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Abstract: A rapid and high-quality single-nucleotide polymorphisms (SNPs)-based method was
developed to improve detection and reduce salmonellosis burden. In this study, whole-genome
sequence (WGS) was used to investigate SNPs, the most common genetic marker for identifying
bacteria. SNP-sites encompassing 15 sets of primers (666–863 bp) were selected and used to amplify
the target Salmonella serovar strains, and the amplified products were sequenced. The prevalent
Salmonella enterica subspecies enterica serovars, including Typhimurium; Enteritidis, Agona, enterica,
Typhi, and Abony, were amplified and sequenced. The amplified sequences of six Salmonella serovars
with 15 sets of SNP-sites encompassing primers were aligned, explored SNPs, and SNPs-carrying
primers (23 sets) were designed to develop a multiplex PCR marker (m-PCR). Each primer exists
in at least two SNPs bases at the 3′ end of each primer, such as one was wild, and another was a
mismatched base by transition or transversion mutation. Thus, twenty-three sets of SNP primers
(242–670 bp), including 13 genes (SBG, dedA, yacG, mrcB, mesJ, metN, rihA/B, modA, hutG, yehX, ybiY,
moeB, and sopA), were developed for PCR confirmation of target Salmonella serovar strains. Finally,
the SNPs in four genes, including fliA gene (S. Enteritidis), modA (S. Agona and S. enterica), sopA
(S. Abony), and mrcB (S. Typhimurium and S. Typhi), were used for detection markers of six target
Salmonella serotypes. We developed an m-PCR primer set in which Salmonella serovars were detected
in a single reaction. Nevertheless, m-PCR was validated with 21 Salmonella isolates (at least one isolate
was taken from one positive animal fecal, and n = 6 reference Salmonella strains) and non-Salmonella
bacteria isolates. The SNP-based m-PCR method would identify prevalent Salmonella serotypes,
minimize the infection, and control outbreaks.

Keywords: single nucleotide polymorphisms (SNPs); Salmonella enterica; SNP-multiplex primer;
prevalence; genes

1. Introduction

Single nucleotide polymorphisms (SNPs), a common allelic variation in all organisms,
exists in whole-genome sequences of Salmonella. Identification of SNPs by comparing
sequence data from target Salmonella serovars with a reference genome sequence and
varying nucleotides are created an SNP matrix [1,2]. SNPs are highly informative and
stable markers that can be used to efficiently detect, investigate outbreaks, and reveal
evolutionary analysis of similar bacterial groups [1,2]. The advent of whole-genome
sequence (WGS) has improved the ability to investigate outbreaks by exploiting SNPs that
may vary among isolates [3].

Salmonella enterica serovars Typhi (typhoidal) are restricted to humans, whereas non-
typhoidal Salmonella (NTS) serovars are generalist pathogens with different hosts (wild
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and domestic animals), which express as asymptomatic carriers [4]. NTS Salmonella en-
terica, i.e., Enteritidis, and Typhimurium are the two major zoonotic serovars that cause
illness, including diarrhea, gastroenteritis, septicemia, and other clinical syndromes [5,6].
S. Typhimurium is a broad host range of serovar, including wild and domestic animals,
which are recognized as a leading NTS infectious agent (approximately a quarter of infec-
tions out of total NTS infections), and S. Enteritidis is recognized as the second infectious
agent [7]. S. Agona infections commonly occur in humans by consuming contaminated ani-
mal food [8,9]. The ultimate consequence is that two billion humans are annually suffering
from Salmonella gastroenteritis, leading to over 3 million deaths globally [10]. The prevalent
Salmonella is widely found in diverse sources, including environment, animal-originated
foods, water, and animals, specifically wild animals, including wild birds [11–13], wild
pigs [14], poultry and their eggs [15], and cattle [16]. It can be disseminated to humans via
ingestion of contaminated food of animal origins, including pork, chicken, eggs, beef, and
milk [17–19].

Serotyping methods can be used for the characterization of over 2800 distinct serovars
of Salmonella enterica, which are costly, time-consuming, labor-intensive, and insensitive [20].
So, a rapid and accurate detection method is essential for identifying prevalent and high-
risk Salmonella serovars. In addition, serotype information is needed for animal-originated
foods safety and the public health burden of salmonellosis. Nevertheless, serotypes may
provide important epidemiological data, as well as specific virulence characteristics with
specific contamination sources [20,21]. Therefore, public health and regulatory agencies
need a rapid, highly accurate, and discriminatory SNP-based method to detect serotypes
and outbreaks, and to link illness cases to the incidence investigations [21–23]. Thus,
to achieve serovar-specific detection of six Salmonella enterica serovar strains in a single
multiplex PCR amplification, we implement the SNP-existing genes of WGS Salmonella.
Nevertheless, several researchers have utilized mutation sites in different genes to provide
a molecular target to establish a method due to its excellent specificity [24–27].

