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Metal dyshomeostasis plays a significant role in various neurological diseases such as
Alzheimer’s disease, Parkinson’s disease, Autism Spectrum Disorders (ASD), and many
more. Like studies investigating the proteome, transcriptome, epigenome, microbiome,
etc., for years, metallomics studies have focused on data from their domain, i.e.,
trace metal composition, only. Still, few have considered the links between other
“omes,” which may together result in an individual’s specific pathologies. In particular,
ASD have been reported to have multitudes of possible causal effects. Metallomics
data focusing on metal deficiencies and dyshomeostasis can be linked to functions
of metalloenzymes, metal transporters, and transcription factors, thus affecting the
proteome and transcriptome. Furthermore, recent studies in ASD have emphasized
the gut-brain axis, with alterations in the microbiome being linked to changes in the
metabolome and inflammatory processes. However, the microbiome and other “omes”
are heavily influenced by the metallome. Thus, here, we will summarize the known
implications of a changed metallome for other “omes” in the body in the context of
“omics” studies in ASD. We will highlight possible connections and propose a model
that may explain the so far independently reported pathologies in ASD.
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INTRODUCTION

The Metallome
Many metals are found in the human body. Although the essentiality is evident for K, Na,
Ca, Mg, Fe, Zn, Cu, Mn, Mo, and Co, research is ongoing to decipher which other metals
can be considered toxic, neutral, or beneficial to humans. The body’s metal composition varies
between organs, tissue, and even on the subcellular level. Metals such as K, Na, Mg, and
Ca are required in higher concentrations than trace metals such as Fe, Zn, Cu, and Mn.
However, although trace metals may only be needed in small quantities, they are essential
in metabolism, growth, and development (Zoroddu et al., 2019). Each metal may function in
various processes as a cofactor for proteins such as enzymes and signaling ions. Some may
also play a role in redox reactions accepting and donating electrons. Others play a structural
role in biological molecules, while again others aid ligand binding to specific receptors (Mertz,
1998). The presence and concentration of each of the metals within a cellular compartment,
cell, tissue, organ, etc., establishes the metallome. The metallome consists of “free” metal ions
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and metals in metal-containing molecules and proteins such
as metalloproteins and metalloenzymes. Metal localization
and levels are highly controlled by processes regulating
metal homeostasis.

Metals with biological functions are also referred to as
biometals. Each biometal has a network of transporters and
buffering proteins involved in the uptake and transport that
facilitate the process carried out by them. Notably, an imbalance
of one particular trace metal is unlikely in disease states.
Typically, the concentrations and ratios of multiple trace metals
are impacted if one metal concentration is altered. An example
of such an event is apparent in individuals with irritable
bowel disease (IBD). Zinc concentrations are typically decreased
from 15 to 40% in affected individuals. Conversely, copper
concentrations are increased in these individuals (Schneider et al.,
2020). This observation is in line with many studies, including
research on ASD, that show that zinc and copper interact at the
mucosal level and in the blood, where the ratios are inversely
related (Li et al., 2014).

Metal homeostasis can be influenced by multiple factors
such as genetic mutations but also by environmental factors
such as nutritional intake, stress, and immune-modulatory
events (Greenough et al., 2013; Grabrucker, 2016). Alterations
in an individual’s metallome have been shown for the major
neurodegenerative diseases such as Alzheimer’s and Parkinson’s
disease, and Amyotrophic lateral sclerosis (ALS) (Scholefield
et al., 2020). In the future, specific metal profiles may even
be utilized as biomarkers of particular illnesses. They may be
targeted to alleviate symptoms, and preventative measures may
be put in place to counteract dyshomeostasis. In particular,
biometals have gained attention in relation to ASD (Hagmeyer
et al., 2018; Yang et al., 2019a; Nakagawa and Yamada, 2021).

Metal Dyshomeostasis in Autism
Spectrum Disorders (ASD)
Studies have consistently implicated the putative role of trace
metals in neurobehavioral disorders and behaviors such as
attention deficit hyperactivity (Fe, Zn), cognitive impairments
(Zn, Fe, Mn, Co), depression (Zn, Cr, Fe, Co), and ASD
(Zn, Cu, Co, Mn) (Cortese et al., 2012; Graham et al., 2014;
Alghadir et al., 2016; Saghazadeh et al., 2017; Yang et al., 2019b).
Specific behavioral features characterize ASD. Individuals
with ASD display impaired social abilities, problems with
language and communication, repetitive behaviors, and often
experience sensory alterations and co-morbidities such as
seizures, hyperactivity, sleep disorders, increased risk of allergies,
gastrointestinal problems, and metabolic plus mitochondrial
diseases, which commence early in life (Lord et al., 2020).
ASD are a group of heterogeneous disorders that are likely
caused and influenced by environmental and genetic factors
or a combination of both. Thus, the complexity of ASD is
difficult to address using animal models (Betancur, 2011).
ASD may be characterized by elevated levels of mitochondrial
dysfunction, lipid peroxidation, and decreased levels of
antioxidants such as transferrin, ceruloplasmin, metallothionein,
and glutathione which is evident through blood serum analysis

(Chauhan et al., 2004). Accordingly, the mechanisms commonly
studied in ASD in relation to metal dyshomeostasis include
various factors such as oxidative stress, the competition of toxic
metals with essential metals such as Cu and Zn, inflammation,
neurotransmitter synthesis, and neuronal dysfunction, such as
impaired synaptic function and neurogenesis (Vela et al., 2015;
Ha et al., 2018; Pangrazzi et al., 2020). Metal dyshomeostasis
in ASD has been consistently under review in recent years.
Most frequently, an imbalance in the Zn:Cu ratio has been
reported in ASD, and mechanistic studies hint at a causative role
(Bjorklund, 2013).

