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The problem of module discrimination and identification in the field of landscape design is the focus of researchers. Based on
multimodal intelligent computing, this paper constructs a landscape design system based on deep neural network. The article first
uses a deep neural network to train multimodal garden landscape images, and then performs pooling and convolution operations
on garden landscape images on the multimodal training model of convergence speed on the edge and solve the problem of low
model accuracy. In the simulation process, the neural network module of MATLAB software is used to extract the spatiotemporal
features of the dynamic garden landscape image from the three directions of the bottom block of the garden to achieve feature
complementarity. This method only uses 15% of the features of the original feature set. The complexity of the recognition system
also reduces the recognition error rate. The experimental results show that by adopting the design of feature series fusion,
maximum value fusion, and multiplicative fusion in the score layer, the feature series fusion achieves a high accuracy rate under
the multiplicative fusion of the three modalities, reaching 77.1%, and the test error is within 0.118, which effectively improves the

multimodal characteristics of the integrated landscape and makes the modeling results more accurate.

1. Introduction

Ecological gardens refer to gardens designed according to the
principles of ecology. Through the differences of natural en-
vironment, ecological landscape types with diverse colors and
unique regional characteristics are constructed [1]. The garden
landscape static model aims to recommend the minimum cost
for the network before submitting the computing task to the
multimodal network, according to the deadline and workload
of the computing task, and the number of computing resources
that can ensure the task is completed on time [2-4]. Then, the
dynamic model will monitor the running status of the task in
real time during the execution of the task and dynamically
adjust the number of computing resources when the running
speed cannot meet the deadline requirement and finally ensure
that the computing task can be completed on time. Traditional
methods based on hand-built features are not robust, while
training of deep neural network interfaces on small datasets
will result in severe overfitting [5-7].

At present, most of the elastic resource management
systems provided by multimodal network service providers
are based on thresholds for resource quantity control. Such
systems rely on the network itself to configure these thresholds
to decide when to adjust the amount of computing resources
[8-11]. For example, the network needs to set the CPU usage
threshold of leased virtual machines. When the CPU usage of
virtual machines exceeds this threshold, the multimodal
network platform will automatically add new virtual machines
to the computing cluster. In the experiments, the accuracy of
the classifier exceeds that of the previous classifier. Usually, the
prediction of the completion time of MapReduce tasks re-
quires a detailed analysis of the entire computing process.
However, a MapReduce job consists of several distinct phases,
each of which will have different computational resource
requirements. At the same time, there are dependencies be-
tween different stages [12-14].

Based on the above background, this paper proposes a
garden image design method based on audio-visual
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information fusion, which combines high-order multimodal
garden landscape image features with garden image features
multimodal feature fusion, which improves the robustness
of the garden image model accuracy. First, a large-scale
continuous garden image is designed and the equipment is
used to record the garden landscape image data. Then, the
multimodal garden landscape image features and garden
image features of different dimensions are selected through
experiments and multimodal feature fusion is carried out.
Finally, the garden image model modeling, training, and
decoding of DNN-HMM is carried out on the platform, the
garden landscape data is preprocessed, and the multimodal
features of the garden landscape are extracted, respectively.
In order to realize the fusion of multimodal features, this
paper proposes a multimodal deep fusion method based on
deep neural network combined with categorical cross-entropy
loss to learn high-level fusion features of garden landscapes.
The weights are extracted and the feature screening criteria are
defined according to the network learning characteristics and
the difference in activation weights of each type of feature is
calculated and compared to obtain a dimensionality reduction
and efficient speech emotion cognitive feature set F. On this
basis, based on B/S architecture, using Vue.js, Spring boot,
MySQL, and other technologies, this paper designs and im-
plements a garden landscape recommendation system based
on multimodal features.

2. Related Work

Ecological gardens with perfect landscape design are the
perfect combination of natural beauty and artificial beauty
and are composed of different plant spaces, shapes, and color
changes to achieve a beautiful landscape higher than nature.
The research on multimodal neural network mainly focuses
on the representation of multimodal data features and the
correlation mechanism between modalities. Among them,
the research on multimodal data feature representation
mainly focuses on the representation of text data and the
representation of landscape image data [15-17]. Among
them, methods such as word2vec can take each independent
word as a feature and map it into a feature vector. At the
same time, the semantically related words have greater
similarity between the mapped feature vectors. For garden
landscape image data, the commonly used methods for
extracting features include gradient direction histogram
features.

