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ABSTRACT This study established the in vitro activity of ceftolozane/tazobactam
(C/T) and its genotypic resistance mechanisms by whole-genome sequencing (WGS)
in 195 carbapenem-nonsusceptible Pseudomonas aeruginosa (CNSPA) clinical isolates
recovered from Singapore between 2009 and 2020. C/T susceptibility rates were low,
at 37.9%. Cross-resistance to ceftazidime/avibactam was observed, although suscepti-
bility to the agent was slightly higher, at 41.0%. Whole-genome sequencing revealed
that C/T resistance was largely mediated by the presence of horizontally acquired
b-lactamases, especially metallo-b-lactamases. These were primarily disseminated in
well-recognized high-risk clones belonging to sequence types (ST) 235, 308, and 179.
C/T resistance was also observed in several non-carbapenemase-producing isolates,
in which resistance was likely mediated by b-lactamases and, to a smaller extent,
mutations in AmpC-related genes. There was no obvious mechanism of resistance
observed in five isolates. The high C/T resistance highlights the limited utility of the
agent as an empirical agent in our setting. Knowledge of local molecular epidemiol-
ogy is crucial in determining the potential of therapy with novel agents.

IMPORTANCE Pseudomonas aeruginosa infection is one of the most difficult health
care-associated infections to treat due to the ability of the organism to acquire a
multitude of resistance mechanisms and express the multidrug resistance pheno-
type. Ceftolozane/tazobactam (C/T), a novel b-lactam/b-lactamase inhibitor combi-
nation, addresses an unmet medical need in patients with these multidrug-resistant
P. aeruginosa infections. Our findings demonstrate geographical variation in C/T sus-
ceptibility owing to the distinct local molecular epidemiology. This study adds on to
the growing knowledge of C/T resistance, particularly mutational resistance, and will
aid in the design of future b-lactams and b-lactamase inhibitors. WGS proved to
be a useful tool to understand the P. aeruginosa resistome and its contribution to
emerging resistance in novel antimicrobial agents.
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P seudomonas aeruginosa is one of the most common pathogens implicated in hos-
pital-acquired infections (1). Aside from its intrinsic resistance to several antibiotics,

its propensity to acquire resistance is responsible for its multidrug resistance profile,
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rendering the pathogen a therapeutic challenge (2). Carbapenems are the drugs of
choice in the management of severe P. aeruginosa infections. Unfortunately, resistance
to this class of agents has developed, resulting in carbapenem-nonsusceptible P. aeru-
ginosa (CNSPA). Carbapenem nonsusceptibility rates in clinical P. aeruginosa isolates at
Singapore General Hospital have hovered at approximately 8 to 10% since 2011 (3).
This is congruent to the nation’s overall carbapenem resistance rate in P. aeruginosa
clinical isolates derived from public hospitals (https://www.moh.gov.sg/resources-statistics/
reports/one-health-report-on-antimicrobial-utilisation-and-resistance-2017). Additionally,
carbapenem nonsusceptibility was detected in 24% of P. aeruginosa hospital-acquired
infections in Singapore (1).

Ceftolozane/tazobactam (C/T) is a novel broad-spectrum new-generation cephalo-
sporin/b-lactamase inhibitor combination that is highly active against P. aeruginosa.
This novel agent has been designed to “escape” many of P. aeruginosa’s common re-
sistance mechanisms, including AmpC hydrolysis, drug efflux, and OprD porin inactiva-
tion (2, 4, 5). Several studies have also demonstrated high C/T susceptibilities against
CNSPA, supporting its empirical use in such infections, in which most other antibiotics
are rendered ineffective (6–8). However, antibiotic susceptibilities are subject to geo-
graphical and institutional variations. The lack of local surveillance data has limited our
understanding of the clinical utility of C/T in the local context. The objectives of this
study were to establish the in vitro activity of C/T in a collection of CNSPA isolates
recovered from Singapore and to characterize the genotypic profiles of C/T-nonsuscep-
tible CNSPA.

(This study was presented in part at the 29th European Congress of Clinical
Microbiology & Infectious Diseases, Amsterdam, Netherlands, 13 to 16 April 2019
[P1334].)