The current research aims to identify novel sensitive, and reliable serovar-specific
targets and develop an m-PCR method for Salmonella serovars to facilitate timely preven-
tion and treatment. Several developed detection methods are conducted for Salmonella
serovars Enteritidis [28], and Typhimurium [29], since they top the list of the most prevalent
serotypes [30–32]. S. Enteritidis is the largest (between 40% and 60% of human illness)
pathogens of Salmonella infection and disease outbreaks in humans globally [30,33,34].
However, a few SNP-based molecular identification studies are conducted on multiple
serovars of Salmonella in a single PCR reaction [35]. In research, a Salmonella-serovar-specific
multiplex marker was developed using SNPs in gene fragments (flagellin gene, fljB, DNA
gyrase, gyrB, and putative stress regulatory gene, ycfQ) and evaluated for serotype-specific
subtyping of Salmonella enterica isolates. So far, to our knowledge, a few studies with SNP-
based multiplex PCR markers were developed, and detection in which widely prevalent S.
enterica serovars (typhoidal and non-typhoidal) were detected in a single reaction. There-
fore, we conducted a molecular study of six Salmonella enterica subsp. enterica serovars
(Typhimurium, Typhi, Enteritidis, S. Abony, Agona, and S. enterica) identification with a
developed m-PCR marker.

2. Results
2.1. Acquired Salmonella WGS from GenBank

Three Salmonella bongori WGS sequences were downloaded and aligned for investigating
SNP sites. Among the three, we regarded one reference (NC-015761) and two comparing
strains (NC_021870, NZ_CP006692). The accession number, SNP positions, length of reference
WGS, and compared S. bongori strains are provided in Table 1 and Table S1.
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Table 1. The developed single nucleotide polymorphisms (SNPs)-encompassing primers information based on whole-genome sequences (WGS) of Salmonella bongori.

No. c Forward Primer
(5′-3′)

Reverse Primer
(5′-3′)

Amplicon
Size (bp)

Gene (Position of SNP:
Nucleotide), Flanking
Sequences in between

Ambiguous Code b

One-Letter Amino Acid
(a.a) Code of Comparing

Salmonella bongori Strains
RKS3044/N268-08

-a.a Position of Ref.
S. bongori NCTC 12419-a.a
Code (Mutation Types) a

Respective Genes

01 GGGGAAATGTTGGCGGGA TTATGCCCGGTGCCATGG 735
SBG_RS00105 (20978: G)
CAACCTGCCDACCCC-
GATGAG

K/Y-145-D
(nonsynonymous)

Conserved hypothetical
protein (SBG)

04 TTGCTGGTCGCCTTCCTG CGTATCGCGTGGCAAGGA 863 dedA (104317: G) TCTG-
GCTGGHGCCGCTATTGA G/G-163-G (Synonymous) DedA family integral

membrane (dedA)

06 CGCGTGATGGAGCAGGAT CCTCACACAGGCGCTGAA 674 yacG (146357: T) CCAGAC-
GACBGCTTTACCACA A/P-15-A (Synonymous) Conserved hypothetical

protein (yacG)

09 GGCGTTGAAGAAGCAGCG ACGGCCTACCCAGGTGAT 799
mrcB (210347: C)
CGCCAGCGGBG-
GAAATCGCGC.

G/G-626-G (Synonymous) Penicillin Binding
protein (mrcB)

11 TTCTGGCCAGCGACCTTG TGCCAGTTTCAGCCACCC 714 mesJ (263017: G) TGAACT-
GCGBCAACCGCGCGC. R/R-349-R (Synonymous) tRNA (Ile)-lysidine

synthase (mesJ)

12 ATTGGCACGCTGTCAGCT TGCCGGTAAAAGCACGCT 681 metN (270836: G) CGGATC-
GAGGBCGCTGGTCGC. A/A-169-A(Synonymous) Methionine import

ATP-binding protein (metN)

13 GCTGTACCTGCCGACTGG GTTCCCCACGGGCTATGG 797 rihB (576128: T) GCGTAT-
GACDCTGCAGTACG. T/T-69-T (Synonymous)

Pyrimidine-specific
ribonucleoside
hydrolase (rihB)

14 TCCCCTGTGTTTCGACGC ACGCCGGATAAGACGCTG 682 rihA (626519: G) CTCG-
GCAGCBGCGTCCAGTT. P/P-167-P (Synonymous)

Pyrimidine-specific
ribonucleoside
hydrolase(rihA)

15 GCGGGAAACTCCTGTGCT CAACACCCGGCAGCAAAC 766 modA (683698: C) ACTA-
CACCGVCGCTTCATGG. R/R-104-R (Synonymous) Molybdate-binding

periplasmic protein (modA)

16 ACGGTCTGGGTGAGGTGT CCACCGCATCAGAACCGT 836
modA (747388: T)
TGCGGCGGAD-
TATAAAAAAGA.

D/D-47-D (Synonymous) Molybdate-binding
periplasmic protein (modA)

18 GCATCTGGATCTGCGCCA TCGGCGACAAAGGTTCCC 751 hutG (766287: G) AATGCCG-
GCBTTTCCGCCCC. A/A-252-A (Synonymous) Formimidoylglutamase (hutG)

19 TCACGGCGGGTAAGAGGA ATGAGATTCGCCAGGCCG 666
yehX (792736: T)
GGCTTTGCCDAGCT-
GACTTT.

S/S-397-S (Synonymous)
Hypothetical ABC
transporter
ATP-binding (yehX)
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Table 1. Cont.