With the widespread use of neural networks, Peter et al.
[18] believe that the use of neural networks for feature
extraction has become a more general choice. Unsupervised
learning, such as autoencoder and deep belief network
(DBN) can learn the representation of landscape images in
low-dimensional space from landscape image data. In order
to schedule tasks on this task flow, Karterouli and Batsaki
[19] developed a set of resource management strategies
based on constraint programming. At the same time, Dai
et al.[20] also designed a resource management algorithm
that can sense whether the data to be processed is local, to
ensure that the entire system can meet the service quality
requirements. We extracted all eight categories of sentiment
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data for experimental testing, and the average recognition
error rate of the baseline category was reduced by 2.1% when
the DCNN classifier was constructed using the entire feature
set. Resource management systems like Jockey and CRESP
also use a static model. These works use different ap-
proaches, Jacob et al, [21] constructed a quantitative rela-
tionship between task run setting parameters and
completion time for estimating the amount of computing
resources that need to be reserved.

Yahia et al. [22] used the CSP algorithm to extract
features from electrical signals, and the extracted feature
matrix contains a lot of redundant information. In order to
improve the speed of network training, reduce the com-
plexity of the system, and further improve the design rate, it
is necessary to feature the filter. Deep neural network is an
excellent design method because it can automatically extract
features during the training process, so it can be effectively
applied to some problems. However, current research only
focuses on the operation results of deep networks, ignoring
the analysis of the nature of network behavior [23].
Therefore, paying attention to the learning behavior of the
neural network itself and observing the learning process of
the entire network to the feature is a problem worthy of
research.

3. Multimodal Intelligent Computing and Deep
Neural Network Cascade

3.1. Multimodal Hierarchical Sorting Operation. When the
size of the multimodal network training set matches the
network scale, the trained network can effectively extract the
features of the input garden images. If the data in the small
data set is similar to the data in the large data set (such as
photos of real objects), the network can also effectively
extract the characteristics of garden images on the new data
set. At this time, the dimension of the data has been ef-
fectively reduced, and a new classification layer can be added
after the output of the network for classification.

f (6 x (1) = max imumv{ (x (£), 1), (x° (¢),t),
(* (@), 1), (x" (1), 1)}

The front part of the multimodal network is composed of
5 network interface modules connected in sequence. The
front-end network interface accepts three-channel multi-
modal garden landscape images with a resolution of
224 x 224 as input. In each module, there are 2 or 3 network
interface layers consisting of 3 x 3 network scores, which are
connected end to end and whose outputs are activated using
the ReLU function.

(1)

delta[x(4,7) —x(j—1)] delta[x(4,j)+x(j+1)]
TN axGp-x(-1) Y axGrxi-1)
(2)
A garden landscape is input, after data preprocessing,
feature extraction, and feature fusion, the cosine similarity

between the input garden landscape and the garden landscape
in the database is calculated, the obtained similarity is sorted
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in descending order, and the top N with the highest similarity
is taken as the output recommendation to users. The reason
(class label) of the recommended landscape and the input case
is the same, which indicates that the recommended landscape
is similar to the input case. In addition, the case process and
judgment results in the recommended garden landscape are
similar to the input cases, indicating that the results of garden
landscape recommendation based on multimodal features are
more accurate.

3.2. Deep Neural Network Node Connection. By training a
deep neural network node interface with a known dataset, a
backpropagation algorithm can be used to make the network
score learn to extract information for classification while
discarding irrelevant information. For example, when dis-
tinguishing round and square color blocks, the shape of the
color block edge is the information used for classification,
and the color of the color block itself is irrelevant. For an-
other example, when training a neural network classifier, if
the garden images of each class in the training set are taken in
both bright light and low light, the neural network will focus
on those features that are not related to brightness. Therefore,
the neural network interface can be used as a feature extractor
in many occasions, which can convert high-dimensional
landscape images into low-dimensional feature maps.
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In order to verify the effectiveness of the multimodal
feature-based garden landscape recommendation method
proposed in this paper, a series of comparative experiments
are also carried out using Word2vec features, TF-IDF fea-
tures, Word2vec features, and TF-IDF features of garden
landscapes in series. Features and high-level fusion features
of Word2vec features and TF-IDF features are used for
referee document recommendation. When the recom-
mended number N is 10, 30, and 50, respectively, the ac-
curacy rate, recall rate, and F1 value of garden landscape
recommendation are compared.