RESULTS AND DISCUSSION
Antimicrobial susceptibility profiles. A total of 195 CNSPA isolates were included

in the study. Only 74 (37.9%) isolates were susceptible (inhibited at ,8mg/liter).
Table 1 shows the susceptibility patterns for various antibiotics against CNSPA. C/T
demonstrated better activity than the other b-lactams, with the exception of ceftazi-
dime/avibactam (CZA), which had a slightly higher susceptibility rate (41.0%). Only 66
(33.8%) isolates were susceptible to both C/T and CZA. Considerably higher

TABLE 1 Activities of antimicrobial agents against 195 clinical isolates of carbapenem-
nonsusceptible Pseudomonas aeruginosa

Antimicrobial agent

MIC (mg/liter) Susceptibilitya

50% 90% Range % S % I % R
Ceftolozane/tazobactamb $128/4 $128/4 #0.5/4 to$128/4 37.9 3.1 59.0

Other b-lactam agents
Imipenem 32 $64 1 to$64 3.6 8.7 87.7
Meropenem 32 $64 #0.25 to$64 13.3 8.2 78.5
Doripenem 32 $64 #0.25 to$64 16.4 8.7 74.9
Aztreonam 32 $128 4 to$128 13.9 22.0 64.1
Cefepime $128 $128 #1 to$128 17.4 10.8 71.8
Piperacillin/tazobactam 128/4 $256/4 4 to$256/4 13.9 8.7 77.4
Ceftazidime/avibactamb 32/4 $128/4 1/4 to$128/4 41.0 59.0

Other classes
Amikacin 8 $128 #1 to$128 58.0 6.1 35.9
Gentamicinc 35.4 2.0 62.6
Levofloxacin 32 $64 #0.25 to$64 18.0 8.7 73.3
Polymyxin B 1 2 #0.25 to$32 96.9 3.1

aS, susceptible; I, intermediate; R, resistant.
bSusceptibility was determined using gradient MIC test strips.
cSusceptibility was determined using disk diffusion or Vitek routinely at the microbiology laboratory.
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susceptibility rates were observed for the non b-lactam antibiotics, such as amikacin
(58.0%). Resistance remained rare for polymyxin B (3.1%).

Whole-genome sequencing (WGS) revealed carbapenemase production among 86
of the 195 isolates (44.1%); all 86 were nonsusceptible to C/T, as expected (C/T MIC50,
$128/4mg/liter; MIC90, $128/4mg/liter). Hence, all 74 C/T-susceptible CNSPA isolates
were observed in the 109 remaining non-carbapenemase-producing isolates, resulting
in a susceptibility rate of 67.9% (C/T MIC50, 2/4mg/liter; MIC90, $128/4mg/liter) in this
cohort.

The low C/T susceptibility rate (37.9%) is in contrast to several other studies con-
ducted elsewhere, in which moderate to high susceptibility rates (ranging from 67 to
88%) were observed in multidrug-resistant or carbapenem-resistant P. aeruginosa
(9–11). Even among non-carbapenemase-producing CNSPA isolates, moderate C/T sus-
ceptibility (67.9%) was observed. This suggests that C/T has limited utility as an empiri-
cal agent for suspected P. aeruginosa hospital-acquired infections in our setting, and
susceptibility testing for the agent or knowledge of carbapenemase status is impera-
tive prior to its use. Notably, most of the C/T-nonsusceptible isolates were recovered
prior to the introduction of C/T into our institution, even among non-carbapenemase-
producing CNSPA, substantiating that drivers of C/T resistance are likely not limited to
C/T usage.

Genomic profiles of 121 C/T-nonsusceptible P. aeruginosa isolates. A brief sum-
mary of the genomic characteristics of all 195 CNSPA isolates is presented in Table 2.
C/T nonsusceptibility was detected in 22 sequence types (STs) (21 known STs and 1
novel ST) in the 121 C/T-nonsusceptible CNSPA isolates. C/T resistance in the high-risk
clones of ST235 (46/121 [38.0%]) and ST308 (33/121 [27.3%]) were the most prevalent.
ST175 P. aeruginosa, the international high-risk clone with AmpC hyperproduction plus
OprD inactivation which has been associated with C/T resistance, was not found in our
study (12). In contrast, the ST types in C/T-susceptible isolates were even more widely
distributed (58 different STs).

