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Abstract

Understanding correlation between influential factors and insurance losses is beneficial for

insurers to accurately price and modify the bonus-malus system. Although there have been

a certain number of achievements in insurance losses and claims modeling, limited efforts

focus on exploring the relative role of accidents characteristics in insurance losses. The pri-

mary objective of this study is to evaluate the influential priority of transit accidents attributes,

such as the time, location and type of accidents. Based on the dataset from Washington

State Transit Insurance Pool (WSTIP) in USA, we implement several key algorithms to

achieve the objectives. First, K-means algorithm contributes to cluster the insurance loss

data into 6 intervals; second, Grey Relational Analysis (GCA) model is applied to calculate

grey relational grades of the influential factors in each interval; in addition, we implement

Naive Bayes model to compute the posterior probability of factors values falling in each

interval. The results show that the time, location and type of accidents significantly influence

the insurance loss in the first five intervals, but their grey relational grades show no signifi-

cantly difference. In the last interval which represents the highest insurance loss, the grey

relational grade of the time is significant higher than that of the location and type of acci-

dents. For each value of the time and location, the insurance loss most likely falls in the first

and second intervals which refers to the lower loss. However, for accidents between buses

and non-motorized road users, the probability of insurance loss falling in the interval 6 tends

to be highest.

Introduction

The purpose of vehicle insurances is to cover the claims of policyholders from accidents. Vehi-

cles without insurance are forbidden to run on public roads in many countries. This kind of

compulsory regulation ensures reasonable financial compensations for losses of the third par-

ties involved in accidents. Besides the compulsory third-party liability coverage, most insurers

offer the first-party coverage aiming to provide compensation for the insured party (vehicle

damages and personal injuries).

Currently, most insurers use the performance of vehicles, claim counts and previous insur-

ance losses to calculate the future premium [1–4]. Being an independent variable, the
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insurance loss is one of the most important statistics, since it has been a basis for complicatedly

pricing [5–7]. A great many of bonus-malus systems use the claims number to optimize ser-

vices and improve competitiveness of insurers as well [8–12].They proposed that not all acci-

dents produced the same individual claim size and thus it did not seem fair to penalize all

policyholders in the same way when claims were presented. Therefore, the number of claims

should not be the only basis of future premium. The amount of claims and some other factors

should be taken into account.

In addition, the insurance loss is directly associated with the profits of an insurance com-

pany as well. All the insurers try to gain an equilibrium outcome every year. Consequently, it is

of importance to conduct a deep analysis on insurance loss data.

Most of the previous studies about insurance loss focused on data fitting and modeling. As

the insurance loss data were characterized by non-negative, asymmetry and heavy tails,

researchers applied Erlang [13] and Gamma kernel [14] to fit distribution of the insurance

loss. These models explained the loss data very well and provided an accurate estimation for

future costs. Gradient boosting trees[15]and [16] A Bayesian non-linear model were applied to

forecast the insurance loss and claim amounts. Some researcher assumed that claim frequency

and severity were often dependent. The generalized linear model [17, 18] and regression

model [19] were applied to describe their relations. Insurers could employ theses estimating

models to actuarial decision, e.g. for pricing insurance contracts and for calculation of

premium.

However, limited literature concentrated on the correlation between the insurance loss and

the accidents characteristics. The heavy tails that insurance loss data exhibited indicated that

the insurance losses of a small number of accidents were impressive high [20]. Exploring fea-

tures of these accidents was significant for both transit companies and insurance companies.

As the most popular travel pattern, the public transit basically runs on the time schedule

and planned routes, all the drivers are professional[21–23]. However, the premium and insur-

ance loss tends to be more than that of the private cars. It is crucial for insurance companies

and transit companies to find out the key influential factors on insurance losses. A great num-

ber of studies have proven that Grey Relational Analysis (GCA) and Naïve Bayes theory are

effective for evaluating correlations between influential factors and systems [24–27]. To this

extent, we firstly explored the influential priority of factors by use of GRA; then applied Naïve

Bayes theory to calculate the probabilities of factor values to insurance loss. This study

attempted to provide theoretical evidences for transit insurance companies to adopt the most

targeted countermeasures for insurance loss minimization.