For example, a decrease in Zn and an increase in Cu results in
higher levels of oxidative stress. Oxidative stress is caused by the
oxidation of biomolecules, leading to damage of cells and tissues
and is contributing to inflammation in many diseases (Singh
et al., 2019a). Reactive oxygen species (ROS), including H2O2
and OH−, are continuously present under aerobic conditions.
Particularly in the case of increased Cu and decreased Zn
concentrations, the positive regulation of apometallothionein
is affected. Apomethallothionein binds with a high affinity to
toxic metals and, as such, plays a pivotal role alongside Zn
in the detoxification of toxic metals (Kang, 2006; Macedoni-
Lukšič et al., 2015; Mostafa et al., 2016). Metals such as Cd, Pb,
and Hg have been implicated in promoting intracellular ROS
production. However, not all metals can act as electron donors
or acceptors. For example, Zn is redox inert and considered an
antioxidant through indirect interactions, acting as an inhibitor
of NADPH oxidases which catalyzes the production of O2 using
NADPH as an electron donor (Marreiro et al., 2017). In oxidative
stress conditions, superoxide dismutase (SOD), which contains
both Cu, Mn, and Zn, converts O2 to H2O2 (Cortese et al.,
2008). A deficiency in either Zn, Cu, or Mn have been shown
to impact oxidative stress by decreasing the levels of SOD
(Meguid et al., 2011). Zn, Cu, and Mn also increase glutathione
production, which maintains the cellular redox state acting as a
further protective function in oxidative stress. Evidence suggests
that toxic metals such as Cd contribute to oxidative stress,
thereby promoting inflammation by mediating the activity of the
transcription factors NF-κB and AP-1, which are redox-sensitive
(Yang et al., 2007). ROS influence the pathophysiology of various
neurobehavioral disorders, but an imbalance of these antioxidant
enzymes has been particularly shown to correlate with regressive
ASD (Chauhan et al., 2004).

ROS production is closely linked to pro-inflammatory
processes. Zinc can downregulate the production of
inflammatory cytokines through NF-κB signaling (Foster
and Samman, 2012). Throughout fetal development, zinc-
deficient conditions result in increased inflammation and
altered central nervous system (CNS) development (Sauer et al.,
2016). Increased inflammation has been reported in many
human and animal studies on ASD (Theoharides et al., 2016;
Freitas et al., 2018).

Free Zn in the CNS is contained within various brain regions,
with the highest concentration found in the hippocampus. It is
then released into the synaptic cleft to regulate the activity of
multiple postsynaptic receptors such as N-methyl-D-aspartate
receptors (Chowanadisai et al., 2005; Stoll et al., 2007). Zinc
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may enter the postsynaptic compartment and is also released
into the postsynapse from intracellular zinc stores in a synaptic-
activity-dependent manner. Postsynaptic scaffold formation is a
pivotal function of Zn mediated by proteins such as SHANK2
and SHANK3. These proteins are at the center of an ASD-linked
postsynaptic signaling network (Grabrucker et al., 2014).

Also, neurogenesis is controlled by metal ion concentrations
such as Fe, Cu, and Zn. In ASD, it is typically hindered due
to effects in various pathways (Wang et al., 2019; Kumar et al.,
2021). Zn deficiency has been shown to reduce the proliferative
development of neuronal stem cells, leading to decreased cell
survival (Pfaender et al., 2016). Even marginal Zn deficiency
affects neurogenesis by altering the number of neurons and
reducing neuronal specification (Kumar et al., 2021). Altered
neurogenesis has also been implicated in ASD. Taken together,
due to the various roles of metals in human physiology,
the altered metal composition may have significant knock-on
effects on many other processes that control proteostasis, gene
expression, cell signaling, organ development, and metabolism.

A Link Between the Metallome and Other
“Omes” of the Body
Since metals occur in the human body as charged elements and
ions cannot diffuse passively through biological membranes, their
transport and storage are mediated by many proteins. Indeed, it
has been estimated that 10% of the human genome encodes for
zinc-binding proteins (Andreini et al., 2006). Therefore, if genetic
mutations develop that alter the protein function of metal-
binding proteins, they may influence the metallome and lead
to an imbalance of metals in an individual (Zhang et al., 2019).
Through this mechanism, the transcriptome (the set of all coding
and non-coding RNA transcripts at a particular time in a specific
location) and proteome (the set of proteins present at a specific
time in a certain location) are tightly linked to the metallome.
However, metal-binding proteins are found among the class of
DNA transcription factors, DNA repair pathways, and proteins
and enzymes regulating cellular signaling pathways resulting in
the production or degradation of selected transcripts/proteins
(Lin et al., 2006). Thus, the metallome also affects the genome,
transcriptome, and proteome through various mechanisms.

A large proportion of studies have turned to research on the
gut-brain axis in various neurobehavioral disorders. Through
this, insights into how the gut microbiome influences the
brain and neural signaling have been emerging (Mayer et al.,
2014). Microbiomics comprises the investigation of microbial
compositions within an individual at a certain time, specifically
within different organs/tissues within individuals, such as the
gut (Gilbert et al., 2018). The gut microbiome can influence
gastrointestinal (GI) physiology along with inflammation and
immune function (Vuong and Hsiao, 2017). Additionally, the
microbiome has been thought to play a role in the inflammasome
simultaneously. The inflammasome comprises an assembly
cascade of immune cell inflammatory response cytokines such
as NLRP’s (Nucleotide-binding oligomerization domain, Leucine
rich Repeat and Pyrin domain containing), caspases, and
interleukins (ILs) (Zheng et al., 2020). For example, the regulation
of IL-18-mediated antimicrobial peptide production by the gut

microbiome has been shown (Chen, 2017). The inflammasome
may also be controlled by epigenomic effects, whereby post-
translational modifications such as phosphorylation and histone
ubiquitination affect many functions carried out by the
inflammasome (Man and Kanneganti, 2015).