We analyzed the resistance mechanisms for the 121 C/T-nonsusceptible isolates.
F1-2 Figures 1 and 2 depict the isolates’ characteristics and the potential mechanisms respon-

sible for C/T nonsusceptibility in 86 carbapenemase-producing and 35 non-carbapene-
mase-producing CNSPA isolates, respectively. C/T nonsusceptibility can be explained pri-
marily by the presence of horizontally acquired carbapenemases in a large proportion of
the C/T-nonsusceptible isolates (86/121 [71.1%]). The predominant types of genes
detected were metallo-b-lactamases: blaNDM (35 isolates), blaIMP (31 isolates), and blaVIM
(11 isolates). Carbapenem-hydrolyzing blaGES-5 accounted for the remaining isolates, with
the exception of two isolates which harbored blaKPC-2 and blaOXA-232.

TABLE 2 Genotypic characteristics of 195 CNSPA isolates

Parameter

C/T-nonsusceptible isolates (n=121)

C/T-susceptible isolates (n=74)
Carbapenemase
producers (n=86)

Non-carbapenemase
producers (n=35)

No. of STs 12 14 (131 1 new) 58 (551 3 new)
Known STsa 233, 235, 244, 308, 316, 357,

621, 773, 823, 964, 3440,
3444

155, 179, 235, 244, 252, 274,
313, 316, 357, 664, 815,
1076, 1666

11, 17, 27, 111, 155, 207, 235, 244, 245, 253,
266, 274, 292, 298, 314, 357, 389, 408, 446,
463, 471, 485, 508, 553, 560, 564, 569, 606,
620, 645, 697, 708, 773, 792, 815, 840, 882,
1076, 1247, 1649, 1930, 2013, 2021, 2033,
2069, 2326, 2476, 2651, 3078, 3311, 3439,
3442, 3443, 3445, 3446

Harbors acquired b-lactamase 10 24 5
AmpC and regulator alterationb 10 6
PBP3 alterationb 3 1
Ceftazidime/avibactam susceptible 4 10 66
aSTs in bold were observed only in the C/T-nonsusceptible population in our study.
bOnly alterations unique to the C/T-nonsusceptible population are reported. Refer to Fig. 1 and 2 for the specific observed alterations for each isolate.

Ceftolozane/Tazobactam-Resistant Pseudomonas aeruginosa

January/February 2021 Volume 6 Issue 1 e01026-20 msphere.asm.org 3

https://msphere.asm.org


FIG 1 Mechanisms of ceftolozane/tazobactam (C/T) resistance in 86 carbapenemase-producing CNSPA isolates. a, Bold
values indicate ceftazidime/avibactam (CZA) susceptibility. b, The main chromosomal mutations (ampC, ampR, dacB, and
ftsI) leading to amino acid substitutions compared to the reference wild-type comparator amino acid sequences from
Pseudomonas aeruginosa PAO1 are shown. The list of nonsynonymous variations were refined to include only those
more likely to be involved in the C/T-resistant phenotype, i.e., (i) mutations with known effect on resistance according
to published evidence and (ii) mutations with predicted functional impact (i.e., deleterious) and not identified in wild-
type/susceptible isolates. There were no mutations found in ampR in this set of isolates. PDC, Pseudomonas-derived
cephalosporinase; ST, sequence type.
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In the 35 non-carbapenemase-producing C/T-nonsusceptible CNSPA isolates, hori-
zontally acquired extended-spectrum b-lactamases (ESBLs) were frequently observed
(24/35 [68.6%]). Notably, blaOXA-14, the extended-spectrum variant of blaOXA-10 which
has been associated with C/T resistance (13), was detected in eight isolates, all of which
were ST179. blaVEB, blaGES-1, blaOXA-10, and other blaOXA variants were also detected. C/T
appeared to have variable activity in P. aeruginosa with secondary ESBLs. Various ESBLs
such as those encoded by blaGES and blaVEB have been shown to inactivate C/T (14).

