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Abstract

Activity-dependent regulation of intrinsic excitability has been shown to greatly contribute to

the overall plasticity of neuronal circuits. Such neuroadaptations are commonly investigated

in patch clamp experiments using current step stimulation and the resulting input-output

functions are analyzed to quantify alterations in intrinsic excitability. However, it is rarely

addressed, how such changes translate to the function of neurons when they operate under

natural synaptic inputs. Still, it is reasonable to expect that a strong correlation and near pro-

portional relationship exist between static firing responses and those evoked by synaptic

drive. We challenge this view by performing a high-yield electrophysiological analysis of cul-

tured mouse hippocampal neurons using both standard protocols and simulated synaptic

inputs via dynamic clamp. We find that under these conditions the neurons exhibit vastly dif-

ferent firing responses with surprisingly weak correlation between static and dynamic firing

intensities. These contrasting responses are regulated by two intrinsic K-currents mediated

by Kv1 and Kir channels, respectively. Pharmacological manipulation of the K-currents pro-

duces differential regulation of the firing output of neurons. Static firing responses are greatly

increased in stuttering type neurons under blocking their Kv1 channels, while the synaptic

responses of the same neurons are less affected. Pharmacological blocking of Kir-channels

in delayed firing type neurons, on the other hand, exhibit the opposite effects. Our subse-

quent computational model simulations confirm the findings in the electrophysiological

experiments and also show that adaptive changes in the kinetic properties of such currents

can even produce paradoxical regulation of the firing output.

Author summary

Most action potentials that neurons emit during their lifetime are produced by a dynamic

interplay between the synaptic inputs and the intrinsic biophysical properties of the post-

synaptic neuron. Activity-dependent or neuromodulatory changes targeting these intrin-

sic properties effectively regulate intrinsic excitability of the neurons and how they

integrate synaptic input into firing output. Electrophysiologists mostly employ current
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step protocols in whole-cell patch clamp experiments to identify such changes in intrinsic

excitability and to estimate the underlying functional consequences. In the present study

we investigate the firing output of hundreds of hippocampal neurons under standard cur-

rent step stimulation and when they are bombarded by simulated synaptic inputs via

dynamic clamp. Our experiments show that firing intensity values in the two scenarios

exhibit a surprisingly low correlation, hence, static firing responses yield poor predictive

power to estimate firing responses under synaptic inputs. We also show in electrophysio-

logical experiments and computer simulations that two voltage-dependent K-currents

mediated by Kv1 and Kir-channels in stuttering and delayed firing type neurons, respec-

tively, play a key role in regulating these differential firing responses.

Introduction

In addition to the well-known forms of synaptic plasticity, intrinsic properties of neurons are

regulated by activity-dependent mechanisms. Such modifications, mainly associated with spe-

cific voltage-activated membrane currents, greatly contribute to the overall functional plastic-

ity of neuronal networks, because they directly impact how synaptic inputs are translated to

action potential output [1,2]. As a prime example of such intrinsic plasticity in hippocampal

circuits, Kv1 channels mediating the D-type K-current in parvalbumin-expressing interneu-

rons are downregulated after LTP-induction via Schaffer-collateral stimulation [3]. The corre-

sponding changes in intrinsic excitability of the basket cells facilitate their recruitment in the

network activity at gamma-frequencies. Similar form of Kv1 channel mediated long-term

potentiation of intrinsic excitability (LTP-IE) has been found in CA3 neurons evoked solely by

somatic electrical stimulation [4]. LTP-IE often involves the downregulation of various K-

channels [4–8], but additional ion channel targets have been also identified [9,10]. All these

findings indicate that intrinsic adaptations play as important role in cellular mechanisms of

learning as the well-known synaptic forms of long-term plasticity.

Researchers aiming to uncover potential effects of activity-dependent intrinsic adaptations

commonly use standard step current stimulation in whole-cell patch clamp settings. In such

experiments, gradually more depolarizing levels of current are applied to elicit firing responses

and to obtain the neurons’ input-output functions. While this approach has been very success-

ful in detecting changes in intrinsic excitability due to activity-dependent plasticity or chronic

neuroadaptations [11–14], we are to recognize that neurons in vivo receive rapidly fluctuating

synaptic conductances [15] rather than stepwise levels of transmembrane current. It is there-

fore reasonable to examine how well the analysis of firing responses under static current sti-

muli can predict functional adaptations of neurons when they operate in their natural synaptic

environment. This is an important question because activity-dependent up- or downregula-

tion of specific voltage-gated currents can greatly alter the operation of neuronal circuits. Yet,

this problem is rarely addressed in electrophysiological studies, partly because it is challenging

to accurately control the synaptic inputs of a neuron during its intrinsic adaptations and to

compare the resulting firing responses to those under static current steps.

Our present study tackles this problem by performing a high-yield comparative analysis of

static excitability and firing responses under simulated synaptic inputs in mouse hippocampal

neurons. We show that these neurons, belonging to physiologically different phenotypes,

exhibit vastly different firing responses under static stimulation vs. synaptic drive. These con-

trasting responses are mediated by the actions of the D-type K-current and the inward rectify-

ing K-current that exhibit differential impact on the regulation of firing responses. Findings
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from our electrophysiological observations are reinforced by model simulations of the firing

responses of the biophysically diverse neurons. Our modeling also identifies specific biophysi-

cal parameters that facilitate the differential regulatory effects. Paradoxically, potential changes

in the kinetics of the D-current can even result in upregulation of static firing responses while

reducing the synaptic responses in the same neurons.

Results

Cultured hippocampal neurons exhibit diverse physiological properties

Hippocampal neurons in primary dissociated cell cultures exhibit a high level of diversity in

their voltage responses under current step stimulation 12–14 days after plating. Currents step

protocols, widely used by electrophysiologists, serve as a very effective experimental technique

to extract a number of informative physiological parameters [16]. Importantly, physiological

properties determined in such experiments also provide a solid basis for classification of cell

types that are differentiated according to their intrinsic biophysical properties [17–19]. Hence,

we performed a standardized current step stimulation protocol on each neuron analyzed in

this study. Although we observed a high variety of voltage responses of the cultured hippocam-

pal neurons, we were able to assign those into 3 main categories, as shown in Fig 1. In particu-

lar, regular firing type neurons exhibited robust spiking under moderate depolarizing current

levels, voltage sag under negative currents and low rheobase (the threshold current level where

spiking initiated) that was mostly below +100 pA (Fig 1A, 1D and 1E). Spike count, as a func-

tion of the injected current was fairly continuous and monotonously increasing. Neurons

assigned to the second group and referred to as delayed firing type neurons, displayed promi-

nent inward rectification under negative current steps and a slow voltage ramp preceding the

first spike emission (Fig 1B, 1F and 1G). The third type of neurons exhibited low membrane

resistance, outward rectification, voltage sag and intermittent spiking responses even at cur-

rent levels above +100 pA (Fig 1C). Often, only a single spike was elicited near rheobase and

an irregular firing response was produced at more depolarized current levels. We often

observed a discontinuity in the spike count vs. current relationship for these type of neurons.