However, the microbiome, inflammasome, and epigenome
(the chemical changes to an organism’s DNA and histone
proteins) are also tightly linked to the metallome. Microbiota
have needs for biometals, and the availability of these will
influence the microbiota composition. For example, Zn
deficiency promotes dysbiosis of the microbiota by favoring
Enterobacterial colonization (Byndloss et al., 2018). On
the other hand, microbiota composition will also affect the
amount of trace metals available for the host, thereby affecting
the metallome. The epigenome is also influenced by metal
availability. The accumulation of metals such as Cd, Zn, and Cu
have been shown to play a role in altering epigenetic outcomes,
including DNA methylation, histone modification, and miRNAs
(Mordaunt et al., 2019; Brito et al., 2020). Examples include
the methylation of Metallothionein-1 (MT-1), whereby Cd
changes the methylation patterns of the Hpa II sites within the
MT-1 gene, which expression decreases in return (Compere
and Palmiter, 1981; Wang et al., 2012), and alterations in the
promoter region of metallothionein-2 (MT2) through changing
histone modification in mice in response to Zn deficiency (Kurita
et al., 2013). As previously mentioned, reactive oxygen species
and oxidative stress are influenced by metal availability, which
has been shown to play a role in the promotion and inhibition of
inflammasome activation, particularly the NLRP3 inflammasome
(Martinon, 2010; Chen et al., 2016; Fan et al., 2017). In addition,
a close link between inflammatory processes and microbiota
composition exists. In line with this, zinc deficiency resulted in
altered microbiota composition and increased inflammation in a
mouse model (Sauer et al., 2019).

The proteome, metallome, and microbiome are also key
determinants of the metabolome (the complete set of small-
molecule chemicals found within a biological sample at a
certain time). Metabolomic research in ASD primarily focuses
on small-molecule metabolites in the brain, plasma, and urine
(Kurochkin et al., 2019; Needham et al., 2021). So far, it has
been reported that the metabolome of an individual corresponds
to the microbiome of the individual. However, the impacts
of metallome dyshomeostasis have rarely been monitored in
parallel with both the gut microbiome and fecal metabolome.
Through its interaction with the proteome and microbiome,
major effects of the metallome on the metabolome are expected
that may play a role in neurodevelopmental disorders (Mounicou
et al., 2009; Grabrucker, 2020a). For example, exposure to
chronic lead (Pb) has been shown to alter gut microbiota
composition (microbiome), along with changes in the expression
of genes (transcriptome/proteome) related to lipid metabolism
and significantly altered metabolite concentrations (metabolome)
in mice (Xia et al., 2018).

The lipidome (the totality of lipids present at a certain time in
a specific location) and glycome (the entire complement of sugars
present at a certain time in a specific location) are subsets of the
metabolome (Santoru et al., 2017; Zierer et al., 2018; Kurochkin
et al., 2019). Previous studies have focused on the effects of an
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altered metal availability on the lipidomic profiles and subsequent
impact on inflammation. Such an example includes a recent
study demonstrating a high-fat diet in mice and a Zn sufficient
diet, leading to a highly protective profile in both liver and
plasma lipoproteins and a greater antiatherogenic response in
the liver when compared to Zn deficient mice (Kostara et al.,
2018). Further to this, another study using rats focused on the
effects of excess Cd. Upon exposure to excess Cd, an increase was
observed in hepatic cholesterol, phospholipids, and triglycerides
(Sarmiento-Ortega et al., 2017). These studies suggest a close
connection between the metallome and lipidome.

DISCUSSION

“Omics” Approaches for Understanding
Pathomechanisms of ASD
The vast majority of ASD-related studies based on “omics”
approaches focus on a single “ome” that is evaluated and
used to make predictions about possible pathomechanisms
(Supplementary Table 1). However, as described above, the
“omes” of the body are interlinked, whereby alterations in one
field may affect numerous others.

Metallomics
Studies of cellular metal compositions and their associated
proteins have been of increasing interest throughout recent
years. In these studies, various factors have been considered,
such as age, the severity of ASD, impacts of toxic metals on
essential metals, and the presence of specific metalloproteins such
as metallothioneins (Vergani et al., 2011; Al-Farsi et al., 2013;
Macedoni-Lukšič et al., 2015; Hawari et al., 2020). However, since
the direct measurement of metal concentrations in brain tissue of
human participants with ASD is currently not achievable, most
metallomics studies were performed using blood, hair, nail, or
tooth samples. Unfortunately, the focus on the ASD population is
mostly neglecting the crucial developmental window where trace
metal abnormalities have most impact, which may be in utero,
with only a few studies being able to measure the metallome
during pregnancy. Despite the importance of metal homeostasis
in development and neurological functions, few metallomics
studies have been performed in animal models for ASD, which
would allow a direct assessment of metals in the brain tissue.
For example, while hypozincemia was detected in the maternal
immune activation (MIA) rat model (Galvão et al., 2015), to our
knowledge, no metallomics data is available from other rodent
models for ASD despite zinc supplementation being able to
rescue some ASD behaviors in MIA mice, valproic acid-treated
rodent models, and Shank3 knockout mice (Grabrucker, 2020b).

