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A recent study by Saldanha et al. demonstrates that blockchain-based models outcompeted local models
and performed similarly with merged models to predict molecular features from cancer histopathology im-
ages. The results reveal the capability of decentralized models in molecular diagnosis of cancer.
In the past decade, we have seen that

artificial intelligence (AI) has revolution-

ized many fields, including precision

medicine. In particular, deep-learning

models, which consist of artificial neural

networks, showed their capabilities in

not only the advancement of autopilot,

machine translation, and biometry but

also in the prognosis and diagnosis of

cancer with H&E-stained digital histopa-

thology images. In the past few years,

a number of studies reported that

deep-learning-based computer vision

models successfully predict molecular

characteristics, such as gene mutation

status, molecular subtypes, and micro-

satellite instability (MSI), with H&E-

stained whole-slide images (WSIs)

across various cancer types and even

at pan-cancer level.1–5 Moreover, many

of these studies also claimed that their

models are generalizable on external

H&E image datasets, further illustrating

the robustness and potential clinical

applicability.

One critical issue of the aforemen-

tioned models is that their high predictive

performance relies on large and diversi-

fied training datasets, which oftentimes

involves gathering and sharing clinical

data to make the training possible on a

single server.6 This process could lead

to data access barriers, especially when

datasets are located in different institu-

tions and countries where regulations

covering patient health information vary.

One solution to circumvent this issue is

federated learning (FL), where individual

models are trained locally, and only the

learned weights are shared to a central

coordinator that governs the process
This is an open access ar
and incorporates the weights into a final

model.7,8 However, the centralized

design of FL models has the intrinsic

weakness of monopoly and potential

exploitation, which is against the data

democracy idea and poses a different

yet crucial data access issue. An alterna-

tive option is swarm learning (SL), which

uses blockchain-based coordination be-

tween each locally trained models, elimi-

nating the central coordinator of FL.9

When training multicentric models on

medical data, SL has its advantages

over FL, because it centralizes neither

the data nor the models (Figure 1). Prior

to the recent study by Saldanha et al.,10

there was no application of SL to cancer

histopathology data, making the study a

pioneer in the field of computational

histopathology.

Saldanha’s study offers a substantial

proof of concept of applying SL models

to H&E WSI to predict two molecular fea-

tures, BRAF mutational status and MSI, in

colorectal cancer. They compared the

performance of three individually trained

local models by using three datasets

located on physically separated com-

puter servers: a merged model trained

on the combined dataset and three SL

models with different terminating check-

points (b-chkpt1, b-chkpt2, w-chkpt) on

external independent clinical test sets. In

the BRAF mutation prediction task, the

AUROCs (area under the receiver oper-

ating characteristic curve) of all three SL

models outcompeted the three local

models, and the w-chkpt model (AUROC

of 0.7736 ± 0.0057) also achieved signifi-

cantly better performance than did the

merged model (AUROC of 0.7567 ±
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0.0139), whereas the other two SLmodels

were on par with the merged model. For

the MSI prediction task, two clinical test

sets (QUASAR and YCR BCIP) were

used for evaluation. In QUASAR, the SL

models significantly outperformed two of

the three local models, and the w-chkpt

model (AUROC of 0.8326 ± 0.0089) per-

formed similarly with the merged model

(AUROC of 0.8308 ± 0.0190). Similar re-

sults were obtained from the YCR BCIP

test set. In addition, by reducing the size

of training sets, Saldanha et al. found

that SL models were generally more

data efficient than were all three local

models. When comparedwith themerged

model, the SL models maintained similar

performance as the merged model with

training set size down to 100 patients on

the BRAF mutation prediction task. By

visualizing the WSI prediction, Saldanha

et al. qualitatively and quantitatively

examined the histopathological features

on the top predicted BRAF mutated and

MSI tiles. They demonstrated that SL

models generally captured more relevant

structures and patterns, although not all

of these observations were statistically

significant.

This study by Saldanha et al. is a major

contribution to the field of computation

histopathology, where they attempted

to integrate the blockchain technology

into imaging-based cancer molecular

diagnosis in order to tackle the current

limitation of large data size requirement

and the data access barriers through a

decentralized multicentric model training

approach. Their results illustrate that

the proposed SL models generally out-

performed local models and achieved
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Figure 1. Different model training strategies
Conventional merged data training involves data sharing and aggregation (left). FL allows only the weights
of the locally trained models to be shared to a centralized coordinator (middle). SL adopts decentralized
blockchain-based communication during the training process that shares neither the data nor the models
(right). Created with biorender.com.
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similar predictive power as did the

merged models. More importantly,

Saldanha et al. demonstrated that SL

models are data efficient and might cap-

ture more plausible and human interpret-

able histopathological features. Never-

theless, the study by Saldanha et al.

could still be merely a pilot study of

applying decentralized blockchain tech-

nology to cancer histopathology. Specif-

ically, the two benchmark tasks that they

showcased in the paper, BRAF muta-

tional status and MSI, have been proved

to be predictable with high accuracy in

previous publications, and the SL models

did not significantly improve the preci-

sion and accuracy for these two tasks.

In addition, the differences between the

performance of SL models on BRAF mu-

tation and MSI predictions lead to the

question as to whether the SL models’

advantages over the local models might

be task dependent. With testing

AUROCs in the 0.7 to 0.8 range, the SL

models, as well as other deep-learning-

based cancer histopathology models,

still have to go through more improve-

ments and scrutiny before their actual
2 Cell Reports Medicine 3, 100666, June 21,
deployment in clinical settings. There-

fore, more future studies are necessary

to ensure that the integration of block-

chain and AI could tangibly benefit the

prognosis and molecular diagnosis of

cancer.

DECLARATION OF INTERESTS

The authors declare no competing interests.
REFERENCES

1. Coudray, N., Ocampo, P.S., Sakellaropoulos,

T., Narula, N., Snuderl, M., Fenyö, D., Moreira,
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