No. c Forward Primer
(5′-3′)

Reverse Primer
(5′-3′)

Amplicon
Size (bp)

Gene (Position of SNP:
Nucleotide), Flanking
Sequences in between

Ambiguous Code b

One-Letter Amino Acid
(a.a) Code of Comparing

Salmonella bongori Strains
RKS3044/N268-08

-a.a Position of Ref.
S. bongori NCTC 12419-a.a
Code (Mutation Types) a

Respective Genes

21 CTGCTTAAACGGCGCGTC TGGTGCGGCATGATCCTG 738
ybiY (827585: T)
TGAGCCAGGHTG-
GAAAAATGG

N/Y-87-S (Nonsynonymous) pyruvate formate-lyase
3-activating enzyme (ybiY)

22 CCGAACAGACGGCTCAGG CCGGACATCAAGGGTCGC 681 moeB (828767: C) GACGC-
CTGCVCCGGCCAGATA G/G-52-G (Synonymous) Molybdopterin biosynthesis

MoeB protein (moeB)

24 GTAGTGTGGCGGGCTGAG CTGGTAAGCGTGCTGGCC 801
sopA (1032435: T)
CTCATAAAGHGCCGCG-
GCTTT

A/A-494-A (Synonymous)
Candidate type three
secretion system effector
protein (sopA)

a Reference genome of Salmonella bongori str. NCTC 12419 (NC_015761), the comparing strains (S. bongori serovar 48:z41:-str. RKS3044 (NZ_CP006692), and S. bongori N268-08 (NC_021870)
and ‘1-letter’ amino acid codes, K = Lysine, Y = Tyrosine, G = Glycine, A = Alanine, R = Arginine, T = Threonine, P = Proline, D = Aspartate, S = Serine, N = Asparagine; b Ambiguous
codes indicate D = A/G/T; B = C/G/T; V = A/C/G; H = A/C/T; c indicates primer code no.-(such as ‘01-Sbon’, ‘04-Sbon’, ‘06-Sbon’and so on, a total 15 primer sets) which acquired
based on the suitable primers among multiple primers generating by bioinformatics software and we considered the selected primer indicators i.e., amplicon length, G: C content,
synonymous and nonsynonymous amino acid mutation in a protein-coding gene sequence, annealing temperature, the position of the SNPs sites, and so on. SNPs sites are marked by
bold International Union of Pure and Applied Chemistry (IUPAC) codes in flanking sequence (D = A/G/T; B = C/G/T; V = A/C/G; H = A/C/T).
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2.2. Searching SNP Sites from NGS of Salmonella Genome Alignment and Design Primers Based
on SNP Sites

The Salmonella genome sequences were obtained from NCBI and compared to the
reference sequences. We found 140 SNPs on the alignment of S. bongori serovar genomes
(Table S1). Within the SNPs, we detected a number of SNPs (functional, high-quality SNPs
based on nonsynonymous and synonymous mutation) on the aligned WGS of Salmonella
using Bioinformatics software. We thus selected 15 sets of SNP sites surrounding primers
based on 13 genes of the Salmonella genome (Table 1). Detailed information on SNPs with
the position of ambiguous codes and amino acids in the respective genes of a reference
Salmonella strain (NCTC 12419) is provided in Table 1.

2.3. Amplified Target Salmonella Serovars with Newly Designed Encompassing-Primer Sets

We developed 15 sets of SNP markers (666–863 bp) from the NGS data analysis of
Salmonella genomes (Table 1). The amplified PCR products with PCR results (amplicon
length) are marked in Figure S1, which describes the amplification of PCR with 15 primer
pairs. Among 15 primers, the six primers (09-, 12-, 15-, 16-, 18-, and 24-Sbon) were amplified
with desire genes of target Salmonella, whereas six primers (04-, 06-, 11-, 14-, 19-, 21-,
22-Sbon) were not amplified with desire genes of Salmonella (Figure S1 and Table S2). Five
primer pairs (1-, 9-, 13-, 14- and 24-Sbon) were amplified in the first PCR, and seven primer
sets (11-, 12-, 15-, 16-, 18-, 19-, 21-Sbon) were amplified in the second PCR amplification.
However, the three (4-, 6, and 22-Sbon) primer sets have not produced any band in both
amplification (first and second PCR) (Figure S1 and Table S3).

2.4. Justification of SNP Sites on Target Salmonella Gene Sequences and Design with
Serotype-Specific SNP Primers

Among the 15 primers, 12 primers were amplified at the target band properly during
the first (five primers) and second PCR (seven primers), and the rest of the three primers
failed to produce any band (Table S2). For instance, the forward primer (12-Sbon-F): 5′-
ATTGGCACGCTGTCAGCT-3′ and the reverse primer (12-Sbn-R): 5′-TGCCGGTAAAAGC-
ACGCT-3′ were used to amplify the target band (681 bp) and desired SNP positions of
reference Salmonella strain (270836: G of S. bongori, NC-015761, red color “G’ indicates
a SNP) of the methionine import ATP-binding protein (metN) gene (Table 1). First, the
amplified metN gene products of desired six Salmonella serotypes were sequenced, and the
amplified sequences were aligned. Then we checked SNP positions on the aligned gene
sequences. Based on SNPs on the aligned gene sequences, 23 Salmonella serotype-specific
SNP primers were designed from 13 genes where at least one wild SNP (Tables S3 and S4).