p(x,x(t)) n q(t, t(x))
Yrx)-p) Yq(x)-q(t)

From the comparison of accuracy results, it can be seen
that the accuracy of garden landscape recommendation
using direct series features (w2v+ tfidf) is slightly higher
than that of single-modal Word2vec feature recommenda-
tion (w2v), indicating that multimodal features perform
better than single-modal features. However, when N is 30 or
50, the accuracy of garden landscape recommendation using
concatenated features (w2v + tfidf) is lower than that of
using TF-IDF features in Table 1. The recommendation
effect of simple concatenation of modal features is not ideal.

The whole network consists of 3 subnetworks: Top.Net,
Left.Net, and Front.Net. The original input to the network is

=Z(x,1). (4)

115x250x K, and different transposes are done before
feeding into the three networks. For Front.Net, processing is
not needed, the network is inputted directly. The network
interface layer and the pooling layer of the three subnet-
works have the same parameter settings, but due to the
different sizes of the input garden video blocks of the three
subnetworks, the outputs of the same network interface layer
of the three subnetworks are different. In order to further
screen the features of the CSP feature matrix in the feature
screening stage, the convolution is not performed in the
dimension of electrodes here, but only in the dimension of
feature points.

3.3. Evaluation of Intelligent Computing Accuracy. The de-
sign of objects based on multimodal intelligent calcula-
tion points mainly includes methods based on global
features and matching methods based on local features. A
typical method based on global 3D features has a view
feature histogram, which can be used to directly calculate
the 3D features of a point cloud. Since this feature is based
on the whole point cloud, the interesting part of the point
cloud needs to be segmented before calculation. Local-
based 3D feature classes are similar to local features of 2D
landscape images, and then matched with points in
known models.
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HOG is used to count the gradient information of the
pixels in the garden landscape image. Its main steps are first,
multiple pixels in the garden landscape image are formed
into a cell, the gradient information of each cell is calculated,
then multiple cells are formed into a block, and the gradient
histogram of a block is generated. Finally, the gradients of all
blocks are combined. The histograms are combined and
contrast normalized to obtain the final HOG features. When
extracting the HOG of the garden video, first calculate the
HOG feature of each garden landscape image in the garden
landscape image sequence, and then concatenate the HOG
along the time dimension to generate the HOG feature of the
garden video. HOG is a local feature descriptor in the air
domain, and Laser extracts local features in garden videos in
order to better.

Usually, the problems of time garden sequence or state
garden sequence in Figure 1, such as text prediction,
garden image design, and action classification, can be
solved by using hidden Markov model (HMM). Moreover,
there are two types of data in such problems, one is ob-
servable called observation garden sequence, the other is
unobservable called hidden garden sequence, and the
changes of both garden sequences are random processes.
HMM predicts the output of the hidden state garden
sequence by observing the probability matrix and state
transition matrix of the garden sequence on the basis of
the observable sequence.
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TaBLE 1: Simple series description of multimodal features.

Simple type Input number Series description Output number ratio/%
TF-covl 16 x16x 16 The different sizes 30.412
TF-cov2 32x32x32 The outputs of it 27.516
TF-cov3 64 X 64 X 64 The three subnetworks 23.108
TF-cov4 128 x 128 x 128 The same network 30.412
IDF-pooll 16 x16x16 Interface layer 18.311
IDF-pool2 32x32x32 The input garden 32.279
IDF-pool3 64 X 64 x 64 The three subnetworks, 24.782
IDF-pool4 128 x 128 x 128 Of video blocks 9.641

Numerical value of fitting statistics for
garden landscape information

4 5 6 7 8 9

Sampling image sequence value
® class A
® class B

Figure 1: The fitting statistics of garden landscape gradient
information.

3.4. Deep Neural Network Feature Extraction. The deep
neural network interface operation extracts a local infor-
mation in the garden landscape image, which constitutes a
new two-dimensional matrix k, which is called the feature
map of the garden landscape image under the network score
operation network interface operation. Different network
scores play different roles. It is a 400 x 400 single-channel
grayscale garden image, and the network interface is carried
out in an extended way through 4 x4 cores.

