into at least three groups with strong supports
(fig. 3B, supplementary data sets S5 and S6, Supplementary
Material online), which largely agrees with previous studies
(for example, Ustyantsev et al. 2015). Lokiretroviruses and
foamy viruses form group I with strong supports (UFBoot
¼ 96% for the alignment generated by Mafft [align-Ma]).
Lentiviruses form group II (UFBoot ¼ 100% for align-Ma;
UFBoot ¼ 99% for alignment generated by PROMALS3D
[align-3D]) and cluster with non-LTR retrotransposons with
lower supports (UFBoot¼ 71% for align-Ma; UFBoot¼ 68%
for align-3D). The other retroviruses form group III (UFBoot¼
93% for align-Ma; UFBoot ¼ 91% for align-3D), and cluster
with RH from eukaryotes and bacteria with medium support
(UFBoot¼ 75% for align-Ma). Therefore, these results suggest
that the RH domains of retroviruses replaced their RH do-
main multiple times during their evolutionary course.

Complex Evolution of Retrovirus IN Domain
To explore how the IN domains of retroviruses evolved, we
performed phylogenetic analyses and found that the IN do-
main of retrovirus and lokiretrovirus are not monophyletic.
Lokiretrovirus IN is more closely related to CGIN1 genes with
strong supports (UFBoot ¼ 97% for both alignments) (fig. 4,
supplementary data sets S7 and S8, Supplementary Material

online). Retroviruses excluding lokiretroviruses cluster into at
least four groups: group I includes gamma-retroviruses and
epsilon-retroviruses (UFBoot ¼ 100% for both alignments),
group II includes tetrapod foamy viruses and coelacanth en-
dogenous foamy virus (UFBoot¼ 100% for both alignments),
group III includes fish endogenous foamy viruses (UFBoot ¼
92% for align-Ma), and group IV includes the other retrovi-
ruses (UFBoot ¼ 84% for align-Ma; UFBoot ¼ 75% for align-
3D). Group IV appears to be a sister group to metavirus IN,
which is consistent with the analyses of RT domains (fig. 4,
supplementary data sets S7 and S8, Supplementary Material
online). Therefore, our study indicates that retrovirus IN
domains do not share a single origin either, and they replaced
their IN domain multiple times during their evolutionary
course.

Discussion
In this study, we screened the presence of ERVs within the
genome of deuterostomes, and report the discovery of a
novel major retrovirus lineage, lokiretroviruses. A single virus
from this lineage has been reported in the sea lamprey ge-
nome through mining a large number of vertebrates previ-
ously, but phylogenetic analyses show that it falls within
known retroviruses with an abnormal long branch
(Hayward et al. 2015; Xu et al. 2018). In this study, we found
lokiretroviruses were/are widely distributed in the genomes of
vertebrates, at least including lampreys, ray-finned fishes,
lobe-finned fishes, amphibians, and reptiles (reptile lokiretro-
viruses are highly degraded; supplementary fig. S4,
Supplementary Material online). Within ray-finned fishes, en-
dogenous lokiretrovirus elements were identified at least 120
species from 36 orders. Some complete endogenous lokire-
trovirus elements share identical or nearly identical LTRs, and
the integrations were estimated to occur from 0 to 36.82 Ma
(supplementary table S1, Supplementary Material online),
suggesting exogenous lokiretroviruses might have long been
circulating in vertebrates. The lokiretrovirus genomes share
similar structure with the retrovirus genomes in general, but
display several unique features, including the presence of the
smc gene, a novel domain not present in sampled retrovi-
ruses, in some lokiretroviruses and an env gene similar to the
fusion glycoproteins of some negative sense single-stranded
RNA viruses.

Table 1. Host–Virus Phylogeny Congruence Test for Lokiretrovirus

Data Sets
(No. of Species Used)

Event
Costsa

Total
Cost

No. of Events P Valueb

Cospeciation Duplication Duplication and
Host Switching

Loss Failure to
Diverge

Total (24) 0, 1, 2, 1, 1 32 10 0 13 6 0 p 5 0.006
Total (24) 0, 1, 1, 2, 0 18 5 0 18 0 0 p > 0.05
Total (24) –1, 0, 0, 0, 0 –13 13 0 10 27 0 p > 0.05
Actinopterygii (17) 0, 1, 2, 1, 1 26 5 0 11 4 0 p > 0.05
Actinopterygii (17) 0, 1, 1, 2, 0 14 2 0 14 0 0 p > 0.05
Actinopterygii (17) –1, 0, 0, 0, 0 –8 8 0 8 22 0 p > 0.05