This paper is constructed as follows. In section 2, the data source and descriptions are sum-

marized. K-means algorithm used to cluster the insurance loss data, GRA and Naïve Bayes the-

ory used to identify the main influential factors are briefly described in section 3. And section

4 presents the results and discussions. At last, the conclusions and future studies are provided.

Data source and descriptions

Data collection and descriptions

The loss data of transit insurance used in this study were collected from the Washington State

Transit Insurance Pool (WSTIP) which consisted of 25 Washington public transit agencies.

The dataset included the number, time, location, detailed description, transit route and insur-

ance loss of every claim. The insurance loss covered the cost associated with the bodily injuries

and property damages of the third party. There were a total of 4990 available cases recorded

from January 1, 2004 to March 31, 2016. Table 1 illustrated the primary statistics of the loss

data of transit insurance.

Insurance loss of public transit
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We divided the gross loss data into 11 sections at intervals of 5000. The proportions of the

insurance loss and the number of accidents in each interval were shown in S1 Fig.

It could be concluded from S1 Fig that the number of accidents lower than $5000 accounted

for 78.33%, but the proportion of insurance loss was only 7.63%. However, the number of acci-

dents more than $25,000 only accounted for 6.65%, the proportion of insurance loss was

impressively as high as 79.28%. A small number of accidents accounted for the majority of the

gross insurance loss. This finding probably provided a good evidence for insurers and policy-

holders to realize the importance of reducing these accidents.

In order to observe the distribution of accident losses, we applied the corresponding fre-

quency distribution histogram, as shown in S2 Fig. The horizontal axis of histogram showed

data packets and the vertical axis showed frequency, and probability density function could

express this distribution. It could be found that log-logistic distribution fitted the best, and the

value of Kolmogorov Smirnov (K-S) test and Anderson Darling (A-D) test was PK−S = 0.16 and

PA−D = 0.25 respectively.

Influential factors

Based on the dataset, the most relevant explanatory factors were the time, location and acci-

dent type. The time of accidents was classified into three categories which were peak time, day

time and night time. The location of accidents was classified into five categories which were

street, intersection, roadway, not departure and inside transit. The accidents type was classified

into three categories which were the collisions between buses and non-motorized, bus and

motorized, other types. Table 2 showed the detailed information of three factors.

Box-plot was employed to reveal the relationships between each factor and insurance loss,

as shown in S3–S5 Figs. It could be concluded that the accidents occurring in night time

tended to cause higher insurance loss. If accidents occurred on roadways and intersections,

the insurance loss tended to be higher. The insurance loss was higher if buses collided with the

non-motorized road users. However, the influential priority of three factors could not be

found from S3–S5 Figs.

Methodology

Since the range of insurance loss data was wide, from $ 6.75 to $ 3,575,000, it was advisable to

divide the loss data into several intervals. If the interval of loss was equal, the first interval

tended to consist of majority of data. We used K-means algorithm to cluster the insurance loss

data, then GRA was applied to calculate the influential priority of three factors, Bayes theory

was applied to explore the probability of factor values to each interval of loss. These models

were described in the following section.

K-means

K-Means is one of the efficient algorithms to address a clustering problem by use of a simple

iterative scheme for searching a locally minimal solution. The basic objective of this algorithm

is to divide a dataset samples into K groups with the maximum inter-cluster distances and the

minimum intra-cluster distances. Each cluster has a centroid located in a problem space. The

Table 1. Statistics summaries for loss data of transit insurance.

Statistic Sample size Max ($) Min ($) Mean ($) Std. dev. ($) Skewness Excess kurtosis

Value 4.99e3 3.58e6 7 1.30e4 1.05e5 21 557

https://doi.org/10.1371/journal.pone.0190103.t001
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investigators therefore obtain the reasonably similar groups from N-dimensional data. The

method is applicable for a close interaction with theory and intuition.