This behavior is commonly referred to as stuttering [3,20], therefore we used this term to label

neurons assigned to the third group. While the single spike response often seen in the stutter-

ing neurons indicated a low overall excitability of such cells, this spike was emitted very rapidly

following the onset of the positive current step (Fig 1C and 1I). Hence, first spike latency serves

as one of the discriminating physiological parameters suitable to separate delayed firing and

stuttering type cells. The most important features that were used to identify such stuttering

type neurons were the strong outward rectification, marked spike afterhyperpolarization, dis-

continuous I-O relationship, single spike response near rheobase, voltage sag and short spike

latency.

Altogether we recorded the voltage responses of 414 neurons that yielded the densely popu-

lated 2-dimensional representations of their selected physiological parameters shown in Fig 1J,

1K and 1L. Based on these maps, the three populations of cells, corresponding to the regular,

delayed and stuttering types, largely overlap, indicating no clear distinction among the 3 cate-

gories. Depending on the selected pairs of physiological parameters, we find a variable degree

of separation among the 3 groups. As an example, the input resistance vs. resting membrane

potential or the latency1.3 vs. input resistance plots clearly separate the delayed firing and stut-

tering type neurons (Fig 1J and 1K). Separation of these two types is less obvious when we

examine the total spike count vs. rheobase relationship (Fig 1L). In agreement with our subjec-

tive assessment, the analysis of the physiological parameters identifies these two types as being

the most distinguishable. On the other hand, regular firing type neurons (see gray symbols)
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are the most variable as their parameters overlap with those of the stuttering and delayed firing

type cells.

Excitability measures greatly differ among neuron types receiving static vs.

dynamic stimuli

The marked differences in the voltage responses of the delayed and stuttering neurons indicate

differences in their intrinsic biophysical properties such as the expression patterns of their specific

voltage-activated currents. Indeed, the prominent inward rectification and delayed onset of firing

are known characteristics of the action of inward rectifying K-channels [21,22]. Stuttering type

neurons, on the other hand, display a reduction in the observed membrane resistance when apply-

ing positive step currents (outward rectification). Additionally, at suprathreshold current levels,

Fig 1. Cultured hippocampal neurons exhibit diverse physiological properties. (A-C) Voltage responses of 3 types of neurons evoked by current step

stimulation. Blue traces show the first spike responses just above rheobase levels (also indicated by blue symbols in the I-O curves). Spike count vs. current

relationship for the regular, delayed firing and stuttering neurons are shown in D, F and H, respectively. The first spike latency as a function of the injected

current is plotted in E, G, I. The magenta lines are fitted Belehradek functions. (J-L) Cells assigned to one of the three phenotypes are visualized in scatter plots

of various pairs of extracted physiological parameters. (J) The input membrane resistance plotted against the resting membrane potential; (K) first spike latency

at 1.3-times of the rheobase current level plotted against the input resistance; (L) total (cumulative) spike count vs. rheobase. Colors indicate the subjective

neuronal phenotypes, gray: regular firing, blue: delayed firing, red: stuttering type cells.

https://doi.org/10.1371/journal.pcbi.1009378.g001
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action potentials are tailed by strong afterhyperpolarization. These features are consistent with the

action of D-type K-currents mediated by Kv1 channels [20,23]. Our earlier model simulations

and dynamic clamp study revealed differential regulation of firing responses under the manipula-

tion of the neurons’ multiple voltage-gated currents [24,25] including the two K-currents associ-

ated with the delayed firing and stuttering behavior. Based on these, we hypothesize that static

and dynamic firing responses become increasingly divergent when cultured hippocampal neurons

of this biophysically diverse population are exposed to such inputs.

The hippocampal cell culture, therefore, serves as a prime biological system to test this idea.

Our next set of experiments were aimed at comparing the firing responses of a high number of

neurons under static current stimulation and under simulated synaptic inputs via dynamic

clamp. The two protocols yielded firing responses that allowed the construction of the corre-

sponding I-O functions. We note that a small percentage of neurons, typically stuttering ones,

did not reach firing threshold even at the highest stimulus intensities (I = +200 pA and gAMPA =

25 nS, respectively), hence, such experiments resulted in missing data for the rheobase and/or

threshold AMPA-conductance and yielded 0 for the total spike count. Yet, these two selected

values for maximal stimulation intensity were found to be applicable for the great majority of

cells. Fig 2 illustrates the behavior of one representative delayed firing and one stuttering type

neurons under such protocols. Here, the delayed type neuron fired healthily under step currents

emitting a gradually increasing number of spikes (Fig 2A and 2B). Conversely, and in agree-

ment with our expectation [24,25], the same neuron fired with less intensity when receiving the

simulated synaptic inputs (Fig 2C and 2D). Stuttering neurons, on the other hand, fired sparsely

under current steps but vigorously under dynamic clamp (Fig 2E, 2F and 2G, 2H, respectively).

Thus, static and dynamic firing responses of these two types of neurons were quite opposite.

The distinction of the firing responses is further demonstrated by plotting the threshold AMPA-

conductance as a function of the threshold current level (rheobase) for all the neurons recorded

(n = 380). We observed a slight separation of the delayed firing vs. stuttering type neurons in this

representation. Indeed, stuttering neurons require a relatively stronger stimulation to initiate firing

under current steps than delayed firing type cells, but they start firing at lower AMPA-conductance

levels than the other type (Fig 2I). Regular firing type neurons, on the other hand, appear as a dis-

persed population largely overlapping with the other 2 types (see grey symbols on Fig 2I).

Expectedly, neurons with higher rheobase would also require higher threshold conductance

under simulated synaptic inputs and, in general, this is what we observe in the mapping of the

firing responses. However, the overall correlation between the two threshold parameters is less

than expected, yielding a Spearman-coefficient of 0.704 for all the neurons measured in these

experiments. Cumulative (total) spike counts recorded under the 2 types of stimulation serve

as more preferable measures of the firing responses, because they take into account all the

spikes emitted under the protocols, i.e. responses from dozens of stimulus sweeps. Impor-

tantly, such total spike counts recorded under static vs. dynamic stimulation exhibit even

lower correlation as shown by the high dispersion of data in Fig 2J (CorrS = 0.614), further sup-

porting our original hypothesis. We conclude that the rheobase and total spike count parame-

ters calculated from current step responses offer a poor estimation for the neurons’ firing

intensity under realistic synaptic inputs. This is especially true when low total spike counts,

associated with near-threshold stimulus intensities are considered.

Variation of voltage-gated currents in computational models reproduces

physiological diversity

To better explain the role of biophysical properties in shaping the differential responses and

experimentally observed physiological properties of hippocampal neurons, we constructed
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computational models based on three generic phenotypes. The regular firing, delayed firing

and stuttering type model neurons were designed to closely match the dynamical behavior of

their corresponding biological phenotypes and the physiological parameters measured in cur-

rent step experiments. As an example, voltage sag, commonly observed both in regular firing

and stuttering neurons was reproduced by including the nonspecific, hyperpolarization-acti-

vated cation current (Ih) in these 2 models (Fig 3A and 3C) [19,25]. In contrast, the inward rec-

tification and delayed onset of spiking (latency) was excellently reproduced by the addition of

the inward rectifying K-current (IKir) to the delayed firing type model [25]. Stuttering as

observed in the third type of neurons, was facilitated by a potent D-current that activated and

inactivated slowly [20,26].