{ covtion (x, y — 1) + covtion(x, y) > 1 )

covtion (x, y) — covtion(x — 1, y) <1 )

The network score (a) is the average network score, which
blurs the garden landscape image to a certain extent. The
network score (b) makes the garden image overexposed. The
network score (c) extracts the image of the garden image.
This type of network interface operation is the basis of
various filter operations commonly used in various garden
landscape image processing software. Adjusting the size of
the network score, the value of the elements, and the sliding
method of the network score on the garden landscape image,
are various garden landscape image processing effects that
can be obtained.

The first benchmark (BS1) is derived from a static al-
location based approach. After the prediction model in

Figure 2 estimates the number of virtual machines needed to
complete the task, the model adds an additional 10% of
computing resources to avoid the task not being completed
within the deadline. For comparison, the second benchmark
(BS2) in this experiment comes from the same allocation,
but uses 30% more computing resources. The third
benchmark (BS3) is derived from a dynamic model, but uses
only parameters related to the task run settings for pre-
diction of completion times. The last is the function of this
system after concrete realization. More extensive perfor-
mance tests were performed in this experiment, and the final
results are shown in the text.

4. Construction of Landscape Design System
Based on Multimodal Intelligent Computing
and Deep Neural Network

4.1. Multimodal Intelligent Computing Analytical Solution.
It can be seen that the cost of this system to complete mul-
timodal intelligent computing tasks is close to that of BS1, but it
can provide a performance similar to that of BS2 in guaran-
teeing task deadlines. Compared with BS3, the performance of
this system is better than that of BS3 in terms of the cost of
running tasks and the timeout time of running tasks. Taking
the cost and timeout of word count computing tasks as an
example, this system only uses 6.64% more cost than BS1, but
the average timeout time and the number of tasks that exceed
the deadline in Figure 3 are less than the results of BS1.

In general, only using Word2vec features of garden
landscapes has the worst recommendation effect, with an
accuracy rate of only about 70%, indicating that only using a
single modal feature for garden landscape recommendation
is not ideal, and there is still a lot of room for improvement.
The accuracy of garden landscape recommendation using
Word2vec features and TF-IDF features (w2v + tfidf) is
slightly higher than the recommendation results using only
Word2vec features (w2v), but lower than the recommen-
dation results using only TF-IDF features, indicating that the
effect of using multimodal features for landscape recom-
mendation is better than that of using only single-modal
features, but the multimodal features of garden landscape
cannot be simply connected in series.

4.2. Factor Analysis of Landscape Design. An optimal public
space filter is created, which can maximize the variance of
one type and minimize the variance of the other type. By
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FIGURE 2: Static allocation of deep neural network features.
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FIGURE 3: Analytical spatial distribution of multimodal intelligent
computing.

diagonalizing the covariance matrix of the two types of tasks
at the same time, the characteristics of the maximum re-
solving power of the two tasks are obtained. Relatively
speaking, the scale of the fully connected layer of the VGG-
16 network is too large, which not only takes up too much
storage and computing resources, but also leads to over-
fitting. Among them, all network interface layers are left as-
is. The pooling layer after the last network interface layer is
increased to 6 x 6, which reduces the resolution of the output
feature map from 7 x 7 to 3 x 3. The size of subsequent fully
connected layers is also greatly reduced. The number of
parameters of the VGG-16 fully connected layer is about

120 x 106. After modification, if the final output vector is 50
dimensions, the parameters are reduced to about 5 x 106.

argmin{y de?(t,t —i)- Y dpl(i,i-t)} -1=0.  (7)

Compared with the garden video, the garden landscape
image sequence increases the time dimension, so the depth
kernel is based on the 2D network score to increase the time
dimension, and then the depth of the garden video block is
used to extract the garden landscape image sequence or
garden. The original garden landscape image sequence or
garden video passes through the depth to generate a feature
cube (the 2D network interface generates a feature map), and
the feature cube then goes through the multimodal con-
volution layer as shown in Figure 4 to extract spatiotemporal
features to generate a new feature cube.

The performance of this system is similar to that of BS2
in this performance index. There will be tasks that exceed the
deadline mainly because of the prediction error in the
prediction model. A more detailed explanation is that when
the completion time of the original task only slightly exceeds
the deadline, the prediction model in the elastic resource
management module will have a hard time deciding whether
to perform an operation that needs to be expanded, so the
time for expansion will be too late, and the completion time
exceeds the deadline.