However, some insights can be gained from epidemiological
metallomics studies in ASD. For example, a metallomics study
with 77 pairs of mothers and babies confirmed the relationship
between the presence of toxic metals and levels of essential metals.
The results demonstrated an accumulation of three specific
toxic metals, lead, cadmium, and aluminum which decrease
with age while showing a correlation between a deficiency in
Zn and Mg and toxic metal accumulation in the offspring

(Yasuda et al., 2020). This pattern, an increase in toxic metals, and
a decrease in essential metals has been shown in a plethora of
metallomics data. Many studies have shown that children with
ASD display a higher body content of toxic metals such as Pb, Hg,
and Cd compared to neurotypical controls (Cohen et al., 1982;
Eppright et al., 1996; Filipek et al., 1999; Al-Ayadhi, 2005; Fido
and Al-Saad, 2005; Nataf et al., 2006; Adams et al., 2007; Geier and
Geier, 2007; Clark et al., 2010; Geier et al., 2010, 2012; Blaurock-
Busch et al., 2011; Elsheshtawy et al., 2011; Lakshmi Priya and
Geetha, 2011; Al-Farsi et al., 2013; Yasuda et al., 2013; Saghazadeh
and Rezaei, 2017), and altered levels of essential metals, such
as a decrease in Zn (Wecker et al., 1985; Blaurock-Busch et al.,
2011; Elsheshtawy et al., 2011; Yasuda et al., 2011; Li et al., 2014;
Tabatadze et al., 2015) and increase in Cu (Blaurock-Busch et al.,
2011; Elsheshtawy et al., 2011; Lakshmi Priya and Geetha, 2011;
Russo and deVito, 2011; Li et al., 2014; Tabatadze et al., 2015).
In most studies, both a deficiency in Zn and an increase in Cu
occur in the same samples. However, the results are sometimes
inconsistent, and the quality of studies differs due to sample size,
a study population that is limited to a specific region, differences
in protocols such as measuring fasting vs. non-fasting blood
samples, and methods such as using inductively coupled plasma
mass spectrometry (ICP-MS) or atomic absorption spectroscopy
(AAS). In addition, participants with ASD may be selected
based on an independently obtained diagnosis, or more carefully
assessed within a study, for example, regarding their autism
severity. Nevertheless, three meta-analyses investigating a total of
19 different case control studies with ca. 1,516 participants (831
ASD, 685 controls) confirm that low Zn levels are associated with
ASD (Sayehmiri et al., 2015; Babaknejad et al., 2016; Saghazadeh
et al., 2017).

The probably most extensive study to date that investigated
1,967 hair samples of individuals with ASD found a clear
correlation between age and abnormal metal levels (Yasuda et al.,
2011, 2013). Intriguingly, in several studies, the severity of trace
metal abnormalities was directly correlated to the severity of ASD
symptoms (Elsheshtawy et al., 2011; Lakshmi Priya and Geetha,
2011; Li et al., 2014).

Although a recent meta-analysis investigating iron levels
in individuals with and without ASD found no significant
differences between the two groups (Tseng et al., 2018), a
Chinese cohort study with 254 children that investigated whole
blood trace metal levels demonstrated a significant difference
between individuals with ASD and without, with a 5% higher
Fe concentration in boys with ASD when compared to girls
with ASD (Wu et al., 2019). A previous study had found similar
differences using hair samples where a significant increase in Fe
concentration was found in boys but not girls. Future studies
should focus on the mechanism of this gender difference and
evaluate whether the Fe level may be a suitable predictor of ASD
in boys (Bener et al., 2017; Skalny et al., 2017). In addition, future
studies will benefit from the correlation of metal abnormalities
to specific features and severities of ASD symptoms in male and
female participants (Fiore et al., 2020). Overall, to date, several
high-quality studies that use ICP-MS, more than 100 participants,
and correlate metallomics data with ASD severity (Russo and
deVito, 2011; Arora et al., 2017) could link abnormal metal
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levels to ASD, despite some variability due to the various factors
influencing the results of metallomics studies such as the age of
the participants, diet, method of assessment, biosample used, and
heterogeneity of the ASD cohort. From the studies and meta-
analyses performed, abnormal Zn/Cu ratios consistently emerge
as being linked to ASD. The detection of altered Cu/Zn ratios has
been proposed as a biomarker for ASD (Faber et al., 2009). It may
be complemented in the future by detection of other dysregulated
metals defining an ASD-specific metal profile. Evaluating metal
profiles has the advantage that early detection, and therefore,
early intervention, may be possible as studies have shown that
metal alterations are most prominent in children with ASD under
the age of three (Yasuda et al., 2011) thus before most ASD
diagnoses are established. In addition, detection of these metal
profiles during pregnancy may not only allow intervention but
even prevention.