As shown above, cultured hippocampal neurons exhibit a variety of firing responses and

physiological parameters that are likely caused by cell-to-cell variations in the strength of their

specific voltage-activated currents and morphological properties among others. We replicated,

at least partially, such variations in the model implementations by randomly varying the

Fig 2. Firing responses of the hippocampal neurons indicate different degree of excitability under current step stimulation vs. simulated

synaptic bombardment. Voltage traces of a delayed firing type cell and the corresponding input-output relationship are shown under current

step protocol in (A) and (B), respectively. (C) Firing response and (D) the spike count vs. AMPA-conductance relationship obtained from the

same delayed type neuron under dynamic clamp protocol. Corresponding panels in (E-H) demonstrate the firing responses of a stuttering type

cell under identical stimulus conditions. Note that the I-O relationships are very different between the two neuron types (B vs. F and D vs. H).

(I) The threshold AMPA-conductance is plotted against the rheobase for all the recorded neurons (n = 380). (J) Total (cumulative) spike count

from the dynamic clamp experiments is plotted against the total static spike count (n = 399). Colors indicate the three cell types.

https://doi.org/10.1371/journal.pcbi.1009378.g002
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maximal conductances of selected voltage-gated currents, the membrane capacitance and leak-

age membrane resistance parameters. For each model phenotype we generated 200 instances

and subjected those to the two types of stimulation as used with the biological neurons. The

analysis of the observable physiological properties and firing responses was then performed

identically to that we have used in the electrophysiological experiments.

Examples of the three model phenotypes are shown in Fig 3 as they fire under the action of

somatic step current injection (identical to that we used for the biological neurons). Input-out-

put curves (Fig 3D, 3F and 3H) and first spike latency plots (Fig 3E, 3G and 3I) of these model

neurons well reproduce the corresponding data from the biological neurons. However, spike

latency functions of stuttering type model neurons often exhibit discontinuity (Fig 3I) because

the short latency action potentials at the beginning of the step appear at current levels slightly

above rheobase. In such model neurons we find a spikelet at the beginning of the step and a

full action potential following the voltage ramp (due to slow inactivation of the intrinsic D-

Fig 3. The model neurons reproduce the firing responses and the physiological diversity of the biological neurons observed in the experiments. (A, B, C)

Voltage responses of the regular, delayed and stuttering type models driven by current step stimulation. Blue traces show the first spike responses just above

rheobase levels. (D, F, H) Spike count vs. current plots and (E, G, I) first spike latency plotted as the function of the injected current are shown for the regular,

delayed and stuttering type model neurons. Note that the stuttering model exhibits a sudden jump in spike count at the transition to repetitive firing (+195 pA,

H). (J) Input membrane resistance vs. resting membrane potential of all model instances. (K) The threshold AMPA-conductance is plotted against the rheobase

of the model neurons. (L) Cumulative spike counts from synaptic vs. current step responses are scatter plotted. Data from 600 model instances are shown.

https://doi.org/10.1371/journal.pcbi.1009378.g003
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current, Fig 3C, blue trace). The membrane resistance vs. resting Vm plot is qualitatively simi-

lar to that of the biological neurons, but the overall spread of points is lower, and the three

model phenotypes are better separated than the corresponding biological neurons (compare

Fig 3J with Fig 1J). More importantly, the analysis of the firing responses of the model neurons

largely reproduces the low degree of correlation between static and dynamic responses of real

neurons: the relationship between the threshold AMPA-conductance and the rheobase (com-

pare Fig 3K with Fig 2I) as well as the scatter plot of the total (cumulative) spike counts (Fig 3L

vs. Fig 2J) are very similar to what we obtained for the biological neurons. In addition to the

good qualitative reproduction of the biological data, we find a low Spearman-correlation calcu-

lated for the cumulative spike count data (CorrS = 0.531, n = 600).

Altogether, these observations support the idea that variations in the magnitude of specific

voltage-gated membrane currents are, at least partially, responsible for the observed physiolog-

ical diversity of hippocampal neurons. Besides, we identify potential candidates of membrane

currents that play a key role in the differential regulation of firing responses of these neurons,

particularly the delayed firing and stuttering type ones.

Differential effects of blocking the intrinsic D- and Kir-currents on firing

responses

Assuming the dominant role of the Kir- and D-current in shaping the excitability profiles of

the hippocampal neurons, one can expect that pharmacological blocking of these specific cur-

rents would change their firing properties in a differential manner depending on the type of

stimulus they receive. To test this idea, we patched neurons exhibiting clear inward rectifica-

tion, the hallmark of delayed firing type neurons (see Fig 4A). Next, we recorded their physio-

logical properties and obtained their static and dynamic I-O functions (Fig 4C and 4D). Then,

we bath-applied BaCl2 (125 μM) and repeated the same two protocols that allowed us to exam-

ine the changes of the neurons’ excitability profiles after the blocking of their Kir-current (Fig

4B, 4C and 4D) [27,28]. As shown for the representative neuron, blocking of its intrinsic Kir-

current removed the characteristic inward rectification, clearly increased the membrane resis-

tance (and time constant) and moderately increased the number of spikes emitted during the

positive current steps (Fig 4C and 4E). In case of the I-O functions, we found a stronger

enhancement of firing during the simulated synaptic inputs than under the static current step

protocol (Fig 4D and 4F). This finding is in good agreement with our prior computational

modeling results and dynamic clamp experiments when a computer-synthesized Kir-current

was inserted into the regular firing neurons (as reverse experiment) [24]. Following BaCl2

application, the mean relative increase of total spike counts was +304% in dynamic clamp con-

ditions (n = 15) and +67% when current steps were used (n = 20) (Fig 4G). Clearly, blocking

the Kir-current regulated the firing responses of the delayed firing type neurons in a signifi-

cantly different manner depending on the inputs they received.

The same experimental protocol was applied to stuttering neurons when their intrinsic D-

current was blocked by 20 μM 4-AP, an effective antagonist of Kv1 channels (Fig 4H–4N) [3,29].

Quite the contrary to what we found with the delayed firing type neurons, the simulated synaptic

responses of these cells were barely affected by D-current blocking (Fig 4M), however, their static

firing responses increased dramatically (Fig 4L). In fact, these neurons, initially responding with

single spikes or irregular bursts under step currents, turned into more regular firing neurons

after 4-AP application (Fig 4H and 4I). The differential regulation of the firing is clearly shown

by the corresponding I-O functions (compare Fig 4J and 4L with Fig 4K and 4M, respectively;

n = 22). In average, total spike counts under static stimulation went up by +1570% and only by

+59% under simulated synaptic inputs (Fig 4N, n = 22 for both). The firing reducing effect of the
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D-current is the strongest slightly above rheobase when the neurons typically emit single spikes

or stutter. Blocking this current has therefore a great impact on the static responses, because sin-

gle spiking or sparse stuttering is now replaced with regular spiking.

Manipulations of K-currents in computational models

The pharmacological experiments, described above, suggest that delayed firing and stuttering

type neurons represent opposite extremes in the spectrum of cultured hippocampal neurons,

as far as their physiological properties are considered. Indeed, the 2- or higher dimensional

distributions of the physiological parameters (Fig 1J, 1K and 1L) suggest the same.