4.3. Deep Neural Network Data Cleaning. In practice, in
order to effectively operate objects according to the charac-
teristics of different deep neural networks, information such
as the precise shape and orientation of the object is required.
Methods using machine learning can extract this information
from 2D garden landscape images, but these methods require
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FIGURE 4: Formatting distribution of garden landscape image
sequence.

a large amount of training data. A more direct approach is
used to compute this information directly from the multi-
modal intelligence computing point. Multimodal intelligent
computing points are discrete samples of continuous object
surfaces, and the effectiveness of point cloud-based algo-
rithms depends on the quality of the samples.

Jf(x,t) x g (x —t)dxdt - Jg(x,t) X f(t —x)dxdt = 0.
(8)

A single three-dimensional garden sequence can only
collect the information of a certain side of the object at the
same time, which makes the results of various multimodal
intelligent calculation point algorithms have great deviations.
After calibrating multiple 3D garden sequences, the re-
spective multimodal intelligent calculation points can be
merged together to form a complete point cloud of the object.

In the first type of dynamic garden landscape garden
video, the largest has 113 frames of garden landscape images,
and the smallest has 13 frames of garden landscape images,
so even with the same garden landscape, the frame difference
contained in the garden data in Figure 5 is still very large. In
order to better extract the spatiotemporal features of dy-
namic garden landscapes, we first extract key frames with a
uniform frame number for all garden video samples. The key
frame extraction in garden video is mainly used in garden
video retrieval, by extracting the most representative one
frame of garden landscape image or multiple frames of
garden landscape image to replace the whole garden video.

{lim[f(x,t— 1) —dx?(x - t,£)] >0,

lim[x(t,t —1)] > 1. ®)

The key frame extraction of garden video based on motion
information mainly extracts the key frames shown in Table 2
according to the change of the moving target in the garden
landscape image, and the change of this motion information
is reflected in the garden video as the pixels between adjacent
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FIGURE 5: Deep neural network data cleaning statistics.

garden landscape images. The optical flow method obtains the
target motion information by calculating the temporal change
of the corresponding pixels of two adjacent frames in the
garden video stream. The feature matrix is sent to CNN for
learning, and then the weights of its fully connected layer are
extracted, and the distribution of its weights is used to de-
termine which parts of the feature matrix are more effective
for classification, so as to screen some features.

The multimodal network score slides in a garden video
block to interface with the corresponding small cube, and
finally generates a feature cube, thus ensuring the spatio-
temporal information of the original input. Note that the
original garden video block time dimension-3 is larger than
the depth kernel time dimension. If the time dimension of
the garden video block is equal to the time dimension of the
depth kernel, at this time, the plane feature map is generated
after the network interface, and the spatiotemporal infor-
mation will be quickly lost after a depth operation, so this
situation is generally placed in the last network interface.
Layers are used to synthesize spatiotemporal information.

5. Application and Analysis of Landscape Design
System Based on Multimodal Intelligent
Computing and Deep Neural Network

5.1. Multimodal Intelligent Computing Data Preprocessing.
The incremental relationship of pixels in the garden image
that requires multimodal intelligent computing is not pre-
served, but the symmetrical features on both sides of the
diagonal line are still preserved. If the network score is slid
one pixel at a time, the result size of the extended network
interface operation is the same as the original garden land-
scape image size. At the same time, it can be seen that the
network interface results at this time already include the
results of the network interface in the aforementioned feasible
methods, which are marked with bold fonts in the figure, and
the results in the edge part are distorted to a certain extent.
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TaBLE 2: Garden landscape image extraction key frame mode.

Extraction key frame model

Garden landscape image factor

The optical flow method

Bullet = bulletlist.get(i);

Motion information v (i) > 1
Bulletlist.remove (i);

The key frame i>1

Public void keyreleased(keyevent e)
The key frames in q(x) — q(t)
Mainly extracts exp (c (i)

Based on h(1,1)

Extraction of hq(t + 1)

Of the corresponding m + §(q(t))
Public static void main(String[] args) {

Bullet.draw(graphics);

By calculating the s* + ¢
Plane.keyrelasedcontroldirection(e);
Pixels of two adjacent frames p (x, x (1))
Gamestate = false;

In the garden video stream v(1,1)
If (bulletlist.size() = =0){
Ax.set_xlabelCNumerical distribution’)
Ax.set_ylabel(’ Analytical spaces’)
Game.loadgame();