aEvent cost schemes are for cospeciation, duplication, duplication with host switch, loss, and failure to diverge, respectively.
bP-value represents statistical analyses results by using the method of random parasite tree with the sample size of 500.
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After several decades of extensive phylogenetic analyses
and virus discovery, the understanding of the diversity and
evolution of retroviruses had been thought to be largely com-
pleted. To date, seven genera of exogenous retroviruses
(Alpha-, Beta-, Gamma-, Delta-, Epsilonretrovirus, Lentivirus,
and Spumavirus) and three class of ERVs (classes I, II, and III)
have been described. To our great surprise, we identified a
novel major lineage of retroviruses, lokiretroviruses, which are
distantly related to all the sampled retroviruses. Our phylo-
genetic analyses of the RT domain provide strong evidence
that lokiretroviruses are sister to the retroviruses sampled to
date. Thus, the discovery of lokiretroviruses provides an im-
portant nexus for studying the evolution of retroviruses.
Together with the similarity between retroviruses and

lokiretroviruses, we propose that lokiretroviruses might rep-
resent a novel subfamily within the family Retroviridae.

Unexpectedly, we found that lokiretrovirus Env proteins
share detectable sequence similarity with the fusion glycopro-
teins of viruses from Paramyxoviridae and Pneumovirinae
within the Mononegavirales order, indicating that lokiretrovi-
rus Env and Paramyxoviridae and Pneumovirinae fusion gly-
coproteins derived from a common viral ancestor (hereafter
referred to as virus X). However, we did not find significant
overall sequence similarity between lokiretrovirus Env and
retrovirus Env. Four different scenarios could be conceived
(fig. 5A): 1) The common ancestor of retroviruses and lokir-
etroviruses acquired Env from virus X. Env evolved rapidly
along the evolution of retroviruses, resulting in high sequence
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divergence (thus low similarity) between retroviruses and
lokiretroviruses; 2) The common ancestor of retroviruses
and lokiretroviruses acquired Env from unknown viral source,

and lokiretroviruses replaced its Env with Env from virus X; 3)
The common ancestor of retroviruses and lokiretroviruses
acquired Env from virus X, and retroviruses replaced its Env
with Env from unknown viral source; 4) Retroviruses and
lokiretroviruses independently acquired Env from unknown
viral source and from virus X. Currently, we cannot formally
exclude any of these four possibilities. However, it has long
been recognized that retrovirus Env and paramyxovirus fu-
sion glycoproteins share similar sequence motifs, such as sig-
nal peptide, fusion peptide, CC motif, TM domain, and
proteolytic cleavage site ( Colman and Lawrence 2003;
Lamb and Jardetzky 2007). These proteins might be ultimately
derived from a common viral ancestor. Previous studies found
filoviruses appear to acquire Env protein horizontally from
retroviruses (B�enit et al. 2001). Our discovery of similarity
among lokiretrovirus Env and Paramyxoviridae and
Pneumovirinae fusion glycoproteins represent an indepen-
dent case that blurs the deep boundary between retroviruses
and negative sense single-stranded RNA viruses and provide
novel evolutionary framework to understand the origin and
evolution of Env in retroviruses.

Our phylogenetic analyses of both RH and IN domains
show that retroviruses form multiple distinct groups, suggest-
ing that recurrent replacements of RH and IN domains oc-
curred during their evolution. It follows that domain shuffling
might shape the complexity of the retrovirus genomes. Based
on the RT and RH phylogenies, we infer that the RH proteins
of lokiretroviruses and foamy viruses might represent the
most ancient RH lineage of retroviruses. The common ances-
tor of retroviruses acquired a new RH domain possibly from
eukaryote hosts. The preexisting RH domain degraded into
the tether domain, which explains the significant similarity
between the tether domain of retroviruses and the RH do-
main of metaviruses. Like retroviruses, lokiretrovirus genome
encodes a dual RH (tether and RH) domain, suggesting that
the degradation of preexisting RH domain occurred before
the most recent common ancestor of lokiretroviruses and
retroviruses. After diverging from foamy viruses, retroviruses
replaced the RH domain with a RH domain possibly also from
eukaryote hosts, and lentiviruses replaced its RH domain by a
RH possibly from non-LTR retrotransposons (fig. 5B).
Reconciling the RT and IN phylogenies, we infer group IV
IN of retroviruses might represent the original IN, because
it is sister to metavirus IN (fig. 4, supplementary data sets S7
and S8, Supplementary Material online). Fish foamy viruses,
tetrapod/coelacanth foamy viruses, lokiretroviruses, and the
common ancestor of gamma- and epsilon-retroviruses
replaced their IN domains independently with IN domains
from different sources (fig. 5B). However, these evolutionary
scenarios should be taken with cautions, because the phylog-
enies of RH and IN domains are notoriously difficult to re-
construct, and some nodes of our RH and IN phylogenies are
only weakly supported.

In conclusion, the discovery of lokiretroviruses greatly
expands the diversity of retroviruses, and provides a crucial
novel retroviral group to illuminate the complex evolutionary
history of retroviruses. Our findings illustrate the value of
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discovering novel viral lineages to understand the ancient
evolution of viruses and the diversity of the viral world.