Fig 4. Pharmacological blocking of the Kir- and D-currents produce differential effects in delayed vs. stuttering

type neurons. The voltage responses of a delayed firing type neuron are shown before (A) and after the application of

BaCl2 (B). (C) Input-output functions obtained from the current step experiments indicate a moderate increase of the

firing under BaCl2. (D) I-O relationship obtained from the dynamic clamp experiments. (E and F) Total spike counts

in control and BaCl2-treated cells are shown for the current step vs. DCl experiments, respectively. (G) The average

relative change in total spike counts in the current step (IV) and dynamic clamp (DCl) experiments. Panels (H-N)

show the same for the stuttering type neurons under the application of 4-AP. The firing of the demonstrated neuron is

markedly increased by 4-AP application when the current step stimulation is used (J) but increased to a less degree

when the simulated synaptic inputs are used (K). The pooled data (L-M) reveal that spike counts under current step

stimulation increase far more than firing under simulated synaptic inputs. (N) Average relative change of total spike

counts following 4-AP application in the current step (IV) and dynamic clamp (DCl) experiments.

https://doi.org/10.1371/journal.pcbi.1009378.g004
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Accordingly, selectively blocking the Kir- and D-currents in these two cell types would expect-

edly reduce their separation.

We investigated this possibility in model simulations on the delayed firing and stuttering

type neurons before and after the removal of their corresponding voltage-gated K-currents

while applying current step stimulation or simulated synaptic bombardment as above (Fig 5).

As expected, removal of the Kir-current from the delayed firing type model and the D-current

from the stuttering one resulted in profound changes in many of their observable physiological

parameters. Eliminating the IKir increased the membrane resistance of the model neurons

while reducing their latency parameter (Fig 5A). This action clearly shows the role of the Kir-

current in prolonging the first spike latency during suprathreshold current injections. While

the delaying of the first spike is usually associated with D-currents [3], IKir is solely responsible

for the delayed onset of firing (and ramp potential) in these models indicating the same role of

IKir in the corresponding biological neurons. Somewhat paradoxically, the latency parameter

increased after D-current removal in the stuttering models (Fig 5D) indicating that these cells

start firing with longer latencies but at lower step current levels compared to those having their

intrinsic D-currents intact.

Fig 5. Removal of two K-currents from the model neurons produce differential effects on their firing output. (A) First spike latency vs. input resistance plot

for the delayed firing type neurons. Non-filled symbols represent the data after the removal of the Kir-current. (B) Scatter plot of cumulative spike counts from

the same set of model neurons (synaptic vs. current step responses). (C) Pooled cumulative spike counts shift in a differential manner when static vs. dynamic

inputs are used. D-F: Same plots demonstrating the effects of D-current removal from the stuttering type model neurons.

https://doi.org/10.1371/journal.pcbi.1009378.g005
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The effects of virtual pharmacological manipulations on firing output are shown in Fig 5B

and 5E, by plotting spike counts from the dynamic clamp models against those obtained from

the current step model. The simulations clearly demonstrate a general shift of the entire popu-

lation after the removal of the Kir- and D-currents. Remarkably, the excitability parameters

change in a differential manner, i.e. the effect of IKir-removal is stronger on the synaptic

responses than the current step responses (Fig 5B) while the opposite is true for the D-current

(Fig 5E). In addition, firing responses of the neurons lacking Kir- and D-currents became

more uniform, both under current steps and simulated synaptic drive. The scatter/box plots of

the total spike counts confirm the differential effects of Kir vs. D-current blocking (Fig 5C and

5F). Taken together, these simulated data are in an excellent agreement with our electrophysio-

logical recordings from real neurons and they confirm the key role of these 2 voltage-gated

currents in regulating the firing output.

Voltage dependence and kinetics of the K-currents

The two voltage-dependent K-currents, playing central role in our study, have different activa-

tion properties. Specifically, the Kir-current activates at hyperpolarized membrane potentials

while the characteristic voltage ramp and delayed onset of firing is caused by the current’s

deactivation during depolarizing current stimuli. Conversely, the D-current activates with

depolarization and exhibits a slow inactivation, too. Can such differences in their properties

explain the differential regulation of firing responses under the action of these currents? To

examine this possibility, we ran model simulations and manipulated selected biophysical

parameters of these currents while measuring the firing responses of the neurons under the

two stimulus settings.

The Kir-current is characterized by a negative slope sigmoidal steady-state activation curve

and the first set of simulations used the midpoint of the sigmoid (Vm,1/2) as control parameter.

We selected a subset of the 200 delayed firing type model neurons, 25 instances, that well rep-

resented the the entire population. Then, we performed the static and dynamic stimulus proto-

cols to gain the total spike counts as above. For each model implementation we incremented

the Vm,1/2 parameter from the low -91 mV to -75 mV by +2 mV and obtained the excitability

measures in 9 settings. Effectively, we shifted the steady-state activation curve of the IKir and

analyzed the firing responses of the models. Fig 6A shows the summary of such model runs.

Here, each string of symbols corresponds to a single model implementation with 9 consecutive

values for the Vm,1/2 parameter. Shifting the activation midpoint to more depolarized values

clearly decreases both the static and dynamic spike counts. Indeed, for each model implemen-

tation we find nearly parallel trajectories that descend toward the origin of this map. This scat-

ter map is not unlike the original excitability map of the 200 delayed firing neuron models

where the maximal conductances of the intrinsic currents, including IKir, were randomly var-

ied (Fig 3L). Hence, the effect of shifting the activation curve of the Kir-current is similar to

that of changing its maximal conductance.

In addition to varying the voltage-dependence of the activation profile, we investigated the

effects of changing the activation time constant of the Kir-current. Interestingly, manipulating

the kinetics of the Kir-current has a minor effect on the excitability measures. We adjusted the

maximal time constant of activation from 10 ms to 130 ms in 15 ms steps and obtained similar

trajectories as in the previous case. Fig 6B shows that the changes in firing responses under

this manipulation were far weaker than the ones under Vm,1/2 adjustment. Again, we find tra-

jectories descending toward the origin, although their individual length is far less than in Fig

6A. This observation shows that the impact of IKir in regulating the excitability of the model

neurons is fairly consistent in a wide range of activation time constants.
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The D-current, having both activation and inactivation, was manipulated in a slightly dif-

ferent manner. Instead of shifting the midpoint of activation alone, we introduced a concur-

rent shift of the steady-state inactivation curve, hence moving them synchronously. This

allowed us to keep the overlap of the steady-state activation and inactivation curves at a fixed

value. The trajectories of 25 selected representative stuttering model neurons are shown in Fig

6C. Again, we find a field of nearly parallel trajectories that mostly start in locations close to

the origin of the map (low excitability) and extend toward the upper right corner (higher excit-

ability). Shifting the activation and inactivation midpoint parameters toward more depolarized

values, therefore, reduces the impact of the D-current and allows the generation of more

intense firing responses under both static and dynamic inputs.