Obtains the target motion information
Temporal change dM1(t)

1
sinx -1 ;_1 f(x)g(x—t) 1
< 1 cosx> 1—1 _< 1 g(x)f(x—t))

x
(10)

The size of the result is easier to calculate when the
network interface is performed in this way, so it is more
commonly used in the neural network interface model of
Figure 6. Because only the edge pixels are distorted to a
certain extent in the final result, this effect can be ignored
when the size of the garden image is large. Then the nor-
malized features are input into the network in series, the
output neurons of each layer in the network can be calcu-
lated by formula, all layers adopt this calculation method,
and each neuron is connected with all neurons in the
previous layer, The weight of each feature value is auto-
matically learned, and different weights can find the com-
plementary relationship between the RGB feature and the
depth feature. When using deep neural network to analyze
the network weights, the weights of the fully connected layer
are usually used, and the analysis of the convolution kernel
weights also has certain significance.

According to the motion information M of each frame,
the key frames of the garden video can be extracted. Suppose
we extract K frames as key frames. At this time, we sort the
motion information M, and then select the garden videos
corresponding to the first K M. The frame is the key frame of
the garden video. If the total number of frames in a garden
video is T<K, the key frame extraction will not be per-
formed on the garden video, and the random nearest
neighbor interpolation method is used to expand the total
number of frames in the garden video to K frames. We can
find out the parts that are beneficial to classification by
observing the weight matrix, so as to filter and optimize the
original feature matrix through the analysis of the weights,
and obtain a more effective feature set.

—x iexi)[ 0 ][0 an
[i—x(i l+xl][x(1—i)]_[0—1]'

The data used in the previous experiments were all
obtained by simulating the network to compute MapReduce
tasks in a multimodal network, so these data samples lacked
the setting of the deadline. This section uses the results of the
initial resource recommendation model corresponding to
the number of resources running these tasks as the deadlines
for these tasks, because the result of the initial resource
recommendation model is the most reasonable estimate of
the completion time of the task without the performance
degradation of the task during the calculation process.

5.2. Simulation Realization of Garden Landscape Design.
This garden landscape design experiment shows a Map-
Reduce task with obvious performance degradation. During
the running process, the computing speed of the task and the
average CPU utilization of the virtual machines in the cluster
change with time. Around 200 seconds, the performance of
the virtual machine running this task dropped. However,
CPU utilization did not change much. The reason for this
phenomenon is that CPU utilization alone cannot be used as
a criterion for evaluating whether a virtual machine per-
formance degradation has occurred.

¥ pla) +p(b)

i In (i + xj)

G(p.i, j) = : (12)
Z _pla+b)
52 In p(i + xj)

In the first two loops of training, in order to prevent the
network from overfitting, the learning rate is set to 0.1 and
0.3, respectively. This method is called the “warmup” of
network training. In the third loop, the learning rate is set to
0.61. The subsequent loop dynamically adjusts the learning
rate according to the performance of the current model on
the test dataset. When the test accuracy of Figure 7 reaches
75%, the learning rate is set to 0.5; when the accuracy reaches
85%, it is set to 0.251. Due to the great difference between the
two images, the extracted features have different value
ranges in terms of value. If they are simply spliced and then
put into the fully connected layer, the network needs to
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difference. It may reduce the learning efficiency and final
performance of the network. Therefore, we use normaliza-
tion to normalize both features to a certain range, where the
value is between -1 and 1.

After training, the neural network interface will generate
a network weight model, which stores the value of the
network score in each network interface layer in the neural
network interface. Before training, the network score of each
layer is the values that are initialized randomly. As the
training progresses, the value of the network score keeps
approaching a certain feature extractor. After the training,
the value of these network scores is saved as the weight
model of the network. Note that at this time, the weight
model in Figure 8 is only suitable for designing multimodal

Figure 8: Random initialization distribution of multimodal data.

data, and the data of other modes cannot be designed or the
design rate is very low.

Decoding is also very efficient by using each output node
of the DNN to estimate the posterior probability of a certain
state of a continuous density HMM given the observed
features of a garden image and trained using the Viterbi
algorithm. In a deep neural network, triphones are usually
bound as a clustering state, which is used as an output unit of
the neural network to replace the monophone state. The
advantages of this are first, the DNN-HMM system is
implemented with minimal modifications to the existing
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multimodal neural network system. Second, the DNN output
unit can directly reflect the performance improvement.