Proteomics/Transcriptomics
Proteomic/transcriptomic studies in ASD investigate specific
changes for the discovery of biomarkers or the identification
of pathways that may contribute to the pathological features of
ASD, such as oxidative stress, inflammation, and altered synaptic
development and plasticity (Abraham et al., 2019b). Biomarker
discovery is mostly made in human studies using easily accessible
samples such as saliva, blood, and urine. In contrast, research
on the pathomechanisms of ASD is mostly done with the help
of cell culture and animal models, with few human studies using
post-mortem cerebral tissue (Gandal et al., 2018; Schwede et al.,
2018). These studies identified several significant differences in
the proteome of individuals with ASD and model systems. For
example, numerous genes/proteins were identified changed in
these studies that have been implicated in metabolic functions,
vesicular biology, mitochondria, and intracellular signaling.
Pathway analysis using proteomics/transcriptomics data has also
pointed to synaptic processes with significant alterations in
glutamate (NMDA) receptor signaling identified in various brain
regions. In addition, pathways involved in redox mechanisms
and inflammatory processes were in the focus (Voineagu et al.,
2011; Feng et al., 2017; Gandal et al., 2018; Schwede et al.,
2018; Abraham et al., 2019a; Gordon et al., 2021; Hewitson
et al., 2021). However, there is a lack of overlap between the
genes/proteins identified due to the heterogeneity of ASD and
different cohorts of varying ages and severity of symptoms used
in human proteomic/transcriptomics studies (Wetie et al., 2015b;
Cortelazzo et al., 2016). Major gene/protein alterations identified
throughout the studies mentioned in Supplementary Table 1
include interleukins and inflammatory cytokines, myelination,
mitochondrial, and synaptic proteins (Broek et al., 2014; Wetie
et al., 2015a; Feng et al., 2017).

Transcriptomic analysis of both ASD mouse models and
human postmortem brain tissue has additionally revealed the
dysregulation of genes primarily involved in cellular stress
responses, apoptosis, chromatin modification, and DNA repair.
One such example includes 8-oxodeoxyguanosine, a heavily
studied oxidative stress marker (Dizdaroglu et al., 2002). The
increased expression is due to the inhibition of the Ogg1 protein
through various possible mechanisms such as epigenetic histone

modification or hypomethylation of the promoter sequence
(Shpyleva et al., 2014). As previously mentioned, Zn and Cd
dyshomeostasis are implicated in oxidative stress, contributing
to the epigenetic mechanisms disrupting the Ogg1 expression
(Karoui-Kharrat et al., 2017; Elwej et al., 2018). Several animal
studies have been performed using Shank3 knockout mice,
BTBR mice, NMDA receptor subunit NR1 knockdown mice,
or FMR1 knockout mice. These studies connect the synaptic
disruptions with an altered cortical expression of proteins
that function in mRNA transport, neurotransmission, and
synaptic plasticity (Liao et al., 2008). Another study used
the MeCP2-deficient mouse model to mimic Rett syndrome,
revealed alterations in cholesterol synthesis and metabolism
(Pacheco et al., 2017). Data analysis of the transcriptome, in
particular, found varying mRNA co-expression modules along
with distinct miRNA expression patterns among different cohorts
of individuals with ASD when compared to neurotypically
developing individuals (Ramaswami et al., 2020). Network
approaches used in the transcriptomic analysis can deduce
functional roles of genes based on the accompanying network.
For example, module M12 included the overrepresentation
of various ASD susceptibility genes such as AHI1 and
SLC25A12 (Voineagu et al., 2011). In general, proteomics
and transcriptomics studies in ASD hint at abnormalities of
synaptic proteins, proteins regulating mitochondrial function,
and proteins mediating immune processes, as well as lipid
metabolism (Abraham et al., 2019b).

Epigenomics
Epigenomic studies in ASD have a focus on fetal development.
Findings suggest an important role for epigenetic alterations in
regulating the transcriptional level of gene modules (co-expressed
genes) (Amiri et al., 2018). Epigenomic studies in ASD primarily
focus on methylation and acetylation patterns commencing in
utero. Various ASD-associated genes and receptors have been
identified as the target of epigenetic alterations, such as SHANK3,
MECP2, FMR1, etc. (Edamura and Pearson, 2005; Zhu et al.,
2014; Yuksel et al., 2016; Lu et al., 2020). A histone acetylome-
wide association study published in 2016 carried out ChIP-
sequencing on 257 postmortem samples from individuals with
ASD along with matched controls indicated that approximately
68% of ASD cases contained a mutual acetylome signature.
Despite the heterogeneity of ASD etiology, acetylation patterns
across cortical regions display similar alterations leaning toward
collective downstream effects to the acetylome (Sun et al.,
2016). Again, synaptic processes are targeted by many epigenetic
modifications. For example, GRB10 contributes to a negative
feedback loop that decreases mTORC1 signaling, contributing
to ASD pathology through synaptic excitation and regulation.
Thus, the deacetylation of GRB10 may influence a common
synaptic pathway, thereby contributing to idiopathic ASD (Sun
et al., 2016). A meta-analysis using blood samples carried out
on 800 individuals with ASD suggested 55 significant CpG
sites (Andrews et al., 2018). The major findings concluded
from epigenomic studies show major hypomethylation and
hypermethylation at specific loci in neuronal signaling and
developmental genomic regions. Such an example includes the
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hypermethylation of the GAD1 promoter leading to an increase
in promoter binding of MeCP2, which has been found in
both human and relevant animal models in neurobehavioral
disorders (Zhubi et al., 2014). This hypermethylation, in
turn, has been linked further to prenatal immune activation
(Labouesse et al., 2015).

Further research has indicated that dysregulation of
microRNAs in the brain contributes to ASD pathogenesis.
A study has found both hypomethylated and overexpressed
microRNAs and the respective genes in ASD brain samples such
as miR-142, miR-451a, and miR-144-3p which have been shown
to play a role in synaptic function and also target the oxytocin
receptor gene (Mor et al., 2015).