Finally, we find the most intriguing effects when manipulating the kinetics of the D-cur-

rent. We shift the activation and inactivation time constants in a way that their ratio remains

Fig 6. Manipulations of the voltage dependence and kinetics of the K-currents exert profound effects on the firing responses of the model neurons. (A)

The half-voltage of the steady-state activation curve (Vm,1/2) of the Kir-current is shifted from -91 to -75 mV and the cumulative spike counts of 25 model

instances are calculated. Black arrows indicate the model responses shown in A1 and A2. (B) The peak activation time constant of the Kir-current (τm,max) is

shifted from 10 to 130 ms and the cumulative spike counts of the corresponding model responses are plotted. (C) Similar manipulation is performed on the

steady-state activation midpoint of the D-current of the stuttering type model (25 instances). (D) Peak activation time constant of the D-current is shifted from

2 to 18 ms. Here, models featuring the ‘fast’ D-current exhibit high static and low dynamic excitability, while those with the ‘slow’ D-current exhibit low static

spike counts and high dynamic spike counts.

https://doi.org/10.1371/journal.pcbi.1009378.g006
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constant. In effect, we simulate an overall slowdown of the D-current by increasing the maxi-

mal activation time constant from 2 ms to 18 ms and proportionally increasing the inactivation

time constant, too. Models with the ‘fast’ D-current tend to produce responses featuring high

static and low dynamic total spike counts, while the ones with the ‘slow’ D-current do the

opposite. Visually, this results in trajectories that move across the 2D map (Fig 6D) rather than

lining up in parallel with the main diagonal. Inspecting the voltage responses of the stuttering

model neuron when 2 ms used for its maximal activation time constant (Fig 6D1) we find a fir-

ing pattern that is not unlike that of the delayed firing model neurons. There is a characteristic

ramp preceding the first spike, but the firing is fairly regular after that. This behavior is fre-

quently observed in fast spiking neocortical or striatal neurons [20,23,26]. On the other hand,

when the time constant is increased, the model tends to emit a single spike with short latency

near rheobase and stuttering response at more positive currents. Hence, the kinetics of the D-

current has a very important regulatory role in setting the intensity of the firing output under

both types of stimulus conditions. Remarkably, gradual changes in the time constants shift the

static vs. dynamic firing responses in opposite directions, i.e. the reduction of firing under step

currents is complemented by the increase of the synaptic response of the same neuron. This

effect is markedly different from those found under the up- or downregulation of the total cur-

rent or when manipulating their voltage-dependence.

Discussion

We report here an experimental observation of surprisingly weak relationship between con-

ventional measures of intrinsic excitability and the intensity of neuronal firing under realistic

synaptic inputs. Hippocampal neurons expressing either Kv1 channel mediated D-currents or

inward rectifying K-currents respond in a divergent manner under the action of static vs.

dynamic stimuli indicating correspondingly differentia effects when these two intrinsic cur-

rents are subjects of adaptive up- or downregulation. Results from our model simulations ver-

ify and aid an explanation of these data. Our results also highlight the importance of using

physiologically realistic stimulus protocols when assessing the functional impact of changes in

the magnitude of specific intrinsic membrane currents.

Plasticity of intrinsic excitability and impact on synaptic integration

The variety and intricacy of activity-dependent neuroadaptations in the nervous system are

truly remarkable. One main form of plasticity in central neurons is the long-term potentiation

of their intrinsic excitability (LTP-IE) that involves activity-dependent regulation of the mag-

nitude of specific voltage-gated membrane currents [1,9,30,31]. As an important example of

such adaptations, the dendrotoxin-sensitive K-current, mediated by Kv1 channels in neocorti-

cal [23] and striatal [20,32] neurons, is downregulated by LTP protocols traditionally used to

induce synaptic modifications [3,29,33]. The resulting changes of neuronal firing responses

are well documented in a variety of neuron types but it is less clear how such cellular adapta-

tions translate to the neurons firing properties under natural conditions. Indeed, virtually all

reports on LTP-IE demonstrate the changes in intrinsic excitability based upon input-output

relationships recorded under current step protocols. EPSP-spike coupling, as a physiologically

more relevant phenomenon has been also shown to be affected by LTP-IE [3,6] and these

observations clearly motivate further analysis that address the regulation of integrative proper-

ties and circuit interactions under intrinsic neuroadaptations.

Our earlier findings on differential regulation of firing responses under plastic changes or

manipulations of the intrinsic cellular properties of extended amygdala [24,34] and cultured

hippocampal neurons [25] showed that conventional analysis of intrinsic excitability might be
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rather limited in respect to estimating the impact of LTP-IE on the integration of complex syn-

aptic inputs. As we have shown, static vs. dynamic firing responses are differentially regulated

by voltage-gated currents [24], and the same currents also facilitate a kind of spiking resonance

manifesting as frequency-dependent integration of synaptic inputs [25]. Our prior experi-

ments were based on manipulation of the biophysical properties of neurons via dynamic

clamp insertion of synthetic Hodgkin-Huxley type conductances [24,25]. It was therefore war-

ranted to demonstrate the effects of pharmacological manipulation of real biological mem-

brane currents on the firing responses. To our knowledge, this approach, together with the

cell-type specific analysis of static excitability and synaptic integration, has not yet been used.

Application of specific blockers of voltage-dependent currents mimics, at least partially, the

neuroadaptive changes observed under activity-dependent downregulation of currents under

LTP-IE [3,4,9]. Such pharmacological manipulations are therefore considered as valuable tools

to assess functional changes induced by LTP-IE or homeostatic adaptations. While in the pres-

ent study we did not aim at inducing activity-dependent changes in the intrinsic properties of

neurons, our experimental and computational findings are still applicable to assess functional

effects of such adaptations. The strength of voltage-dependent currents can be arbitrarily var-

ied in model neurons that better replicates the gradual changes associated with LTP-IE

[24,25].

Conveniently, the magnitude of specific voltage-gated membrane currents varies among

nerve cells of physiologically diverse cultured hippocampal cultures. Thus, sampling of a high

number of such neurons can reveal the impact of variable expression of membrane currents

on the firing responses. This is possible mainly because strong correlations exist between the

magnitude of specific voltage-activated currents and physiological parameters extracted from

the current step responses (e.g. voltage sag vs. Ih, inward rectification vs. IKir) [19]. Therefore,

the variability of physiological parameters across the population of recorded cells reflects their

underlying biophysical diversity [17,35–37]. We are aware of the fact that dissociated hippo-

campal cell cultures inherently contain heterogeneous populations of multiple neuronal types

(e.g., excitatory pyramidal neurons, granule cells as well as inhibitory interneurons). Although

different classes of hippocampal neurons can be identified using a relatively simple immuno-

cytochemistry [38], the ratio of certain cell types can vary greatly upon preparation methods

or culture conditions [39]. Indeed, in our preliminary immunocytochemical analysis we iden-

tified a mixture of putative CA1 and CA3 excitatory neurons as well as GABAergic neurons in

our cultures. Furthermore, the overall high degree of physiological diversity is likely associated

with the undirected formation of synaptic connections among these cells that are randomly

distributed on the coverslip surface. However, we use the physiological and biophysical diver-

sity of these neurons for our benefit, because it allows the correlative analysis of excitability

profiles and integrative properties in a high-throughput manner.