2.5. Salmonella Serotype-Specific-SNP Primers Design Based on the Appropriate SNP Sites on the
Aligned Gene Sequences

The designed 23 sets of SNP-based primers (242–670 bp) were created for confirmation
by amplifying the desired Salmonella serovars (Figure 1 and Table S4). One example of the
design of the SNP-based primers is shown in Figure S2. SNP-encompassing primer pair
‘16-Sbon’; the forward primer was 5′-ACGGTCTGGGTGAGGTGT-3′ and reverse primer
5′-CCACCGCATCAGAACCGT C-3′. The amplified products with a marker ‘16-Sbon’-
amplified modA gene of target Salmonella were aligned. We observed a few SNP nucleotides
on the aligned gene sequences. Based on the SNP sites, five primer sets were developed on
the amplified gene (modA) sequences (Figure S2 and Table S4). We thus developed the SNP-
based marker ‘ModA-1-F/R’, 24-mer forward 5′-ACCCCTGAGATTATCGTTATACTG-3′

and 19-mer reverse primer 5′-ATCGCCCACTGCCAGATGT-3′. In the designed primer, we
considered at least two SNPs e.g., forward primer ranges from 130 to 153 (the position of
wild SNP ‘G = 153′ and transition mutated SNP site “T = 151; C > T”), and reverse primer
ranges from 598 to 616 (the position of wild SNP ‘T = 598’ and the transition mutated
SNP site was “C = 600; T > C”). The target amplified product size was 490 bp (Table S4).
A square shape marks the wild SNP and a square shape with black shaded marks the
incorporated SNP (Figure S2). Thus, 23 SNP-based markers of Salmonella serotype-specific
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primers were used to amplify the target six Salmonella serotype strains. Finally, we confirm
the performance of the developed SNP marker with the desired band of target Salmonella.
The detailed information of six target Salmonella gene sequences, their alignment pattern,
and designed SNP-based 23 primers were provided in Supplementary Tables S3 and S4.
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Figure 1. A Figure depicts the PCR amplification of six target Salmonella serovars with 23 SNP-based
primers. ‘M’ denotes DNA 100 bp marker. The gel lane numbers were presented in each section
(1–6): lane No.1 = Salmonella enterica subspecies enterica serovar Typhimurium, S. Typhimurium,
(NCCP-14760); No.2 = S. Enteritidis (NCCP-14545); No.3 = S. Agona (NCCP-12231); No.4 = S. enterica
(NCCP-15756); No.5 = S. Typhi (NCCP-14641); No.6 = S. Abony (BA1800061). Detailed primer
sequence information is provided in Table S4. Here, all the primers were presented on top of the
gel image, the target length of each primer was provided in a white shaded box, and the desired
band of each primer of target Salmonella was marked by a black circle. We selected only the single
intense band (primer, mrcB-1) with the SNP-based single-plex multiplication for further analysis.
The primers produce a non-target light band (SBG-4F/R), a double band (SBG (2)-4); and multiple
bands [(SBG-2(2); SBG (2)-2; SBG (2)-1)]; which were not considered for the identification of target
Salmonella serovars.

2.6. SNP-Based Multiplex PCR

The amplification with 23 SNP-based markers with target 6 Salmonella serovars is
time-consuming. Each marker was amplified with all target Salmonella strains, a limitation
of the developed assay. However, it overcame the expenditure and time for repeated PCR
amplification of the SNP-based triplex-marker assay (S1 and S2) (Figure 2 and Table 2).
Therefore, we developed a Salmonella serotype-specific detection primer set (m-PCR) in a
single reaction. In addition, the three primer pairs (SBG-2, ModA-3, SBF-(2)-6) amplified
fragment sizes were approximately 498, 373, and 300 bp against S. Enteritidis, S. Ag-
ona, and S. Abony, respectively (S1). On the contrary, the three primer pairs (mrcB-1-4,
ModA-4, and mrcB-5) amplified fragment sizes were approximately 363, 242, and 637 bp
for S. Typhimurium, S. enterica, and S. Typhi, respectively (Figure 2 and Table 2).
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specific Salmonella primer set (S1 indicate the three distinguish band of 2, 3, and 6 no lane; and S2
indicate the rest of three distinguish band of 1, 4, 5 no lane for clear visualization with the necked eye).
The band ‘M’ denotes the DNA 100 bp marker. The lane numbers were presented in each section (1–6):
the gel lane no = Salmonella enterica subspecies enterica serovar (Typhimurium) name (reference no,
target length) of S1: lane No.2 = S. Enteritidis (NCCP-14545; 498 bp); No.3 = S. Agona (NCCP-12231,
373 bp); No.6 = S. Abony (BA1800061, 300 bp) and S2: lane No.1 = S. Typhi (NCCP-14641, 363 bp);
No.4 = S. enterica (NCCP-15756, 242 bp); No.5 = S. Typhimurium (NCCP-14760, 637 bp).

Table 2. The developed multiplex primers based on single nucleotide polymorphisms (SNPs) of the
whole genome of Salmonella.