We noted that the distribution of these exogenous b-lactam resistance elements
was limited primarily to three main clones, ST235 (n=46), ST308 (n=33), and ST179
(n=9), which accounted for 72.7% of the C/T-nonsusceptible isolates. Within each
clone, there was little or no intraclonal variation. This suggests that multidrug resist-
ance, including C/T resistance, is contributed primarily by a limited number of clones
which have gained a strong foothold in our setting, although P. aeruginosa organisms
of other diverse STs could also acquire these ESBLs/carbapenemases over time, result-
ing in broad-spectrum resistance.

As ceftolozane is neither affected by efflux pumps nor transported via OprD, resist-
ance is driven primarily by acquisition of ESBLs, AmpC hyperproduction, AmpC struc-
tural modifications, or mutations in PBP3 (15, 16). Since we observed a number of
C/T-nonsusceptible isolates without any carbapenemases/ESBLs or harboring only
narrow-spectrum beta-lactamases like blaOXA-10, we analyzed the chromosomal genes
related to AmpC and its expression (ampC and the regulator genes ampD, ampR, and
dacB), as well as the ftsI gene (encoding PBP3), which is the target binding site of C/T.
Our analysis revealed that most of the 121 C/T-nonsusceptible CNSPA isolates

FIG 2 Mechanisms of C/T resistance in 35 non-carbapenemase-producing CNSPA isolates. a, Bold values indicate CZA susceptibility. b, The
main chromosomal mutations (ampC, ampR, dacB, and ftsI) leading to amino acid substitutions compared to the reference wild-type
comparator amino acid sequences from Pseudomonas aeruginosa PAO1 are shown. The list of nonsynonymous variations was refined to
include only those more likely to be involved in the C/T-resistant phenotype, i.e., (i) mutations with known effect on resistance according
to published evidence and (ii) mutations with predicted functional impact (i.e., deleterious) and not identified in wild-type/susceptible
isolates. *, G439C amino acid substitution in OXA-10; ^, A163T amino acid substitution in AmpC; 1, DK74-E75 in AmpC; #, frameshift (FS) at
position 149.
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harbored single nucleotide polymorphisms (SNPs) resulting in nonsynonymous AmpC
amino acid substitutions. The number of amino acid substitutions ranged from 0 to 5
(median, 5). This is congruent to the high sequence polymorphism of AmpC reported
for P. aeruginosa (16). Classification of the isolates based on Pseudomonas-derived
cephalosporinase (PDC) subtypes showed a total of 17 different subtypes. The PDC-
35 subtype was the most prevalent; it was detected solely in the 46 ST235 isolates.
This was followed by PDC-19a, which was found exclusively in the 33 ST308 isolates.
The majority of these AmpC amino acid substitutions were unlikely to be associated
with C/T nonsusceptibility, as they were either similarly found in the susceptible
strains in our study or have been described for wild-type strains elsewhere. We did
not detect any SNPs implicated in C/T nonsusceptibility which had been described in
literature previously (4, 16, 17). However, we did observe potentially deleterious var-
iants (A163T in PA0637 and a 2-amino-acid deletion, K74-E75, in PA1277) in two iso-
lates (Fig. 2). Deleterious SNPs in the other ampD, ampR, and dacB regulator genes
and PBP3 variants were infrequently observed, occurring in only approximately 16%
of the isolates. There were five nonsusceptible isolates (highlighted in dark purple in
Fig. 2) which did not appear to have any ESBLs/carbapenemases or alterations in
AmpC or PBP3. The identified deleterious SNPs in this study have not been reported
in the literature, and thus, their role in mediating C/T resistance requires further
validation.