The physiological phenotypes we identified in our cell cultures and the corresponding

computational models can be considered as representations of type 1 and 2 excitabilities [40].

In particular, regular and delayed firing type cells increase their firing rate in a smooth, fairly

continuous fashion and they typically emit only one action potential when the current level

reaches rheobase. In contrast, stuttering type neurons exhibit far more irregular firing output

and their spike count vs. current (I-O) relationship shows sudden jumps. While it is not com-

mon to find neurons that initiate firing with multiple spikes at rheobase levels, they often start

with a single action potential and then suddenly increase their firing rate as the stimulus cur-

rent increases. In this respect they show behavior similar to that observed in fast spiking inter-

neurons [40]. Kv1 channel mediated D-currents appear to play an important role in the

expression of stuttering responses [20] and our experiments with 4-AP application further

supported this notion. In an elegant dynamic clamp study the authors manipulated the
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biophysical properties of pyramidal neurons to change the type of their excitability [41]. Here,

addition of a computer-synthesized Kv-current shifted the firing responses of pyramidal neu-

rons from regular (type 1) to stuttering (type 2) mode. The single spiking response near rheo-

base and the shortened spike latency were remarkably similar to those we observed in our

experiments and computational models that targeted the D-current.

Due to their physiological heterogeneity, we found a great variability of voltage responses

and firing patterns of hippocampal neurons under static vs. dynamic stimulation. More

importantly, correlation between measures of excitability associated with the two stimulus pro-

tocols was surprisingly low. In essence, these experiments suggest that estimating the intensity

of postsynaptic firing responses by analyzing only the static I-O functions of the same neurons

is not viable. Of course, one can readily accept this limitation considering the different tempo-

ral structure of the experimentally applied DC waveforms and the complex synaptic currents

occurring in natural conditions. However, it can be still argued that comparing the static firing

responses of two neurons or the same one in two treatment conditions can be informative in

estimating which neuron would fire more intensely under the action of identical synaptic

inputs. As we found, even this is assumption is not applicable, because the sensitivity of neu-

rons to static vs. fluctuating current inputs can be vastly different depending on their biophysi-

cal properties. As an example, one can detect a major change in the current step responses

following LTP-IE that would suggest accordingly significant alterations in the synaptic

responses of the same neuron. The LTP-induced downregulation of the D-current in hippo-

campal parvalbumin-expressing basket cells has been shown to induce specific changes in

their static firing responses including the leftward shift of their I-O functions and the marked

decrease of the first spike latency [3]. These findings suggest the concurrent upregulation of

the synaptic responses of basket cells and their facilitated recruitment in network activity at

gamma frequencies. Nevertheless, our present data suggest a more moderate impact of the D-

current in regulating synaptic integration than the firing under step current stimulation.

This latter voltage-activated current appears to be especially interesting, because slight

changes in its kinetic properties will dramatically reshape the firing output of the neurons

under both static and dynamic inputs. Depending on the activation/inactivation time con-

stants of this current, single spiking/stuttering behavior [20] or the prolonged first spike

latency can be also observed [23,29,32,42], the latter being a characteristic feature of fast-spik-

ing neurons. The variety of observable firing patterns under the manipulation of the Kv1 chan-

nel-mediated currents and the underlying changes in intrinsic excitability clearly serve as

motivation for electrophysiologists to focus on the impact of this current in regulating synaptic

integration and long-term plasticity.

Additionally, our data here show that the impact of up- or downregulation of the D-current

can be somewhat counterintuitive when the neurons are operating under the action of fluctu-

ating synaptic inputs. Increasing the magnitude of the D-current has a stronger effect on cur-

rent step responses than on firing under synaptic inputs. The effect of changing the activation

and inactivation speed of this current has an even more contrasting effect on those. Accord-

ingly, the D-current displays some unique properties with respect to regulating the firing out-

put of neurons and they certainly justify further investigations.

The hyperpolarization-activated cation current Ih has been also extensively investigated in

respect to its role in regulating intrinsic excitability and dendritic integration. This current is

expressed both in the regular firing and stuttering type hippocampal neurons, and it is reason-

able to assume that Ih also regulates static vs. dynamic firing responses in a differential manner.

Our earlier computational studies suggested that upregulation of the h-current can actually

increase intrinsic excitability and postsynaptic firing responses due to its depolarizing effect on

the resting membrane potential [24,25]. Similar excitability increasing effect has been also
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verified experimentally in dendrites of CA1 pyramidal neurons after epilepsy-related upregula-

tion of their h-current [43]. The dual effect of Ih on membrane resistance [44,45] and resting

membrane potential makes it therefore more challenging to accurately assess its net effect on

firing output. In our present biological experiments, we did not address the net effect of Ih on

firing responses, however, in a separate study, we observed a clear hyperpolarizing shift of the

resting membrane potential after pharmacological blocking of this current [46]. Additionally,

we performed model simulations to examine the effect of Ih on the physiological properties

and firing responses of stuttering type neurons. Interestingly, removal of Ih in such model neu-

rons had a minor effect on the cumulative spike counts under both current step stimulation

and simulated synaptic bombardment (see S1 Fig). Also, spike latencies were barely affected by

the removal of Ih indicating that this parameter is mainly regulated by the strong D-currents in

stuttering cells. Indeed, additionally removing the D-current in such model neurons largely

reproduced the changes demonstrated in Fig 5D–5F.

The rationale of current step stimulation and simulated synaptic inputs

The differential regulation of firing responses observed in our dynamic clamp experiments

and computational models suggests that these effects are closely related to the voltage depen-

dence and kinetics of the involved membrane currents. However, one can rightfully ask

whether random variations in the passive membrane properties can, at least partially, account

for the great diversity of firing responses observed in our data. This problem is further justified

by acknowledging that simplistic phenomenological models can predict the firing patterns of

biological neurons in a surprisingly accurate manner [47]. Hence, we performed simulations

with leaky integrate-and-fire model neurons where 4 parameters were randomly varied, simi-

larly to that we did with the biophysically more realistic models (see S2 Fig). The membrane

capacitance, reversal potential and maximal conductance of the leakage current, and the volt-

age threshold of spiking were varied across 200 implementations. While cumulative spike

numbers from such model runs varied in a wide range (5-fold), the correlation between the 2

parameters remained very tight (CorrS = 0.99). Clearly, random variations in the passive mem-

brane properties of neurons cannot explain the very significant disparity between static

responses and spiking driven by synaptic inputs. Therefore, differential regulation of firing

output is found only in biophysically more realistic computational models that well reproduce

the behavior of real biological neurons under simulated synaptic bombardment.

Considering the above findings, we conclude that parameters of static excitability, as mea-

sured in current step protocols, yield limited value in estimating the firing activity of neurons

as they integrate real synaptic inputs. This is reasonable because the membrane potential of

postsynaptic neurons fluctuates widely under synaptic activation but evolves in a more

restricted regime when constant stimulus current is used. Indeed, the membrane potential

between spikes does not visit levels below resting membrane potential when depolarizing cur-

rent steps are used in patch clamp settings. In normal conditions, however, neurons receive a

mix of excitatory and inhibitory synaptic conductances allowing transient hyperpolarizations

of the membrane potential between action potentials (potentially reaching the reversal poten-

tial of GABA-gated currents). In such conditions, the relative contribution of low-threshold

(ICaT) or hyperpolarization-activated (Ih, IKir) voltage-gated currents in shaping the firing out-

put becomes stronger than under static current injection.