Metabolomics (Lipidomics, Glycomics)
In humans, alterations in the metabolome of individuals with
ASD have been assessed mainly through blood and urine
samples. A study focused on gray matter in the prefrontal
cortex and its metabolite composition has identified 16 altered
metabolic pathways, including cysteine and methionine
metabolism, glutathione metabolism, citric acid cycle, and
various others, whereas urine and blood sampling identified 10
alterations such as purine and pyruvate metabolism, nicotinate
and nicotinamide metabolism and galactose metabolism
(Kurochkin et al., 2019). A recent study aimed to characterize
metabolomic features in hyperpurinergic conditions using a
maternal immune activation mouse model. Fifty percent of
plasma metabolites (202/401) from 37 pathways were altered
significantly, with xanthosine, dopamine, and L-isoleucine
ranked as the most altered metabolites in the maternal immune
activation mice (Zolkipli-Cunningham et al., 2021). A further
study has focused on valproic acid-induced ASD rodent models.
Particularly in the hippocampus, significant alterations were
observed as prematurely as neonatal development, whereby 16
metabolites differed significantly, including glutamate, uracil,
and N-acetylaspartate (Abreu et al., 2021). Another quantitative
metabolomics study was carried out on mice. A total of 999 lipids
were identified, where 13.7% showed a significant difference
between ASD and typically developing controls. The most
prominent lipids included glycerolipids, cholesterol, poly-
unsaturated fatty acids, and phospholipids, where short-chain
fatty acids were found in a lesser quantity in ASD (Needham
et al., 2021). The overall findings reported in multiple studies
are conflicted in terms of metabolomic profiles and gender.
Further research will be required due to the inconsistency of
the results (Ruoppolo et al., 2015; Diaz et al., 2016; Abreu
et al., 2021; Courraud et al., 2021). Interestingly, alterations
observed in infants from day 1 to 10 post-birth have been
hypothesized to be linked to the microbiome and inflammasome
(Courraud et al., 2021).

Microbiomics
Microbiome analysis using human samples and rodent models
has consistently revealed significant differences between
individuals with ASD and the control group. However, a lack of
consistency is observed regarding the specific microbiota profile
of the ASD group. Many changes are found on a bacterium

phylum level rather than a species level. However, microbiome
analysis may play a significant role in the characterization of
subgroups within the ASD population (Finegold et al., 2010;
Golubeva et al., 2017; Sauer et al., 2019; Sgritta et al., 2019).
Gut dysbiosis plays a substantial role in the pathology of ASD.
A particular emphasis has been put on the microbiome in the
early development of individuals and the factors which may
influence the gut flora, including antibiotic use, nutrition intake,
infections, stress, etc. (Sivamaruthi et al., 2020). A focus on the
treatment and reintroduction of bacterial strains has shown
promising results in animal studies, particularly in mice. Such an
example includes the treatment of L. reuteri, whereby ASD-like
symptoms were diminished and reversed (Buffington et al., 2016).
A similar approach was used in germ-free mice, which decreased
abnormal behavior once they administered human “infant type”
Bifidobacterium species (Luk et al., 2018). Further studies and
meta-analyses have focused on bacterial composition and ratios,
finding an increased ratio of Firmicutes to Bacteroidetes in
ASD cohorts compared to typically developing cohorts (Borre
et al., 2014). Candida has been found in a significantly higher
abundance, while Streptococcus, Prevotella, and Veillonella
are significantly decreased compared to individuals without
ASD (Kushak et al., 2017; Strati et al., 2017). However, most
meta-analyses in human and mouse models failed to reveal
ASD-specific signatures despite most studies showing significant
differences in microbiota composition of individuals with ASD.

Inflammasomics
Immune responses in ASD are often altered and may play a
prominent role with regard to GI issues and other symptoms
experienced by individuals with ASD. Recent studies show that
inflammation is highly linked to the symptoms and severity of
ASD in the individual (Patel et al., 2018). NLRP3 and AIM2
inflammasomes have been implicated in this process (Saresella
et al., 2016). The dysregulation of several cytokines is further
involved in the pathology of ASD (Zhu et al., 2006; Raison et al.,
2010). Alterations in inflammatory levels result from multiple
systemic and external factors that affect immune activation, such
as maternal immune activation and allergies, autoimmunity,
genetics, and maternal exposure to toxic metals (Crespi and
Thiselton, 2011; Wei et al., 2011; Garay et al., 2013; Frye, 2015).
Recent reviews have focused on cytokine expression measured
from neonatal blood samples and cerebral spinal fluid, whereby
alternative cytokine levels have been identified across different
studies. A consistent finding includes the increased expression
of IL-6 and tumor necrosis factors (TNF) (Ashwood et al.,
2011; Abdallah et al., 2013; Tsilioni et al., 2015; Abruzzo et al.,
2019). Conversely, various other studies have found conflicting
data on other cytokines using different sample types, potentially
indicating an impact of age, gender, and severity of ASD in the
individuals (Abdallah et al., 2012; Masi et al., 2017; Siniscalco
et al., 2018; Saghazadeh et al., 2019).

Lessons From the Links Between
“Omes” for ASD
Given that most “omes” are interlinked (Figure 1), it may be
possible that the independently reported alterations indeed are
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FIGURE 1 | The metallome’s role in ASD can be expanded through its
interactions with various other “omes.” Each arrow indicates a significant
relationship whereby dyshomeostasis and further alterations in one impact
other “omes” functionality.

part of one specific process that affects all “omes” of the body and
that forms the biological core of the ASD pathology and reveals
an ASD signature.

In ASD, metal dyshomeostasis will affect the proteome,
epigenome, microbiome, metabolome, and inflammasome.
Together, directly or indirectly, the changes in these “omes” will
affect biological targets resulting in the pathologies underpinning
ASD. For example, zinc deficiency during pregnancy alters
microbiota composition and increases inflammatory marker
expression in the periphery but also in the brain (Sauer and
Grabrucker, 2019). Thus, alterations in the metal profile will
have indirect effects on brain functions by causing extracerebral
changes. However, systemic zinc deficiency will also affect brain
zinc levels. Therefore, zinc-dependent proteins within the brain
will directly react to differences in metal concentrations, as shown
in in vitro experiments (Grabrucker et al., 2014).