Gene Primer Sequence (5′-3′) # (Mer bp) Size (bp) Salmonella
Serovar Strains m-PCR

RNA polymerase sigma
factor FliA (fliA)

SBG-2F TTACCAGGAAGAGCTCGAC 19
498 Salmonella

Enteritidis

S1

SBG-2R CGGTGCCATGGCTCATCTCG 20
Molybdate-binding
periplasmic protein (modA)

ModA-3-F TCGCAGGGGCGACATTATCTTCCA 24
373

Salmonella
AgonaModA-3-R AGACGAATCCAGTCCGTTTTGCTA 24

E3 ubiquitin-protein ligase
sopA (sopA)

SBG (2)-6F GCTGGTTCAGCTCCCCATTA 20
300

Salmonella
AbonySBG (2)-6R CGGACTGGACAACCCGCTCC 20

Penicillin binding
protein (mrcB)

mrcB-1-F TGGCGTTAGGTCTACCGTCA 20
363

Salmonella
Typhi

S2

mrcB-1-R TTGTCGTCCCGGTTTTATCG 20
Molybdate-binding
periplasmic protein (modA)

ModA-4-F TTACGCCTGGTCGCAGGGACA 21
242 Salmonella

entericaModA-4-R CATTTCTGATCAGCAGAGATGGAG 24
Penicillin binding
protein (mrcB)

mrcB-5-F GGCGGAGCCGCAGTATACT 19
637

Salmonella
TyphimuriummrcB-5-R TGTCGTCCCGGTTTTACTCA 20

# Red color indicates the natural SNP and blue color indicates the alterd/artificial mutated nucleotide (transition
and transversion).

2.7. Validation of SNP-Based Multiplex Marker with Isolated Salmonella Strains from
Wild Animal

For the efficiency test, 21 Salmonella were tested with m-PCR, but only 8 Salmonella
isolates from wild animal feces were identified and evaluated with SNP-m-PCR. The
remaining Salmonella strains were not identified with m-PCR because these Salmonellae
were not included with the target six Salmonella serotypes. Figure 3 depicts the multiplex
PCR marker (S1) generating band drawn to the isolate’s lane no. from 1 to 9, whereas the
m-PCR (S2) generating band drawn to the isolate’s lane no. from 10 to 16. The 5 Salmonella
isolates from leopard cat (Prionailurus bengalensis) fecal samples were observed in lanes 5 to
9. These five isolates were well-matched (target band 300 bp) to reference Salmonella Abony
(BA1800061). Moreover, the Salmonella isolates in lanes no.14 and 15 were detected from
P. bengalensis. The only isolate in lane no.16 was detected from magpie bird (Pica sericea)
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which was well-matched (242 bp) to Salmonella enterica subsp. enterica NCCP-15756 strain
(Figure 3).
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ter cloacae (NCCP-14621); No.14 = P. bengalensis; No.15 = P. bengalensis; and No.16 = Pica sericea.

3. Discussion

Salmonella, especially NTS Salmonella Typhimurium, Enteritidis are the most preva-
lent and common serovars [36] for the gastrointestinal disorders resulting from cross-
contamination of wild and domestic animal feces [4,37], consumption of animal-originated
foods, fresh agricultural produces, i.e., raw fruits and vegetables [38]. In the context of
public health, detection of a foodborne outbreak source is essential to remove carrier food
items from the market. Molecular investigation and typing of Salmonella, the SNP-based
typing techniques are essential for identifying the source of a foodborne outbreak. However,
Salmonella serovars identification methods are based on mainly three basic mechanisms,
including restriction fragment analysis of Salmonella DNA, PCR amplification of target
genes, and SNP-based identification at specific loci in the whole genome sequence [6,20,28].
To date, several molecular approaches have been applied to detect Salmonellae, such as
PFGE [39], phage typing [40], and multilocus sequence typing (MLST) [41], but they
have some limitations. However, SNP-based molecular techniques have recently been
proposed as a cost-effective identification method of various bacterial species, including,
Salmonella [42], E. coli [43]; Mycobacterium [44]. The SNPs have discrimination power for
comparing of bacterial subspecies and at the serovar level using different bioinformatics
software [45]. Thus, SNPs could be used as an alternative method to detect outbreaks [2],
surveillance of foodborne pathogenic Salmonella [46,47], determine models for future out-
breaks, and even build an evolutionary and phylogenetic relationship within similar
bacterial strains [48,49].
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In this study, we searched high-quality SNPs in the coding regions of a respective
WGS by comparing each other (reference and compared strains). The quality filtered
nucleotide matrix is generated (Table S1). Furthermore, in this study, 15 primer sets were
selected from 13 genes of the Salmonella genome-wide searching based on the encompassing
SNP sites (Table 1). Primers were designed on the aligned WGS of 13 genes mentioned
above (appropriate SNP sites on the aligned genes), approximately 666–863 bp (Table 1).
However, only 12 primer sets were amplified with the first and second single-plex PCR,
and the rest of the three (4-, 6, and 22-Sbon) primer sets could not produce any band
during both PCR cycles (Figure S1). The amplified PCR products were sequenced and
aligned for searching suitable SNPs to make serotype-specific primer sets (wild and altered
bases of 3′ end of each primer, thus, 23 sets were selected based on aligned sequences).
Finally, SNP-containing 6 primers sets from four genes (fliA, modA, sopA, and mrcB) were
selected for the widely found prevalent six Salmonella serotypes detection in an SNP-based
m-PCR marker (Table 2). A study used serotype-specific SNPs to identify five Salmonella
serotypes [42]. Guard et al. [50] postulated that the allele-specific primer was developed
based on > 80 SNPs in an adenylate cyclase gene (cyaA) of Salmonella for the detection of
S. enterica serovar strains [50]. Roumagnac et al., 2006 conducted a study of approximately
82 SNPs were detected in the partial gene sequences (n = 99) of worldwide (n = 105)
Salmonella Typhi isolate, and these SNPs data were used for resolving clear identification of
Typhi isolates [51].