Our present electrophysiological study highlights the value of simulated synaptic inputs in

the analysis of functional changes facilitated by plasticity of intrinsic properties, and, in a more

general sense, when voltage-activated membrane currents are subjects of neuromodulation or

long-term neuroadaptations. One key technical benefit of such a technique is that biological
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neurons can be exposed to accurately controlled and replayed synaptic conductance wave-

forms [15,48], either previously recorded in vivo, or synthesized by computer. The dynamic

clamp can reproduce many of the important temporal features of natural synaptic activation

including the random variations in the amplitude and kinetics of the postsynaptic currents

and their temporal patterns (e.g. oscillatory network activity) [25,49]. Importantly, temporally

complex synthetic synaptic inputs delivered by dynamic clamp elicit firing responses that are

far more reliable and precise than those acquired under repeated constant current step stimu-

lation. While the early pioneering work of Mainen and Sejnowski has clearly demonstrated the

great value of fluctuating current stimuli in probing neuronal response properties [50], more

systematic investigations with mixed excitatory and inhibitory synaptic inputs via dynamic

clamp revealed spike responses with submillisecond temporal jitter [51,52]. Dynamic clamp

remains as a very effective tool to investigate synchronization [53], information processing

[48,54] and resonant properties [25] in biological neurons receiving various types of synaptic

inputs. Indeed, the use of dynamic clamp in investigations of cellular properties and circuit

interactions has been growing steadily [55–57] due to its power in revealing effects that might

remain masked using more conventional tools of patch clamp electrophysiology. The differen-

tial impact of specific voltage-gated currents in regulating the firing output, as shown by our

present data, further reinforces the value of such technology and hopefully motivates electro-

physiologists to routinely include such protocols in their investigations.

Methods

Cell cultures and electrophysiology

Our electrophysiological experiments were performed on cultured mouse hippocampal neu-

rons. We prepared primary cultures of embryonic hippocampal cells from CD1 mice [58,59].

The cells were seeded onto poly-L-lysine and laminin-coated glass coverslips in 24-well plates.

Neurobasal medium (Invitrogen) containing 2% B27 supplement (Invitrogen), 0.5 mM Gluta-

max (Gibco) and 5% FCS (Invitrogen) was used for plating and for a complete medium change

on the first day after plating (DIV1). On the 5th, 9th and 12th day after plating, half of the cul-

ture medium was changed to BrainPhys medium containing SM1 supplement. To inhibit glial

cell division, 10 μM cytosine β-D-arabinofuranoside (Sigma-Adrich) was added to the cultures

between DIV4 to 6. Recordings were performed 14–17 days after plating when the neurons

typically exhibited robust spontaneous bursting activity, mature cellular properties and synap-

tic connections. The experiments were performed in whole-cell patch clamp conditions at

room temperature (22–24˚C) using a MultiClamp 700B amplifier (Molecular Devices). The

composition of the extracellular solution (artificial cerebrospinal fluid, ACSF) was (in mM):

NaCl 140, KCl 5, CaCl2 2, MgCl2 1, HEPES 5, D-glucose 10; pH 7.45. The patch electrodes

were pulled from borosilicate glass, had 6–8 MOhm resistance and filled with the following

solution (in mM): K-gluconate 100, KCl 10, KOH 10, MgCl2 2, NaCl 2, HEPES 10, EGTA 0.2,

D-glucose 5; the pH was set to 7.3. Access resistance (max. 22 MOhm accepted) was carefully

compensated to gain accurate membrane potential readings during current injection and in

dynamic clamp experiments. The input current waveforms and voltage responses were sam-

pled at 20 kHz and low-pass filtered at 6 kHz in DASYLab v. 11. (National Instruments).

Current step stimulation and static excitability

Each neuron in this study was exposed to two types of intracellular stimulation. The first pro-

tocol was designed to gain an accurate estimation of the cells’ many physiological parameters

and measures of their intrinsic excitability. Here, we stimulated the neurons using step current

injections of 400 ms duration, starting at -160 pA and incremented by 5 pA until the strongest
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depolarizing current of +200 pA was reached. The cycle period of this stimulation was 1.25 s.

The input-output curve of the neuron was obtained by counting spikes for each current level

up to +200 pA. The total (cumulative) spike count for each stimulated neuron was also calcu-

lated in such experiments. The rheobase and the total spike count served as the two key param-

eters we used to characterize the neurons intrinsic excitability in such conditions (static

excitability). In addition to measures of excitability we extracted multiple physiological param-

eters such as membrane resistance, voltage sag, afterdepolarization, estimated membrane

capacitance [19]. Subjective classification of the neurons into 3 main groups was based on ini-

tial visual inspection of the current step responses and the analysis of the physiological param-

eters. We used our custom software NeuroExpress to extract a total of 38 physiological

parameters from the voltage traces [19]. In addition to the standard parameters, we introduced

the Latency1.3 parameter to characterize the spike response speed of the neuron under static

stimulation. This was done by fitting the recorded first spike latencies with a Belehradek func-

tion (e.g. Fig 1E, 1G and 1I) and reading the function’s value at 1.3-times the observed rheo-

base of the neuron.

Simulated synaptic inputs and dynamic clamp

Additional excitability parameters of the neurons were obtained in dynamic clamp conditions

using simulated synaptic inputs as stimulation [24,25]. In such experiments the firing of the

biological neurons was evoked by exposing them to gradually strengthening levels of simulated

postsynaptic currents as described previously [24,60]. Briefly, we generated two independent

voltage waveforms mimicking the firing activity of virtual presynaptic excitatory and inhibi-

tory neurons firing in a Poissonian pattern. The two waveforms were fed to the dynamic

clamp system to generate mixed excitatory (AMPA-) and inhibitory (GABA-type) synaptic

currents. The time constant of the simulated synaptic input was 10 ms for both the AMPA-

and GABA-connections, while their reversal potential was set to 0 mV and -72 mV, respec-

tively. The strength of the excitatory synaptic conductance was gradually increased from 0 to

25 nS in increments of 0.5 nS, while the inhibitory conductance was incremented by 1 nS in

the successive sweeps of stimulation. One sweep of this protocol consisted of the delivery of

the mixed excitatory/inhibitory synaptic input for 2.5 s followed by a rest for an additional 2.5

s yielding a cycle duration of 5 s. For the dynamic clamp experiments we used the StdpC v.

2012 platform that allowed us the automatic incrementing of synaptic conductance parameters

(via scripting) in the successive sweeps of stimulation [60].