Although the aim of this study did not include a detailed investigation of the mech-
anisms of CZA resistance, we noted that there were differential susceptibilities in the
two agents. Cross-resistance was high due to the high prevalence of metallo-b-lacta-
mases, which both agents were inactive against. In contrast to tazobactam, avibactam
was designed to have potent activity against class C b-lactamases and have a slightly
broader anti b-lactamases activity (inclusive of KPC and OXA-48) (14, 17). This could
explain the observation of the 14 (11.6%) isolates among the 121 C/T-nonsusceptible
CNSPA isolates which remained susceptible to CZA (Table 2). These isolates primarily
harbored GES and OXA b-lactamases (Fig. 1 and 2), which can be inhibited by avibac-
tam. Additionally, 8 (10.8%) of the 74 C/T-susceptible CNSPA were resistant to CZA,
which had moderate MICs near the breakpoint (16mg/liter). We postulate that resist-
ance in these isolates may be attributed to drug efflux and/or decreased cell perme-
ability in the presence of low levels of AmpC overexpression which may still be over-
come by C/T (18–20). Nevertheless, due to the slight difference in the activities of the
two agents, there may be a role for each agent, depending on the molecular epidemi-
ology of the setting.

Concluding remarks. CNSPA is a major treatment challenge due to a lack of avail-
able effective agents. Novel agents such as the AmpC-stable C/T are introduced in a
bid to expand the armamentarium against these difficult-to-treat organisms. In this
study, we assessed the rates of in vitro susceptibility to C/T and the molecular mecha-
nisms mediating C/T resistance in CNSPA recovered from a large tertiary hospital in
Singapore where C/T has only recently (January 2019) been introduced into its
formulary.

The observed high C/T nonsusceptibility rates in our CNSPA, together with cross-re-
sistance to CZA, the other novel b-lactamase inhibitor combination, signify a severe
therapeutic challenge in CNSPA infections. Our results also affirm the limited use of
C/T as an empirical agent in our setting, reserving the agent for culture-directed indica-
tions. Aside from polymyxin B and amikacin, which are often associated with toxicities,
there are no safer and tolerable options for our multidrug-resistant CNSPA, prompting
the urgent need to explore the use of other novel agents, such as cefiderocol or combi-
nation therapy, to fill the gaps in the armamentarium against CNSPA in our setting
(21).

The high nonsusceptibility rates may be corroborated by our molecular findings.
There is a high prevalence of well-established multidrug-resistant carbapenemase-pro-
ducing P. aeruginosa high-risk clones (ST235, ST308, and ST179) among the C/T-
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nonsusceptible isolates. Additionally, diverse STs can also acquire ESBLs/carbapene-
mases, leading to reduced b-lactam susceptibilities. The role of constitutive AmpC
variants leading to structural modifications and/or hyperproduction in mediating C/T
resistance appeared to be minimal in our population. The ampC gene in P. aeruginosa
is highly polymorphic, and mutations did not necessarily translate to changes in C/T
phenotype.

A limitation of this study is that we did not measure the change in expression levels
in AmpC. AmpC hyperproduction mediated by mutations in other unstudied genes
may have been responsible for C/T resistance. Though they appear to be rare, we are
not aware of the true proportion of AmpC hyperproducers in our population. However,
more importantly, C/T resistance in strains not producing carbapenemases/acquired
ESBLs predates the introduction of C/T into our clinical practice. This highlights that C/
T resistance could result independently of C/T use, which could be due to the rampant
use of other b-lactam antibiotics that are able to induce or derepress AmpC produc-
tion (22). There is also a possibility that C/T resistance is independent of AmpC or
b-lactamase activity. Mechanisms driving C/T resistance still need to be further
explored.

Although C/T has been reported to be highly active against P. aeruginosa and
retained susceptibility in CNSPA elsewhere in the world, susceptibility is not universal.
The prevalence of C/T resistance is related to the molecular epidemiology of P. aerugi-
nosa, which can vary temporally and geographically. In our setting, where prevalence
of acquired b-lactamases is high, the utility of C/T is limited. Knowledge of the molecu-
lar epidemiology and genotypes is important in evaluating the place of therapy with
novel agents.