Ci(i = 1,2,� � �,K) are defined as the current K centroids which are randomly chose. The first

step is to calculate the distance between each object to the initial center point and associate

each other based on nearest distance. Next to recalculate the new K center points according to

the previous step. These two calculating procedures are iteratively repeated until convergence

to get the optimum assignments for each center point. The Euclidean distance is mostly used

to calculate the distance between each object to the center point. The basic optimum function

is shown as follows:

minf ¼
PK

i¼1

PN
j¼1
kxj � Cik j 2 Gi ð1Þ

Where K is defined as the number of clusters, N is the number of objects, Ci is the coordi-

nate of the centroid in cluster i, Gi is the objects group belonging to the cluster i.
To minimize the intra-cluster distances, the center points should be adjusted by averaging

the location of all objects assigned to it, as shown in Eq (2):

Ci ¼
1

N
PN

j¼1
xj j 2 Gi ð2Þ

Grey Relational Analysis

GRA is an effective algorithm for evaluating the relationship between the data sequences

which include the compared series and the reference series. This method is based on the calcu-

lation of the Grey Relational Grades (GRGs) to evaluate the level of correlation. The higher is

the GRG value, the better is the corresponding multiple performance characteristic. In this

paper, three factors (time, location and accident type) were taken as the compared series and

the insurance loss was used as the reference series. The process of GRA includes three steps:

Table 2. Variables descriptions of insurance loss data.

Factors Variables and Descriptions Percentage (%)

Time 1 Peak time 20.18

7:00~9:00 and 16:00~18:00

2 Day time 39.34

9:00~16:00

3 Night time 40.48

18:00~7:00

Location 1 Street 42.18

Street, crosswalk, walkway, alley

2 Intersection 21.02

3 Roadway 13.12

Freeway, highway, rural road

4 Not departure 14.07

Shopping center/mall, parking lot/facility, transit center

5 Inside transit 9.52

Type 1 Bus with non-motorized 8.08

Bus with pedestrian and bicyclists

2 Bus with motorized 65.51

Bus with car, bus, truck, van

3 Others 26.41

Inside transit, bus with other infrastructures

https://doi.org/10.1371/journal.pone.0190103.t002
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grey relational generating, grey relational coefficient calculating and grey relational grade

calculating.

As different factors usually have different units, it is necessary to normalize the original

sequence into [0,1]. If the number of the factors is m and the number of attributes is n, the

compared and reference series can be express as Yj = (yij) (i = 1,2,� � �,m; j = 1,2,� � �,n) and Y0 =

(y0j) (j = 1,2,� � �,n) respectively. Yi(i = 0,1,� � �,m) can be translated into the comparability

sequences Xi = (xij) (i = 0,1,� � �,m; j = 1,2,� � �,n) by means of the following three equations.

xij ¼
yij � minfyijg

maxfyijg � minfyijg
i ¼ 0; 1; � � � ;m; j ¼ 1; 2; � � � ; nð Þ ð3Þ

xij ¼
maxfyijg � yij

maxfyijg � minfyijg
i ¼ 0; 1; � � � ;m; j ¼ 1; 2; � � � ; nð Þ ð4Þ

xij ¼ 1 �
jyij � y�j j

maxfmaxfyijg � y�j ; y�j � minfyijgg
i ¼ 0; 1; � � � ;m; j ¼ 1; 2; � � � ; nð Þ ð5Þ

Eq (3) is applied for the larger-the better attributes, Eq (4) is applied for the smaller-the bet-

ter attributes and Eq (5) is applied for the closer to the desired value y�j -the better attributes.

According to the grey relational sequence, the grey relational coefficient is calculated to

reveal the relationship between the compared and the reference series. The grey relational

coefficient can be calculated by Eq (6).

g x0j; xij

� �
¼

Dmin þ rDmax

Dij þ rDmax
i ¼ 1; 2; � � � ;m; j ¼ 1; 2; � � � ; nð Þ ð6Þ

where γ is the grey relational coefficient and Δij = |x0j − xij|, Δmin = min{Δij}Δmax = max{Δij} (i =

1,2,� � �,m; j = 1,2,� � �,n), ρ (0< ρ� 1) is a distinguishing coefficient which is usually taken as

0.5 in most studies.