Computational models and virtual electrophysiology

In the computer simulations we exposed model neurons to the 2 types of stimulation that

accurately matched those we used for the biological neurons. The model neurons’ responses

were then analyzed using the algorithms we employed for the electrophysiological data. We

designed three types of model neurons aiming to reproduce the physiological properties of the

biological neuron phenotypes and their dynamical responses. These were 3-compartmental

model neurons consisting of a somatic, dendritic and axonic compartment. Passive membrane

properties and parameters of the voltage-dependent currents are listed in S1 and S2 Tables,

respectively. All intrinsic voltage-dependent currents were implemented as standard Hodgkin-

Huxley types:

Ii ¼ gim
p
i hiðEi � VÞ;

The total maximal conductances (gi) of the currents for each model instance were drawn

from a Gaussian-distribution to simulate a biophysically diverse neuron population. Mean

PLOS COMPUTATIONAL BIOLOGY Differential regulation of neuronal excitability and synaptic integration

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009378 September 16, 2021 18 / 23

https://doi.org/10.1371/journal.pcbi.1009378


maximal conductances and their standard deviations are presented in S3 Table. The reversal

potential of the currents (Ei) and their other kinetic parameters were not varied across imple-

mentations. Two-hundred model instances were simulated for each biophysical phenotype.

Differential equations for the activation (m) and inactivation (h) shared the same form (x
being either m or h):

dx
dt
¼

x1ðVÞ � x
txðVÞ

;

where voltage-dependent steady-state activation and inactivation were described by sigmoids:

x1 Vð Þ ¼
1

2
þ

1

2
tanh

V � Vx;1=2

Vx;sl

 !

:

Here, Vx,1/2 denotes the midpoint of the activation/inactivation sigmoid and Vx,sl is its

slope. Time constant of the activation and inactivation were bell-shaped functions of the mem-

brane potential:

tx Vð Þ ¼ tx;max � tx;min

� �
1 � tanh

V � Vtx;1=2

Vtx;sl

 !2" #

þ tx;min

Here, τx,max and τx,min indicate the maximal and minimal values of the bell-shaped func-

tions, Vτx,1/2 indicates their midpoint and Vτx,sl sets the slope of the functions. The Ca-depen-

dent K-current and internal Ca-dynamics were based on the formalism in [61]. Synaptic

currents were described using a first-order kinetics of transmitter release [62] as:

Isyn ¼ gsynSðEsyn � VÞ;

where S is the instantaneous synaptic activation term yielding the following differential equa-

tion:

dS
dt
¼

S1ðVpreÞ � S
tsynð1 � S1ðVpreÞÞ

The steady-date synaptic activation term depends on the presynaptic membrane potential

as

S1 Vpre

� �
¼ tanh

Vpre � Vth

Vslope

 !

;

when Vpre> Vth, otherwise S1(Vpre) = 0. Vpre denotes the presynaptic membrane potential

waveform that is stored in ASCII files and identical to those used in the dynamic clamp experi-

ments. The reversal potential of the excitatory and inhibitory synaptic connections was 0 and

-72 mV, respectively.

Supporting information

S1 Table. Passive membrane parameters of the three neuron models. gsx is the electrical

coupling conductance between the soma and axon compartments. gsd indicates the coupling

between the soma and dendrite.

(DOCX)
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S2 Table. Parameters of the voltage-dependent currents for the three neuronal phenotypes

(R: regular firing, D: delayed firing, S: stuttering). So, Ax and De indicate the percentage of

conductance allocated for the somatic, axonic and dendritic compartments.

(DOCX)

S3 Table. Parameters used to create biophysically diverse model neurons. Maximal conduc-

tances of voltage-gated currents, membrane capacitance, leakage reversal potential, and cou-

pling conductances between compartments were varied in a Gaussian distribution. The values

are expressed as mean ± S.D. of the distributions.

(DOCX)

S1 Fig. Effects of removal of the D-current from the stuttering type model neurons without

Ih. (A) Spike latency parameters are scatter plotted against the membrane resistance. Filled

symbols represents the models with intrinsic D-current, the open ones correspond to those

after the removal of ID. (B) Scatter plot of cumulative spike counts from the same set of model

neurons (synaptic vs. current step responses). (C) Pooled cumulative spike counts shift in a

differential manner when static vs. dynamic inputs are used. The data demonstrate a minor

effect of Ih on firing output relative to that of the D-current.

(TIF)

S2 Fig. Parameters of intrinsic excitability are tightly correlated under the variation of pas-

sive membrane properties of a leaky integrate-and-fire model. (A) The threshold AMPA-

conductance is plotted against the rheobase of 200 LIF model instances. (B) Dynamic vs. static

cumulative spike counts are plotted for the same model instances.

(TIF)
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25. Szücs A, Rátkai A, Schlett K, Huerta R. Frequency-dependent regulation of intrinsic excitability by volt-

age-activated membrane conductances, computational modeling and dynamic clamp. Eur J Neurosci

2017; 46: 2429–2444. https://doi.org/10.1111/ejn.13708 PMID: 28921695

26. Golomb D, Donner K, Shacham L, Shlosberg D, Amitai Y, Hansel D. Mechanisms of firing patterns in

fast-spiking cortical interneurons. PLoS Comput Biol 2007; 3: e156. https://doi.org/10.1371/journal.

pcbi.0030156 PMID: 17696606

27. Day M, Carr DB, Ulrich S, Ilijic E, Tkatch T, Surmeier DJ. Dendritic excitability of mouse frontal cortex

pyramidal neurons is shaped by the interaction among HCN, Kir2, and Kleak channels. J Neurosci

2005; 25: 8776–8787. https://doi.org/10.1523/JNEUROSCI.2650-05.2005 PMID: 16177047

28. Young CC, Stegen M, Bernard R, Muller M, Bischofberger J, Veh RW, et al. Upregulation of inward rec-

tifier K+ (Kir2) channels in dentate gyrus granule cells in temporal lobe epilepsy. J Physiol 2009; 587:

4213–4233. https://doi.org/10.1113/jphysiol.2009.170746 PMID: 19564397

29. Cudmore RH, Fronzaroli-Molinieres L, Giraud P, Debanne D. Spike-time precision and network syn-

chrony are controlled by the homeostatic regulation of the D-type potassium current. J Neurosci 2010;

30: 12885–12895. https://doi.org/10.1523/JNEUROSCI.0740-10.2010 PMID: 20861392

30. Desai NS, Rutherford LC, Turrigiano GG. Plasticity in the intrinsic excitability of cortical pyramidal neu-

rons. Nat Neurosci 1999; 2: 515–520. https://doi.org/10.1038/9165 PMID: 10448215

31. Zhang W, Linden DJ. The other side of the engram: experience-driven changes in neuronal intrinsic

excitability. Nat Rev Neurosci 2003; 4: 885–900. https://doi.org/10.1038/nrn1248 PMID: 14595400

32. Shen W, Hernandez-Lopez S, Tkatch T, Held JE, Surmeier DJ. Kv1.2-containing K+ channels regulate

subthreshold excitability of striatal medium spiny neurons. J Neurophysiol 2004; 91: 1337–1349.

https://doi.org/10.1152/jn.00414.2003 PMID: 13679409

33. Francesconi W, Berton F, Repunte-Canonigo V, Hagihara K, Thurbon D, Lekic D, et al. Protracted with-

drawal from alcohol and drugs of abuse impairs long-term potentiation of intrinsic excitability in the juxta-

capsular bed nucleus of the stria terminalis. J Neurosci 2009; 29: 5389–5401. https://doi.org/10.1523/

JNEUROSCI.5129-08.2009 PMID: 19403807
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