Among individuals with ASD, synaptopathies have been
identified as a prominent feature (Keller et al., 2017). Synaptic
pathologies include impaired synapse formation and maturation
as well as plasticity, probably mediated by the dysregulation
of glutamatergic ion channels, alterations in various pre-
and postsynaptic scaffolding and cell adhesion proteins (e.g.,
Neurexin, Neurologin, SHANK3), and proteins that function in
intracellular signaling (e.g., PTEN, mTOR) (van Spronsen and
Hoogenraad, 2010; Yoo et al., 2014; Xing et al., 2019). In line with
this, transcriptomics, proteomics, and epigenomic studies have
identified various synaptic proteins altered in ASD.

Metals will also affect synaptic processes through their role
as cofactors in enzymatic functions, causing and reducing
oxidative stress and functioning as intracellular signaling ions
and neurotransmitters. Zn deficiency, for example, reduces
synaptic protein scaffold formation through direct binding to
SHANK3 and modulates NMDA and AMPA receptor function
(Grabrucker, 2014; Grabrucker et al., 2014; Li et al., 2018a).
Furthermore, Zn may also modify epigenomic alterations
carried out in fetal development, particularly in the generation

of critical metabolites such as methionine and SAM, which
carry out roles in DNA methylation. The generation of these
metabolites relies on methyltransferases in which Zn acts as a
cofactor in transferring methyl groups to homocysteine (Uriu-
Adams and Keen, 2010; Sanusi et al., 2021). The epigenetic
modifications may, in turn, affect the expression and function of
synaptic proteins.

The stimulation of proinflammatory cytokine production,
including IL-1β through lipopolysaccharide exposure during
development, has been shown to promote metallothionein to
sequester Zn leading to further hypozincemia in the fetus (Kirsten
et al., 2015). Thus, inflammation may affect synapses indirectly
by restricting Zn availability. However, Zn itself plays a role
in inflammation, particularly in deficient conditions such as
malnutrition (Gammoh and Rink, 2017). A prominent pathology
identified in ASD is the increase in pro-inflammatory signaling.
Studies have found a significant increase in inflammatory
markers such as IL-6, IL-8, and TNF-α in ASD (Alzghoul
et al., 2019). Through a regulatory role in pro-inflammatory
signaling pathways, Zn levels influence cytokine expression. In
addition, Zn deficiency was shown to increase gut permeability
in mice provoking inflammation in the brain, identified by
an increase in IL-6 and GFAP (Sauer and Grabrucker, 2019).
Decreased bioavailability of Zn and may lead to NLRP3-driven
inflammation. This is also evident in Alzheimer’s diseases and
leads to cognitive decline in animal models, which may translate
to ASD models (Pellegrini et al., 2020; Rivers-Auty et al., 2021).
Increased cytokine expression and the activation of glial cells have
been linked to synapse loss and modification of synaptic function
(Kim et al., 2020).

With approximately 20% of dietary Zn absorbed by intestinal
bacteria, alterations in gut microbial composition occur in
response to Zn availability (Reed et al., 2015; Koren and Tako,
2020). Excess dietary Zn has been positively implicated in
resistance to Clostridium difficile (Zackular et al., 2016). In
addition, altered microbial compositions were observed in Zn
deficient conditions whereby the levels of Veruccomicrobia
were decreased, and Firmicutes and Actinobacteria levels were
increased. Actinobacteria are classed as pathobionts and have
implications in various inflammatory diseases such as IBD. Thus,
also through effects on microbiota, the metallome may alter the
inflammatory state.

Lipid profiles in ASD are altered significantly through
oxidative stress, gut microbiome disruption, nutrient intake, and
so on (Tamiji and Crawford, 2010; Mazahery et al., 2017). Studies
have indicated an imbalance in polyunsaturated fatty acids, which
may contribute to ASD-like behaviors (Tamiji and Crawford,
2010). A recent study focused on the reduction of metal-
containing proteins such as ceruloplasmin (Cu) and Transferrin
(Fe) observed in individuals with ASD, which increased lipid
peroxidation. However, further research is required to conclude
whether this reduction is region-specific in the brain similar
to Cu and Fe levels (Chauhan et al., 2004). Another study
has used serum analysis to identify alterations in lipoproteins
linking essential metal ratios in the process. Results concluded
a significant correlation between Zn/Cu ratios with high-density
lipoproteins and total cholesterol levels (Al-Bazzaz et al., 2020).
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Lipid metabolism and the metabolome play a critical role in
cellular structures and remodeling in disease states. Disruption
in the lipidome, such as increased cholesterol, also leads to
the activation of the NLRP3 inflammasome giving rise to
inflammatory pathologies (Anand, 2020). In turn, the gut
microbiome, which has been shown to alter the inflammasome,
can also contribute to the lipidome and vice versa (Fu et al., 2015;
Wang et al., 2016).

The interlinked alterations across each “ome” can be
traced back to metal dysregulation while also connecting and
affecting further profiles resulting in the heterogeneity of ASD
pathogenesis. However, to find an ASD-specific signature and
possibly biomarkers for ASD, more research needs to investigate
multiple “omes” in the same model or individual with ASD
to allow correlation studies. Until then, studies investigating
at least two “omes” may be used to generate a map of
overlapping alterations.