A grey relational grade can be calculated by use of the average value of grey relational coeffi-

cients, which reveals the influential priority of factors on the reference series. The grey rela-

tional grade can be computed by Eq (7).

t Y0;Yj

� �
¼

1

n
Pn

j¼1
gðx0j; xijÞ i ¼ 1; 2; � � � ;m; j ¼ 1; 2; � � � ; nð Þ ð7Þ

Naïve Bayes algorithm

Naïve Bayes algorithm is usually used to estimate the probability of an observation belonging

to a predefined category. This learning method is based on the observed data to calculate the

prior probability. Then the posteriori probability can be assessed by use of a conditional proba-

bility function. Despite its independence assumption, Bayes algorithm is probed to be quite

useful in modeling the condition of complex real-world problems and is widely used for deci-

sion making and inferential analysis.

The equation of posteriori probability is shown as follows:

P Yi=Xð Þ ¼
PðX=YiÞ � PðYiÞ

PðXÞ
ð8Þ

Where P(Yi/X) is the posteriori probability which means the probability of the observed

variable X belonging to category Yi, P(X/Yi) is the probability of X given category Yi, P(Yi) is

Insurance loss of public transit
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the prior probability of category Yi, and P(X) is the prior probability of X according to the

training data.

Naïve Bayes algorithm takes advantage of the maximum likelihood to classify multiple vari-

ables based on Bayes theory. The algorithm holds that the effect of a variable on a given cate-

gory is independent of the other variables. Normally, if (Yi/X)> P(Yj/X)(i 6¼ j), the algorithm

assumes that X belongs to Yi, which is the theory of Naïve Bayes classifier. This paper used the

Naïve Bayes to calculate the probability of the variables belonging to the loss category.

Results

Interval division of loss

In order to observe the influential priority of three factors on the loss in-depth, the gross loss

data was divided into some small intervals in which the grey relational grades were calculated

respectively. S1 Fig had shown that the sample size over $25000 was 334 and the loss in this

interval account for 79.28% of the total. Accordingly, the data over 25000 was classified as one

category.

K-means algorithm was performed to cluster the gross loss lower than $ 25000 into five sec-

tions. According to Eq 1 and Eq 2, the clustering results were shown in Table 3 and S4 Fig.

Relational grade calculation

GRA was used to calculate the influential priority of the time, location and accident type on

the loss of transit insurance. Firstly, all the loss data were normalized into [0,1]. Then the grey

relational coefficients of insurance loss were computed using Eq (6). The grey relational grades

of three factors were calculated using Eq (7). Table 4 showed the grey relational grades of three

factors to gross loss and each interval.

The maximum value of the grey relational grades was 0.9859 which showed significantly

higher, followed by the location. The grey relational grade of the type was smallest. It indicated

that the influential priority of the three factors on gross insurance loss was time, location and

type. However, in section 1 to 5, all the factors had significant influence on the insurance loss

and the grey relational grades had no significant difference. In the section 6, however, the time

of accident became the predominant influential factor, followed by accident type and location.

The results filled the gap of S3–S5 Figs by evaluating the influential priority of three factors.

Table 3. K-means cluster and statistics of insurance loss data.

Statistic Loss section

1 2 3 4 5 6

Sample size 2.82e3 1.04e3 406 245 141 334

Max 1.71e3 4.67e3 9.61e3 1.65e4 2.48e4 3.58e6

Min 7 1.71e3 4.67e3 9.66e3 1.65e4 2.50e4

Mean 656 2.77e3 6.61e3 1.27e4 2.06e4 1.55e5

https://doi.org/10.1371/journal.pone.0190103.t003

Table 4. Grey relational grades of factors to insurance loss.

Factors Gross Loss Loss Interval

1 2 3 4 5 6

Time 0.9859 0.6836 0.6406 0.7109 0.7500 0.4905 0.9139

Location 0.0078 0.7426 0.6911 0.6969 0.6567 0.5588 0.0553

Type 0.0063 0.6802 0.6263 0.6677 0.7790 0.4963 0.0554

https://doi.org/10.1371/journal.pone.0190103.t004
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Actually, based on these findings the insurers could modify their policy according to the

different time, location and type of accidents. As time tended to be the most concerned factor,

the insurers may modify policy-holders’ premium on basis of claims number during given

hours. For example, if claims number of a policy-holder at night time is higher than the limit,

the insurers may increase the premium next year. In addition, the transit companies could pay

more attention to some routes and take more targeted countermeasures on the crucial hour to

reduce the number of accidents[28]. Nevertheless, the relationships between values of each fac-

tor and loss intervals were unable to be evaluated only by GRA. Thus the key time, location

and type of accidents should be further identified.