MATERIALS ANDMETHODS
Collection of bacterial isolates. Nonduplicate clinical CNSPA isolates, which exhibited nonsuscepti-

bility to at least one carbapenem (doripenem, meropenem, imipenem), collected at the Singapore
General Hospital (SGH) Pharmacy Research Laboratory between 2009 and 2020 from various culture sites
(blood [53.5%], lower respiratory specimens [16.1%], skin and soft tissue [11.6%], urine [5.8%], and other
sites, including bone, gastrointestinal tract, etc. [13.0%]), were studied. Isolates were randomly selected
for testing from the laboratory’s repository, which comprised CNSPA isolates collected from an informal
carbapenem-nonsusceptible Gram-negative pathogen surveillance study of hospital inpatients initiated
in 2015. Isolates from prior to 2015 were collected via convenience sampling or were submitted to the
laboratory for antibiotic combination testing.

These isolates were subjected to genus identification and confirmation as per the institution’s micro-
biology laboratory routine procedures, i.e., using Vitek GNI1 cards with the Vitek 2 instrument
(bioMérieux, Hazelwood, MO) and matrix-assisted laser desorption ionization–time of flight mass spec-
trometry (MALDI-TOF MS) system (Bruker Daltonik, Germany), if necessary. All isolates were preserved in
Microbank cryovials (Pro-Lab Diagnostics, Richmond Hill, ON, Canada) at 280°C and subcultured twice
on Trypticase soy agar-5% sheep blood plates (BD, Sparks, MD) before experimental testing.

Antibiotic susceptibilities. Susceptibilities to meropenem, imipenem, doripenem, cefepime, pipera-
cillin/tazobactam, levofloxacin, amikacin, and polymyxin B were determined using customized 96-well
broth microdilution plates (TREK Diagnostics, East Grinstead, UK) in accordance with the manufacturer’s
recommendations. Gradient MIC test strips were used to determine ceftazidime/avibactam (bioMérieux,
Marcy l’Etoile, France) and ceftolozane/tazobactam (Liofilchem, Roseto degli Abruzzi, Italy) susceptibil-
ities. Ceftazidime susceptibility was not routinely tested in this institution, as the agent was reserved pri-
marily for the treatment of melioidosis. All MICs were interpreted according to the Clinical and
Laboratory Standards Institute (CLSI) guidelines (23). P. aeruginosa ATCC 27853 was used as the quality
control strain.

DNA preparation and whole-genome sequencing. Genomic DNAs were extracted and purified
from overnight bacterial cultures with the DNeasy blood and tissue kit (Qiagen GmbH, Hilden, Germany)
according to the manufacturer’s protocol. Paired-end whole-genome sequencing (WGS) was performed
on the genomic DNAs using the MiSeq/HiSeq systems (Illumina Inc., CA), with a resultant coverage of at
least 100-fold. Raw sequences were assessed for quality using FastQC (v0.11.3, Babraham Institute), fol-
lowed by removal of adaptors and poor-quality bases using Trimmomatic (24, 25). Trimmed sequences
were then assembled de novo using SPAdes software (26).

Genotypic profiling. Acquired resistance genes were identified using the SRST2 package (v0.2.0),
which mapped raw short reads to the ARG-ANNOT database (27, 28). Selected chromosomal gene tar-
gets related to C/T susceptibility were analyzed by aligning assembled sequences to the PAO1 reference
genome (GenBank accession no. AE004091.2), and variants were called with the pipeline Snippy (v4.6.0)
(available at https://github.com/tseemann/snippy). The Protein Variation Effect Analyzer (PROVEAN) soft-
ware tool was used to predict the impact of identified amino acid substitutions on protein biological
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function, i.e., whether the amino acid substitution was neutral or deleterious (http://provean.jcvi.org/
index.php) (29). Sequence types (STs) were identified using the Basic Local Alignment Search Tool
(BLAST) against the PubMLST database (https://pubmlst.org/paeruginosa/).

Ethics statement. This study is exempted from review by the Singhealth Centralised Institutional
Review Board, as it is a retrospective study involving archival bacterial isolates, which does not fall under
the Human Biomedical Research Act. No identifiable data were collected.

Accession number(s). Whole-genome sequences of the C/T-nonsusceptible CNSPA are available in
the NCBI Sequence Read Archive (SRA) under BioProject accession number PRJNA656645.
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