5.3. Example Application and Analysis. When training
multimodal neural network data, the goal in the garden
image design system is to minimize the empirical risk in the
sense of joint probability, which involves linguistically la-
beling garden sequences and extracting garden image fea-
tures at frame level. In the large-vocabulary garden image
design system designed in this paper, word-level tags are
used instead of state-level tags. Parameter binding is often
used as a normalization method when training ASR systems
based on multimodal neural networks. It can be seen that the
accuracy of using the RGB image is higher than that of
the depth image in both the seen case and the unseen case,
which is obvious because the RGB image contains more
information.

When a network has finished learning a certain type of
data, observe its weights, and you can see that the larger
weights are useful weights for classification, while the
smaller weights are weights that are not useful for classifi-
cation. Horizontally, the accuracy obtained in the case of
using only RGB images is higher than that in the case of
unseen, but the accuracy obtained by using the depth image
is just the opposite, and the accuracy in the case of seen is
lower than that in the case of unseen. It can be seen that the
spatial geometric features represented by the depth image
will have a great auxiliary role in classifying the unseen
instances in the training set in the same class, but the dis-
advantage is that for the instances that already exist in the
training set, when testing is easy to get confused.

minteration (g, p) ={q(r-1),p(r-1), f (g— p),g(q — p)}
maxteration (g, p) ={q(r), p(r),u(q— p),v(qg— p)} .
(13)

When solving the problem of garden sequence design, it
is often solved by finding the minimum cost, in WFST by
finding the maximum or minimum weight path. The state
weights after the transition are all prepended. Doing so
gradually removes redundant paths, reducing the overall
search time. The weights are prepended, the total weight of
each path will not change, and finally minimization is done.
The prediction model based on Mode 1 can only achieve
satisfactory prediction results on the validation data set with
a small gap. However, on a validation set with a large gap, the
resulting prediction error will be very large. The prediction
model based on Modality-2 only achieved poor prediction
performance on all types of validation sets. However, the
model’s predictions did not vary much across all types of
validation sets.

The prediction model based on Mode-3 cannot be
successfully trained. During the training process in Figure 9,
the training error has not been able to converge. Finally, the
multimodal-based prediction model achieved very good
prediction results on all validation sets. The main function of
determinization is to keep the one with the smallest weight
when the transition probability of jumping out of a state is

Three-dimensional distribution
of prediction errors

FIGURE 9: Three-dimensional distribution of prediction error of
multimodal network.

equal to the input probability of entering this state. In this
way, the transition probability of each state is determined
without affecting the overall result. For each input, there is a
unique deterministic output. In order to make the value
adaptable, we choose a number slightly larger than the
average value 700, that is, the number of frames of all
samples is normalized to 700 frames, that is, the dimensions
of all frame features are normalized to 700. For statistical
features, each sample is the same value, and we also extend it
to 700 dimensions. This shows that the method in this paper
can screen out the most effective features.

6. Conclusion

Based on multimodal intelligent computing and deep neural
network theory, this paper constructs a static garden
landscape design model in space, and completes the process
of transforming garden landscapes in sequence into dynamic
garden landscapes. The simulation implementation of dy-
namic garden landscape design based on multimodal in-
telligent computing points is divided into two categories:
one is low-level dynamic garden landscape design, including
garden landscape segmentation, garden landscape tracking,
garden landscape feature extraction, and garden landscape
classification. The requirements for the algorithm are very
strict at each stage. The other is the dynamic garden land-
scape design based on the neural network interface. This
method only needs to send the garden landscape image
sequence into the designed network structure to obtain the
classification result directly. The design process is simple and
accurate. In this context, this paper selects the multimodal
depth-based dynamic garden landscape based on neural
network interface for research and analysis and uses small-
scale garden images to conduct experiments in the simu-
lation process to compare multimodal features and pure
low-noise features in different noise environments. We can
try more feature extraction methods and carry out corre-
sponding feature optimization, from which analysis can
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deepen the understanding of network behavior and draw
conclusions about network learning behavior. The experi-
mental results show that the multimodal garden image
model based on deep neural network reduces the recogni-
tion error rate of garden details, and in practical applica-
tions, the actual garden details can be realized by extracting
the above 20 modal features and restore the system and
reduce the 130-mode features extracted in large quantities to
20 modes, which can effectively reduce the complexity of the
design system.
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