Inferential analysis for insurance loss

Naïve Bayes theory was used to calculate the inference probability between each value of fac-

tors and loss intervals of transit insurance. The insurance loss data was used as training set to

calculate the prior probability. The posteriori probabilities of each value of factors to loss inter-

vals were calculated according to Eq 3, as shown in Table 5.

In terms of the time of accidents, no matter what time the accidents occurred, in the peak

time, day time or night time, for example, the probabilities of the insurance loss falling in the

intervals 1 and 2 were higher, added up to more than 65%, being consistent with the results in

S1 Fig. The accidents in day time and night time caused higher probability of the insurance

loss falling in interval 6 than that in peak time (P(I = 6/T = 1) = 0.0049, P(I = 6/T = 2) = 01013,

P(I = 6/T = 3) = 0.1131). The results agreed with the previous achievements [29, 30]. For

instance, Shumin Feng et al. (2016) found that driving buses in evening and night more likely

caused severe accidents compared to accidents occurring in the morning. For other road acci-

dents, Akerstedt et al. (2001) found that the highest total accident risk was seen at 04:00 h and

fatal accidents most likely occurred at this point. Insurers may implement dynamic pricing

that means increasing the premium rate of accidents occurring in night, or decrease the pre-

mium for buses involving less number of accidents occurring in night. Transit agencies may

modify the reasonable final bus hour or consider the rationality of driver substitution accord-

ing our findings.

In terms of the location of accidents, no matter where accidents occurred, street, roadway,

parking et al. for example, the probabilities of insurance loss falling in 1 and 2 section were

higher, added up to more than 60%. The accidents occurring in roadway (location 3, freeway,

Table 5. Posteriori probability of factors values to loss intervals.

Factor Value Insurance Loss Interval

1 2 3 4 5 6

Time 1 0.6934 0.2386 0.0495 0.0099 0.0039 0.0049

2 0.5181 0.1544 0.1004 0.0754 0.0388 0.1013

3 0.4002 0.2572 0.1082 0.0765 0.0576 0.1131

Location 1 0.6095 0.2138 0.0651 0.0356 0.0209 0.0551

2 0.4423 0.2526 0.1163 0.0715 0.0391 0.0781

3 0.4006 0.1821 0.1381 0.0926 0.0577 0.1290

4 0.6923 0.2066 0.0399 0.0199 0.0114 0.0299

5 0.6779 0.1347 0.0589 0.0421 0.0232 0.0631

Type 1 0.2333 0.1042 0.0471 0.0794 0.1886 0.3474

2 0.5552 0.2463 0.0918 0.0511 0.0144 0.0413

3 0.6904 0.1495 0.0661 0.1017 0.0144 0.0448

https://doi.org/10.1371/journal.pone.0190103.t005
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highway and rural way) resulted in the highest probability of insurance loss falling in interval 6

(P(I = 6/L = 3) = 0.1290), followed by intersection (location 2) and inside transit (location 5)

(P(I = 6/L = 2) = 0.07814, P(I = 6/L = 5) = 0.0631). When the buses run in freeway, highway or

rural way, their speed tend to be higher. Once accidents occur, the casualties are severe. This

result agrees with the previous study [31] that the higher speed is, the more severe accidents

tend to be. These findings provided good evidences for the insurers to modify their bonus-

malus system for future premium. For instance, for the policyholders involved in less in less

accidents occurring on roadway, insurers may reduce their future premiums, otherwise,

increase their premiums. Transit agencies may take more targeted countermeasures to limit

the speed of buses to reduce the number of some severe accidents.