This study developed SNP-based primers based on SNPs (wild or mutated transition
or transversion) at the 3′ end aligned sequence sites. The introduction of altered bases
(transition or transversion) at the end (generally 3′ end) of each primer (except reverse
primer SBG-2R) might have changed the codon, which was ultimately used as a target for
PCR primer [52–54]. This introduction of a mismatched transversion (A-T), or transition
(A-G) base pair at the 3′ end sequence could enhance the specific amplification during
PCR [55,56]. Thus, transversions (G-C, G-T, A-T, A-C) and transition (A-G, T-C) mutations
are required to improve the allele-specific amplification. Based on altered bases (transition
and transversions), we developed SNP primers (23 sets, 242–670 bp) for evaluation by
amplifying the desired 6 Salmonella serovar strains (Figure 1 and Table S4). In addition, the
melting temperature (Tm) generally depends on the GC content of the primer sequences,
which is required for PCR conditions adjustment. By incorporating altered bases, the melt-
ing temperature of allele-specific SNP-based primers can be fixed to PCR conditions [57,58].
Similarly, the Salmonella detected primers were designed based on wild and an altered
nucleotide at the 3′ end SNP sites (generally within the three bases) (Table 2 and Figure S2).
SNP-based PCR marker was developed for the identification of desire Salmonella in a single
reaction. An efficient test was conducted with the desired Salmonella serovars by PCR
amplification of multiplex PCR marker and adjusted to PCR conditions (Table S5). In a
study, the SNP-based phylogenetic analysis of S. Enteritidis whole-genome proved that
these most prevalent serotypes were clustered in the same lineage, which evolved from the
poultry flocs in Brazil [59].

Recently, software algorithms have been used to explore SNP positioning from as-
sembled or raw genome sequences [60]. These new techniques have become increasingly
popular for the detection of Salmonella compared to other methods. In several investiga-
tions, the new technique (SNP-based) has already been applicable in retrospective research
studies [52,61,62]. In a study, ten target genes were used to analyze SNPs with common
Salmonella serovars (Enteritidis, Typhimurium, and Heidelberg). They observed the forty-
five nonsynonymous mutations and two most common transition mutations (T↔C and
A↔G), which existed in all Salmonella isolates [63]. Similarly, we used 13 genes with two
nonsynonymous mutations encompassing primers to sequence all six targets of Salmonella
serovars for searching SNPs and develop an SNP-based m-PCR marker. Moreover, the
most common transition mutations (T↔C and A↔G) were observed in this study (Table 1
and Figure S2).
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Den et al. showed that SNP in WGS is a robust technique compared to multiple-locus
variable-number tandem-repeat (VNTR) analysis (MLVA) and pulsed-field gel electrophore-
sis (PFGE) [64]. In a research, the serovar of Salmonella Pullorum was detected by serotype-
specific PCR of target gene rfbS (paratose synthetase), where a polymorphic site exists at
the position of 237, and this SNP-based gene was used to detect and discriminate efficiently
between the Pullorum and non-Pullorum [56,58]. Moreover, an allele-specific detection
of S. Enteritidis was possible based on the SNP site (at position 272 in the plasmid viru-
lence spvA gene of Salmonella) [65]. Similarly, serotype-specific PCR amplification of four
genes (fliA; modA, sopA, and mrcB) was used to identify of target six Salmonella serotypes,
including Enteritidis, Agona, S. enetrica, Abony, Typhi, and Typhimurium, respectively,
in our study (Table 2). In addition, we observed 870 and 140 SNPs on the whole genome
of aligned S. enterica and S. bogori, respectively (Table S1). SNP encompassing regions of
aligned 13 gene sequences were selected for further sequencing with target six Salmonella,
and SNPs-containing four genes (fliA; modA gene, sopA, and mrcB) were validated for the
SNP-based multiplex PCR marker. However, PCR enzymes are capable of proofreading
activity to correct the mismatch bases [66], but DNA polymerase can increase primers less
efficiently (100 to 10,000 folds) compared to matched and mismatched bases [67]. Fur-
thermore, simultaneous incorporation of mismatched bases at the 3′end of each primer
(except reverse primer SBG-2R) of third position bases prevented the accurate amplification
of targeted Salmonella (Table 2). Thus, the detected SNPs could be applied to develop a
proper, rapid, alternative, and cost-effective identification method that may contribute to
significant improvements in the diagnosis of Salmonella.

Species identification with sequence matched to the NCBI, while only sequence cannot
identify the Salmonella serovar strains due to their high similarity. For serovar identification,
we need multiplex PCR. However, our limitation was the developed SNP-based m-PCR,
which could not detect all identified Salmonella spp. from wild-animal fecal samples beyond
the limited serotypes (only six S. enterica subsp. enterica serovars). The study’s developed
m-PCR (S1 and S2) only detected the six serovars. Furthermore, the proportion of primers
mixture was varied owing to possible interference between primers. The S1 and S2 primer
sets were separated in this study because there was a difference in the ratio of primers in
the primer mixture.

With the developed m-PCR, we should need to verify a number of Salmonella serovars
from different sources, and further studies should be conducted with accurate serovar
determination in the future.