Correlating “Omics” Data for a Better
Understanding of ASD
ASD is a disorder with a multifactorial etiology and highly
variable clinical phenotype, where thus far, 1,231 genes have
been implicated in ASD (Simons foundation autism research
initiative—SFARI). To fully uncover the causes of ASD
data, scientists can utilize mixed multi-omics data integration
approaches to discover a biological process that would be
affected by alterations across the various “omes.” So far, this
method has been successfully implemented in a variety of
complex diseases, such as cancer (Liu et al., 2013, 2016; Muqaku
et al., 2017). Mixed multi-omics is a systematic biological data
analysis approach, where ≥ 2 data sets or “omes” derived from
various analytical techniques, such as proteomics, genomics,
transcriptomics, epigenomics, metabolomics, and microbiomics,
are integrated and studied together (Figure 2). By fusing and
integrating the multiple “omes,” scientists can view and analyze

FIGURE 2 | (A) Ever-growing popularity of multi-omics data analysis approach, shown as PubMed citation count from 2005 to 2020. (B) Mixed multi-omics data
integration and analysis can pave the way for personalized medicine and biomarker discovery. This figure was created using Biorender.com.

TABLE 1 | Tool for mixed-omics data integration.

Tools Application Working platform

mixOmics—DIABLO (Singh
et al., 2019b)

Mixed-omics data analysis and integration from same biological N samples measured on
different “omics” platforms

R Bioconductor

mixOmics—MINT (Rohart et al.,
2017)

Mixed-omics data analysis and integration of several independent data sets or studies
measured on the same P predictors

R Bioconductor

omicade4 (Meng et al., 2014) Multiple co-inertia analysis of multi-omics datasets R Bioconductor

iOmicsPASS (Koh et al., 2019) Network-based integration of multi-omics data for predictive subnetwork discovery C + +

3Omics (Kuo et al., 2013) Visualizes integrated human transcriptomic, proteomic, and metabolomic data Web-based

Ingenuity pathway analysis,
qiagen (Krämer et al., 2014)

Commercially available for integration and mapping of genomics, transcriptomics, proteomics,
and metabolomics datasets

License, web, local

MoCluster (Meng et al., 2016) Gene set analysis based on multiple omics data R Bioconductor

MIMOmics (Auffray et al., 2016) Integrated analysis of metabolomics, proteomics, glycomics, and genomic datasets in large
studies

Web-based
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complex, extensive biological data, uncover novel associations
between biological entities, and identify biomarkers that can be
utilized for disease or developmental condition early diagnosis
and treatment development.

Extracting meaningful information from each omics
experiment with an extremely large number of data points is a
computationally challenging task. This is further complicated
by the vastly heterogeneous nature of biological data with
non-linear interactions and shared effects on a multitude
of factors, making it difficult to separate real biological
signals from experimental noise. Noise may arise from the
biological system being analyzed, the analytical platform
used, and omics-specific analysis workflows. This challenge
intensifies when mixed omics approaches are integrated together.
The large-scale mixed multi-omics data integration requires
careful data normalization, further statistical standardization,
and even machine-learning tool application (Libbrecht and
Noble, 2015; Min et al., 2017). Machine-learning tools
are advantageous for analyzing amalgamated omics data
and can carry out dimensionality reduction, clustering,
the association of clinical measures, and disease prognosis
(Li et al., 2018b).

Simple, graphical, and exploratory approaches such as
principal component analysis (PCA) are often used to
dimensionally reduce large data sets. In contrast, canonical
correlation analysis (CCA) is utilized to study the overall
correlation between two data sets. Additionally, other integrative
frameworks for omics data utilize sparse CCA (Parkhomenko
et al., 2009), multivariate partial least square analysis (Palermo
et al., 2009), or multiple factor analysis (de Tayrac et al., 2009).
Currently available tools for mixed multi-omics data integration
can be partitioned into local and web-based applications, where
local tools require R, Python, or Galaxy programming knowledge
and are challenging to implement, these include mixOmics
DIABLO/MINT, omicade4 or iOmicsPASS, and web-based
applications such as, 3Omics, Paintomics, and Galaxy P/M which
have user-friendly interfaces (Table 1). However, user-friendly
web-based tools should only be used when the underlying
methods are fully understood, as blind application often adversely
affects progress in the field. At present, there is no single
application or approach which can be applied for processing,
analysis, and interpretation of data arising from integrated
mixed multi-omics studies. Therefore, as computational biology
is rapidly emerging, there is a need to develop amalgamated
strategies and tools to aid in reproducible, high throughput,
user-friendly, and effective platforms to study integrated mixed
multi-omics data.

CONCLUSION

Taken together, combining results obtained from a multitude
of individual “omics” studies may identify processes that lead
to various disease states, but with one overlapping motif that
may be the biological correlate of the shared features of
ASD. With this knowledge, novel therapies could be developed
targeting alternatives to the proteome, but with secondary effects
on those protein networks currently in the focus of drug
development in ASD (Park, 2020). An optimal starting point
could include the metallome to counteract metal dyshomeostasis
and, through its interaction with other “omes,” address symptoms
emerging through effects of the microbiome, metabolome,
lipidome, etc. Targeted metal supplementation or delivery of
compounds targeting metal regulatory proteins may provide
a critical instrument in developing therapeutic interventions
due to the variety of roles of trace metals, for example, in
histone modification, protein degradation, and inflammation
(Chen et al., 2019). Given that metal dyshomeostasis has been
identified in various diseases such as Alzheimer’s disease and
Parkinson’s disease, those treatments may not be single-asset
drugs. In addition, metal concentrations could provide valuable
insight throughout pre-and early post-natal development as
potential biomarkers of ASD since the metallome may serve as
an indirect readout for alterations in the other, less accessible
“omes.”
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