In terms of the type of accidents, when collisions between buses and pedestrian or bicycles

occurred, the probability of insurance loss falling in interval 6 was found to be highest (P
(I = 6/Ty = 1) = 0.3474), followed by type 1 and 5. It indicated that accidents involved non-

motorized road users either caused the severe casualties or caused minor injuries. Compared

with buses, pedestrian or bicycles had lighter weight. Once buses impacted them, the injuries

tended to be severe which caused the higher insurance loss. When collisions between buses

and vehicles and other type of accidents occurred, the probabilities of insurance loss falling in

intervals 1 were higher, added up to more than 80%. Insurers should pay more attention to

accidents involved pedestrian and bicycles that more likely result in high insurance loss. And

the targeted bonus-malus system should be considered to perform.

Conclusions

The insurance loss has direct relationship with profits of an insurer. Understanding the effects of

influential factors on insurance loss may help develop targeted countermeasures. Although there

have been many achievements on loss fitting models, limited researches were conducted to

explore the interaction between losses and the time, location and type of transit accidents. Based

on 4990 insurance loss records from WSTIP, this study took the time, location and type of acci-

dents into account and applied GRA and Naïve Bayes to explore the influence priority of factors.

Although the number of accidents with insurance loss more than $ 25,000 was small, the

insurance losses accounted for about 80% of total losses. Insurers should pay more attention to

these accidents and try to reduce the number of these accidents. K-means algorithm clustered

the gross insurance data in 6 intervals. In the first five intervals, the time, location and type of

accidents significantly influenced insurance losses. In the interval 6, where the insurance loss

was higher, the time of accidents was a significant influential factor.

No matter the accidents occurred in peak time, day time or night time, they tended to cause

the lower insurance loss. And no matter the accidents occurred in streets, intersections, road-

ways, parking or inside transit, the probabilities of insurance loss falling in intervals 1 and 2

were higher. However, collisions between buses and non-motorized road users tended to

cause the more insurance loss than other types of accidents. These findings were beneficial for

both insurers and transit companies. The insurers may increase or decrease premium on basis

of the claims performance during previous year. The companies may evaluate the drivers’ per-

formance with consideration of their claims as well.

These findings may help the insurers better understand the most influential factors, and

then try to take targeted countermeasures to reduce the losses. Although Naïve Bayes can help

us calculate the posterior probability of influential factors to loss, this method assumes that the

influence of each factor on losses is independent. The Bayesian Network has been used to

address the correlation between factors in recent years [32–34],further researches can be con-

ducted based on this method.
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S1 Fig. Proportions of the insurance loss and the accidents number.

(TIF)

S2 Fig. Fitting distribution of insurance loss.

(TIF)

S3 Fig. Box-plots of factors and insurance loss (Time).

(TIF)

S4 Fig. Box-plots of factors and insurance loss (Location).

(TIF)

S5 Fig. Box-plots of factors and insurance loss (Accident type).

(TIF)

S6 Fig. K-means cluster of insurance loss data.

(TIF)

Acknowledgments

This research was funded in part by Youth Foundation Project of Humanities and social sci-

ences research program of Ministry of Education (17YJCZH250), Fundamental Research

Funds for the Central Universities (2572015CB13), Heilongjiang Province Philosophy and

Social Sciences Planning Project (14B015) and Opening Foundation of Intelligent Transporta-

tion Information Sensing and Data Analysis Engineering Laboratory for Jiangsu Province,

National key research and development program: key projects of international scientific and

technological innovation cooperation between governments (2016YFE0108000).

Author Contributions

Data curation: Ruimin Ke.

Formal analysis: Wenhui Zhang.

Investigation: Wenhui Zhang.

Methodology: Xinqiang Chen.

Resources: Ruimin Ke.

Validation: Yongmin Su.

Writing – original draft: Wenhui Zhang.

References
1. Guelman Leo, Montserrat Guillén. A causal inference approach to measure price elasticity in automo-

bile insurance. Expert Systems with Applications. 2014; 41: 387–396.

2. Li Chu-Shiu, Lin Chih Hao, Liu Chwen-Chi, Woodside Arch G. Dynamic pricing in regulated automobile

insurance markets with heterogeneous insurers: Strategies nice versus nasty for customers. Journal of

Business Research. 2012; 65: 968–976.

3. Athanasios A. Pantelous, Eudokia Passalidou. Optimal premium pricing strategies for competitive gen-

eral insurance markets. Applied Mathematics and Computation. 2015; 15(259): 858–874.
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