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ABSTRACT Streptococcus salivarius strain LAB813 was isolated from the dental
plaque biofilm of a caries-free child with healthy oral tissues. We report here the
complete genome sequence of S. salivarius strain LAB813. This genome consists of a
chromosome of 2.2 Mb and a megaplasmid, pSAL813, of 183 kb.

Streptococcus salivarius is a predominant member of the oral microbiome that
persists throughout the human life. It is not known to initiate infections in healthy

or immunocompetent individuals. In fact, several reports have indicated that S. sali-
varius plays a positive role in oral and digestive tract ecology. S. salivarius may exert its
positive impact through effects on the stability of the microbiome, bacterial interfer-
ence, and/or host interaction (1). S. salivarius colonizes the buccal epithelium and is a
resident of the tongue dorsum. S. salivarius is also able to coaggregate with various oral
colonizers (2). Some strains of S. salivarius display antimicrobial activity against virulent
streptococci (e.g., group A streptococcus [GAS] and group B streptococcus [GBS]) and
therefore contribute to the maintenance of oral, pharyngeal, and intestinal health (3).
S. salivarius has thus emerged as an important source of safe and efficacious probiotics
capable of fostering more balanced, health-associated oral microbiota (4). In a screen-
ing of S. salivarius strains with probiotic potential, our group isolated strain LAB813
from the supragingival plaque collected from the facial and lingual smooth surfaces of
the primary maxillary incisors of a caries-free child aged 5 years and 2 months (Univer-
sity of Toronto REB protocol reference number 32740). The plaque sample was plated
on mitis-salivarius-bacitracin agar supplemented with 20% sucrose using a spiral plater.
Isolate LAB813 was verified as S. salivarius by PCR (5) and 16S rRNA gene sequencing
(6). Here, we present the complete genome sequence of this strain.

The LAB813 strain was cultivated in a 50-ml volume of brain heart infusion broth at
37°C in air with 5% CO2 for 18 h without agitation. Total genomic DNA was extracted
using an in-house protocol. Briefly, LAB813 cells were lysed with lysozyme (50 mg/ml at
37°C for 1 h), and proteins were digested with proteinase K (20 mg/ml at 37°C for
15 min) and precipitated with ice-cold potassium acetate buffer and ice-cold isopro-
panol. The DNA was fished out using a glass pipette and treated with RNase A
(10 mg/ml at 37°C for 1 h). DNA was quantified using the Quant-iT PicoGreen double-
stranded DNA (dsDNA) assay kit (Thermo Fisher). Whole-genome sequencing was
performed using the Pacific Biosciences sequencing technology. The DNA library was
prepared following the Pacific Biosciences 20-kb template preparation using the
BluePippin size selection system protocol. Qualified genomic DNA was fragmented
using the Covaris g-TUBE device and then end repaired to prepare SMRTbell DNA
template libraries (with a fragment size of 15 kb to 50 kb) selected using a BluePippin
system. Sequencing was performed in a Pacific Biosciences RS II sequencer using the
MagBead OneCellPerWell (OCPW) protocol at the Génome Québec Innovation Centre

Citation Gong S-G, Chan Y, Lévesque CM.
2019. Complete genome sequence of
megaplasmid-bearing Streptococcus salivarius
strain LAB813, isolated from the dental plaque
of a caries-free child. Microbiol Resour
Announc 8:e01092-19. https://doi.org/10.1128/
MRA.01092-19.

Editor Julie C. Dunning Hotopp, University of
Maryland School of Medicine

Copyright © 2019 Gong et al. This is an open-
access article distributed under the terms of
the Creative Commons Attribution 4.0
International license.

Address correspondence to Céline M. Lévesque,
celine.levesque@dentistry.utoronto.ca.

Received 9 September 2019
Accepted 18 September 2019
Published 10 October 2019

GENOME SEQUENCES

crossm

Volume 8 Issue 41 e01092-19 mra.asm.org 1

https://orcid.org/0000-0001-8044-7141
https://doi.org/10.1128/MRA.01092-19
https://doi.org/10.1128/MRA.01092-19
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
mailto:celine.levesque@dentistry.utoronto.ca
https://crossmark.crossref.org/dialog/?doi=10.1128/MRA.01092-19&domain=pdf&date_stamp=2019-10-10
https://mra.asm.org


and Canadian Centre for Computational Genomics (McGill University, Québec, Canada).
The Pacific Biosciences sequencing using 1 single-molecule real-time (SMRT) cell gen-
erated a total of 52,186 raw subreads with an average length of 14,073 bp, with an N50

value of 24,132 bp. Genome assembly was done using the Hierarchical Genome As-
sembly Process (HGAP) workflow with default settings (7). The assembled genome had
350� genome coverage. The assembly contained both a complete chromosome of
2,242,557 bp, with a G�C content of 40.1%, and a megaplasmid named pSAL813 of
183,700 bp, with a G�C content of 34.9%. Gene prediction and annotation were
performed using RAST (8) and BLASTp (9). A total of 2,101 and 174 protein-coding
genes (CDSs), 75 and 0 tRNAs, and 5 and 0 rRNAs were annotated in the chromosome
and megaplasmid pSAL813, respectively. The genomic information was analyzed to
predict putative bacteriocin gene clusters through the BAGEL4 (10) Web server with
default search options. The pipeline predicted a novel multipeptide lantibiotic locus on
pSAL813 that is highly similar to the pld locus that drives the production of the
broad-spectrum bacteriocin pneumolancidin in Streptococcus pneumoniae (11). The
megaplasmid also encodes the chromosomal PezTA toxin-antitoxin system found in
pneumococci (12). We also identified a chromosomal locus encoding three major
fimbrial subunits belonging to the serine-rich repeat proteins family in streptococcal
and staphylococcal species and that comprised many repeats of a motif of four amino
acid residues (13); we also identified numerous genes encoding enzymes responsible
for the glycosylation of the subunits and their transport through the accessory
SecA2/Y2 system.

Data availability. The complete genome sequence has been deposited in GenBank

under the accession numbers CP040803 (megaplasmid pSA813) and CP040804 (chro-
mosome). Raw sequencing reads were deposited in the NCBI Sequence Read Archive
(SRA) under accession number SRR9298671 and BioProject number PRJNA546007.
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