4. Materials and Methods
4.1. Acquired Salmonella Whole-Genome Sequences (WGS) from GenBank, Searched SNPs, and
Designed SNPs-Encompassing Primers

A total of 13 Salmonella WGS sequence data, 10 S. enterica, and 3 S. bongori strains,
were obtained from GenBank (ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/; accessed
on 1 August 2022), including reference strain, S. bongori NCTC 12419 (NC-015761) and
S. enterica. serovar Typhimurium str. LT2 (NC-003197) (Table S1). According to our
published article, SNP-based primers and protocols were developed [43]. We used the
MUMer package (v3.19, NUCmer algorithm, National Institutes of Health, Bethesda, MD,
USA) to investigate the SNP sites on the WGS [61]. SNPs-surrounded primers were
developed based on the reference and comparing Salmonella strains (Table 1). These primer
sets (n = 15, SNP encompassing forward and reverse primer sets) were selected based
on coding gene sequences, mutation pattern, primer length, G: C content, annealing
temperature, the position of the SNPs sites, and so on. In addition, each primer (15 primer
sets) was amplified with single plex PCR with the reference target of six S. enterica serovars.

ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/
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4.2. Selection and Isolation of Genomic DNA from Serotype-Specific Target Salmonella
Serovar Strains

The target six Salmonella enterica serovar strains were sequenced by using designed
encompassing-primers. For sequencing of target S. enterica serovars (n = 6), a single plex re-
action (20-µL volume) was conducted with the respective primers sets (10 pmol/µL), 10 ng
of genomic DNA, 2 µL 10 × buffer, 2 µL dNTP, 0.5 µL (5 unit/µL) Taq DNA polymerase
(Qiagen, Hilden, Germany). The amplification reaction was completed in a Bio-Rad T100
thermal cycler (Hercules, CA, USA) programmed with first and second-time PCR cycles
consisting of amplification at 95 ◦C for 5 min, followed by 30–35 cycles of denaturation
for 30 s, annealing at 55 ◦C for 30 s (first PCR), and annealing at 50 ◦C for 30 s (second
PCR), polymerization at 72 ◦C for 1 min 30 s, and final elongation at 72 ◦C for 10 min.
After amplification, 5 µL of each PCR product was analyzed on a 1.5% (w/v) agarose
gel. The amplified PCR products were purified (Gel & PCR Purification Kit; Biomedic
Co., Ltd., Seoul, Korea) and sequenced using a BigDye Terminator v3.1 Cycle Sequencing
Kit (Applied Biosystems, Foster City, CA, USA) and ABI 3730 DNA Analyzer (Applied
Biosystems, Foster City, CA, USA).

We carefully checked one or more SNP positions on the multiple aligned gene se-
quences of each target reference Salmonella (Table S3). The designed primers were amplified
efficiently at the target band with first and second PCR cycles. Furthermore, if SNP-based
encompassing primers were produced ambiguous, overlapping/non-target peaks, then
they were removed for further analysis. Salmonella serovar-specific-SNP markers were
designed to discriminate single base changes through experimental optimization [30,32,33].
However, Salmonella serotype-specific SNP primers were designed on the aligned gene
sequences where at least one wild-type and one altered SNP were present in each primer
set. Furthermore, if SNP-based encompassing primers produced ambiguous, overlap-
ping/non-target peaks, they were removed for further analysis. Salmonella serovar-specific-
SNP markers were designed to distinguish any base changes (SNP) by the experimental
optimization [30,32,33].

All the 13 different genes in a Salmonella genome such as conserved hypothetical
protein (SBG); dedA family integral membrane (dedA); conserved hypothetical protein
(yacG); penicillin-binding protein (mrcB); tRNA(Ile)-lysidine synthase (mesJ); methion-
ine import ATP-binding protein (metN); pyrimidine-specific ribonucleoside hydrolase
(rihA, rihB); molybdate-binding periplasmic protein (modA); formimidoylglutamase (hutG);
hypothetical ABC transporter ATP-binding (yehX); pyruvate formate-lyase 3-activating
enzyme (ybiY); molybdopterin biosynthesis MoeB protein (moeB); candidate type three
secretion system effector protein (sopA) including SNP sites, were amplified using the
target six Salmonella serovars. The amplified PCR products of the target Salmonella were
re-sequenced and aligned using BioEdit sequence alignment editor, version 7.0.0 (Tom
Hall, North Carolina State University, United States). The Salmonella detected primers
were designed based on a wild and an altered nucleotide at the 3′ end SNP sites (transi-
tion/transversion mutation). Thus, all the designed primers were further analyzed using
NetPrimer (https://www.premierbiosoft.com/netprimer/ accessed on 1 August 2022) to
choose the best primer pairs.

4.3. Salmonella Serotype-Specific SNP-Based Multiplex-PCR Marker

The SNP-based serotype-specific primers were designed to identify the target Salmonella.
However, the amplification of all six target Salmonella serotypes with all 23 SNP-based
primers is time-consuming. To overcome the limitation of repeated PCR amplification, we
developed an SNP-based multiplex PCR kit to identify target six Salmonella serovars in a
single reaction.