Materials and Methods

The Discovery of Lokiretroviruses
We used a similarity search and phylogenetic analysis com-
bined approach to mine the genetic elements that are closely
related to retroviruses. The TBlastN algorithm was used to
screen all the available genomes of Echinodermata (14),
Hemichordata (2), Urochordata (14), Cephalochordata (6),
and Cyclostomata (4) (supplementary table S2,
Supplementary Material online) with representative retrovi-
rus RT proteins (supplementary table S3, Supplementary
Material online) as the queries and an e cut-off value of
10�5. The significant hits and representative RT protein
sequences of LTR retrotransposons (Llorens et al. 2011)
were aligned using MAFFT 7.402 (Katoh and Standley
2013). Initial phylogenetic analyses were carried out using
an approximate maximum-likelihood (ML) method imple-
mented in FastTree 2.1.10 (Price et al. 2010). We found
some hits (lokiretroviruses) from the genome of
Petromyzon marinus cluster together to form a sister group
to known retroviruses. To further explore the distribution of
lokivirueses, all the available vertebrate genomes (supplemen-
tary table S2, Supplementary Material online) were further
mined for lokiretroviruses using the TBlastN algorithm with
the RT protein of the P. marinus lokiretrovirus as the query
and an e cut-off value of 10�5. Phylogenetic analyses were also
performed using FastTree 2.1.10 (Price et al. 2010).
Lokiretrovirus-like hits from 24 representative species

(supplementary fig. S1, Supplementary Material online) that
cover the major diversity of lokiretroviruses were retrieved for
consensus sequence reconstruction.

Consensus Sequence Reconstruction
The retrieved lokiretrovirus hits were bidirectionally extended
to identify typical domains of retroviruses using conserved
domain (CD) search with the default parameters (Marchler-
Bauer et al. 2017). The LTRs were identified using LTR_Finder
(Xu and Wang 2007) or BlastN. For each species, the longest
sequence was retrieved and was then used as the query to
search for its homologs using BlastN with an e cut-off value of
10�5, an identity cut-off value of 80% and a length cut-off
value of 600 nt. The specific hits were aligned using MAFFT
7.402 (Katoh and Standley 2013). The consensus sequences
were reconstructed and ORFs were predicted using Geneious
(Kearse et al. 2012). Domains and motifs were annotated
using phmmer (Potter et al. 2018), CD search (Marchler-
Bauer et al. 2017), and SignalP 3.0 (Bendtsen et al. 2004).

Phylogenetic Analyses and Secondary Structure
Prediction
Lokiretrovirus sequences from reptiles were excluded in the
phylogenetic analyses due to their highly degraded nature
(supplementary fig. S4, Supplementary Material online). All
protein sequences (supplementary table S4, Supplementary
Material online) were aligned using two methods, MAFFT
7.402 with the L-INS-I strategy (Katoh and Standley 2013)
and PROMALS3D with the default parameters (Pei et al.
2008). The alignments were manually trimmed to remove
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ambiguous regions. Phylogenetic trees were reconstructed
using a ML approach implemented in IQ-tree 2 (Minh et al.
2020). The best-fit model for each tree was estimated
using Model Finder implemented in IQ-tree 2
(Kalyaanamoorthy et al. 2017). The ultrafast bootstrap ap-
proximation support was estimated with 1,000 replications
(Hoang et al. 2018). The Phyre2 web server (Kelley et al. 2015)
was used to compare the secondary structure of CA and
tether/RH proteins of the lokiretrovirus from Salmo trutta
(Loki-Str), MuLV, HIV-1, and S. cerevisiae Ty3.

Dating Analyses
The divergence between 50 LTR and 30 LTR can be used to
estimate the minimum time of the ERV integration. The time
can be estimated through: t¼ d/2 l, where d represents the
genetic distance between 50 LTR and 30 LTR of an ERV, and l
represents the host neutral evolutionary rate. Due to no neu-
tral evolutionary rate available for fishes, we used a neutral
rate estimated for mammals,�2.2� 10�9 substitutions/site/
year (Kumar and Subramanian 2002), to calculate the inser-
tion time. The distance between 50 and 30 LTRs of a complete
endogenous lokiretrovirus was calculated with the Kimura 2-
parameter substitution model and four Gamma rate
categories.

Host–Virus Phylogeny Congruence Analysis
The phylogeny of lokiretroviruses was compared with that of
their hosts using Jane 4 (Conow et al. 2010). Different sets of
cost values for five types of events (for cospeciation, duplica-
tion, duplication with host switch, loss, and failure to diverge:
0, 1, 2, 1, 1; –1, 0, 0, 0, 0; and 0, 1, 1, 2, 0) were examined (Xu
et al. 2018). The statistical analyses were performed using the
method of random parasite tree with the sample size of 500.
Species tree used in this analysis was based on the fish tree of
life (Rabosky et al. 2018).

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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www.ncbi.nlm.nih.gov/) database. The accession numbers of
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supplementary data set 1, and supplementary data sets 2–8,
Supplementary Material online.
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