Multiplex (S1 and S2) PCR indicates the difference in PCR mixture ratio (mixture of
three primers sets), which were conducted with similar PCR conditions (annealing reaction
at 60 ◦C for 30 s, 30 PCR cycles, see below). The adjusted concentration of the primer
mixture of S1 (three primer sets, SBG-2F/R, ModA-3-F/R, and SBG(2)-6F/R) was 1:1:1

https://www.premierbiosoft.com/netprimer/
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while the primer mixture of S2 (mrcB-1-F/R, modA-4-F/R, and mrcB-5-F/R) was 1:3:3,
respectively. From a mixture of each forward and reverse primer, only 3 µL PCR mixture
(10 pmol/µL) was used in a final volume of 20 µL. A multiplex reaction (20-µL volume) was
conducted with the respective primer’s mixture 3 µL (10 pmol/µL), 5 ng of genomic DNA
(5 ng/ul), 10 µL Hot Start Taq master mix including Hot Start Taq DNA Polymerase, dNTPs,
MgCl2, KCl, and stabilizers (Takara Bio Inc., United States), and PCR grade water 6 µL.
The multiplex PCR reaction was conducted for 5 min at 95 ◦C, followed by denaturation
95 ◦C for 30 s, annealing reaction at 60 ◦C for 30 s, extension at 72 ◦C for 30 s, and final
extension at 72 ◦C for 5 min and holding temperature at 4 ◦C for an unlimited period. The
amplification reaction was completed in a Bio-Rad T100 (Hercules, CA, USA).

4.4. Validation of SNP-Based Multiplex Marker with Reference Strains and Laboratory Isolated
Salmonella Strains

The isolated laboratory Salmonella from wild-animal fecal samples and reference
bacteria strains were tested with multiplex PCR marker for efficiency tests. The cross-
reaction was observed with the reference Salmonella strains (n = 6) and the laboratory
Salmonella isolates (n = 21) from wild-animal and bird feces. Wild animal and bird fecal
(N = 699) samples were collected from various agricultural regions and mountainous areas
over three years (2015–2017) across South Korea (unpublished data). From these wild-
animal fecal samples, 21 Salmonella-positive fecal based on traditional cultural, biochemical,
serological, and molecular approaches according to the methods described earlier [68–70].
In a cultural process, a non-selective buffer peptone water (BPW) was used for primary
enrichment of Salmonella at 37 ◦C for 18–24 h. One milliliter (1000 µL) of primary enrichment
broth was added to 9 mL of Muller Kauffmann Tetrathionate enrichment broth (Difco,
Becton Dickinson, NJ, USA) at 40–44 ◦C for 18–24 h, while 100 µL of primary enrichment
broth culture was incubated in 10 mL Rappaport-Vassiliadis (RV) enrichment broth (Oxoid,
UK) at 37 ◦C for 18–24 h. After primary and secondary enrichment, 10 µL of each sample
was streaked on Salmonella-selective, Salmonella-Shigella (SS) and Hektoen enteric (HE)
agar media (Difco, Becton Dickinson, United States), and incubated at 37 ◦C for 24–48 h. A
presumptive Salmonella colony from SS and HE agar media was identified by amplifying
the invA and iroB primer sets, the genes (invasion gene, invA, and iron-regulated virulence
gene, iroB), which are shared by all Salmonella species (35, 36). The identified Salmonella
isolates from wild animal feces were tested and evaluated by the developed SNP-based
m-PCR primers in this study. In addition, sensitivity tests were also conducted with Gram-
negative and Gram-positive bacteria (data not shown). We provided the image of gram
negative six Salmonella serovar strains.

Nevertheless, the sample collections were conducted under permission and the guideline
of the local government. In addition, the protocol of this experiment was permitted by the
Institutional Animal Care and Use Committee of Kangwon National University, Chuncheon,
Korea. The approval number was KW210701-1. Moreover, the obtained Salmonella spp.
sequences were compared with similar deposited sequences in NCBI, BLASTN2.2.31+ [71]
analysis. The genetic sequence data (21 isolate-sequences and 6 reference sequences) were
deposited into the NCBI with the accession numbers (OM793284-OM793310).

5. Conclusions

So far, we know few SNP-based multiplex PCR detection methods in which widely
prevalent six S. enterica serovars were detected in a single reaction. In this stud, the de-
veloped m-PCR test could be applied to investigate and distinguish serovars in a single
PCR tube. The newly developed m-PCR marker is a novel, simple and reliable method
for the identification of widely found six S. enterica subsp. enterica serovar strains (ty-
phoidal and nontyphoidal Salmonella). However, to ensure the high specificity of developed
mPCR, further analysis should be conducted with a number of sample sources Salmonella
serovars and other bacterial strains (wild animals, foods, food animals, environmental, and
clinical samples).
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6. Patents

Yung Chul Park, M.M. Rahman, and S.J. Lim. Development of multiplex PCR kit and
detection of Salmonella. Kangwon National University, Korea. Patent No: 10-182857.
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(SNPs) encompassing PCR amplification of six target Salmonella with 15 primer sets; Figure S2: The
alignment of “16-Sbon” primer amplified gene sequences of (Molybdate-binding periplasmic protein,
modA) of target six Salmonella serotypes; Table S1: A. Information of single nucleotide polymorphism
(SNPs) sites on the alignment of the reference and comparing Salmonella bogori strains. B. The
position of single nucleotide polymorphism (SNPs) sites on the alignment of reference and comparing
Salmonella enterica subspecies enterica serovar strains; Table S2: Information of success rate with
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subspecies enterica serovars, their amplified sequences with encompassing primers, alignments of
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SNP-based primers.
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