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Introduction
Streptococcus pneumoniae is an invasive gram-positive bacteria, 
responsible for a high rate of morbidity and mortality, espe-
cially for children under 5 years old, in the developing world.1

S. pneumoniae commonly colonizes the nasopharynx tract.2 
Its migration to other body sites leads to a wide range of nonin-
vasive diseases such as otitis, sinusitis, and numerous invasive 
diseases including pneumonia, meningitis, and septicemia.2 
Among over the 90 serotypes defined by the structure and anti-
genicity of the capsular polysaccharide (cps), serotype 1 remains 
the most common cause of invasive pneumococcal disease (IPD) 
worldwide and was frequently linked to outbreaks.3-6 Similarly 
to surrounding areas (Wallis and Futuna and French Polynesia), 
serotype 1 was reported as predominant in New Caledonia (NC) 
and led to 2 major outbreaks in the early 2000s.7,8 The first out-
break occurred from May 1999 to May 2001 and the second 

occurred from July to November 2007, respectively affecting 
children above 5 years old7 and children under 8 years old.8

Prevention strategies aiming to reduce IPD incidence con-
sisted first in the introduction of pneumococcal conjugate vac-
cine 7 (PCV7) and later the PCV13, targeting a larger range of 
serotypes, including serotype 1.9 Even though vaccination 
campaigns demonstrated a certain efficiency in lowering the 
IPD, nonvaccine types (NVTs) emerged after PCV7 and 
PCV13 introduction.10-14 Regarding the serotype 1, it was 
reported that some of its clones are still circulating after PCV13 
introduction.15-17 For instance, ST8314 and the newly reported 
ST9067 respectively expressed less sensitivity to antibiotics and 
a higher recombination rate.17 These findings demonstrate the 
need to monitor the serotype 1 evolution in the NC area to 
ensure appropriate prevention strategies for IPD, particularly 
after the introduction of PCV13 in 2010.
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Prior to PCV13 introduction, NC S. pneumoniae serotype 1 
investigations were limited to traditional antibiotic susceptibil-
ity testing and serotyping approaches.7,8 To survey, monitor 
pathogen outbreaks, and explore genomic features, these con-
ventional comparative methods need to be completed by the 
next-generation sequencing analyses.18,19

Herein, we present an analysis of the genomic characteris-
tics of NC S. pneumoniae serotype 1 isolates in circulation prior 
to the introduction of the PCV13, aiming at a better decipher-
ing of the S. pneumoniae population structure. We particularly 
described the recombination rate, the population structure, the 
genome content in terms of antibiotic resistance, and virulence 
genes characterizing NC serotype 1. These genomic features 
and estimations determined in this retrospective investigation 
would provide a valuable baseline for further evaluation of 
PCV13 on S. pneumoniae serotype 1 in NC.

Material and Methods
Sample collection, DNA extraction, and whole-
genome sequencing

All 67 Serotype 1 Samples used in this study were collected in 
NC from 2004 to 2009 by the Pneumococcal African Genomic 
Consortium (PAGe, http://www.pagegenomes.org), and 
include 11 isolates from July to November 2007 outbreak. The 
sample collection included 1 carriage and 66 invasive isolates. 
Invasive isolates were extracted from sterile sites such as blood 
(46/66), cerebro-spinal fluid (CSF; 4/66), pleural fluid (2/66), 
and from nonsterile sites including sputum (8/66), ear (5/66), 
and abscess (1/66) (Supplementary Table S1). Genomic DNA 
was extracted as previously described.20 High throughput 
sequences were generated using Illumina Genome Analyzer-II 
at Sanger Institute at Wellcome-Trust Campus, United 
Kingdom. The obtained 100 bp paired-end sequences were 
deposited in ENA, under the PRJEB2102 accession number 
(Supplementary Table S1).

Draft genome assembly

Multilocus sequence typing (MLST) was performed by map-
ping short reads against housekeeping gene sequences available 
on the MLST database (https://pubmlst.org/) using short read 
sequence typing (SRST) tool.21

To assemble a circular draft genome, we opted for a mixed 
assembly strategy (de novo assembly and reference-based assem-
bly). The de novo genome assembly was implemented using an 
optimized pipeline for prokaryotes.22 This pipeline uses Velvet, 
version 1.2.09,23 and velvetOptimiser, version 2.2.524 (with 
k-mers ranging from 66% to 90% of the read length). The mean 
number of contigs was equal to 71.94 (SD: 10.55) and the aver-
age contig length equal to 29.479 bp (SD: 3951) (Supplementary 
Table S2). The average sequencing coverage was equal to 338 bp 
(SD: 37.21). We used BLAST to determine the closest refer-
ence genome to NC isolates, thus determining S. pneumoniae 

INV104 (NCBI RefSeq: NC_017591.1), as the closest to our 
isolates.25 Finally, CONTIGuator (default parameters) was 
used to generate circular genomes with a mean size of 
2 082 132 bp (sd: 7223).26 On average, there were 6.5 unmapped 
scaffolds having a mean size of 831 bp (SD: 730.890) 
(Supplementary Table S3). The mapped scaffolds were inter-
spersed with short gaps ranging from 115 to 236 and replaced 
by “N” using CONTIGuator.

For assessment purposes, newly assembled circular genomes 
were aligned against S. pneumoniae INV104 genome by 
MUMmer v4.0 beta.27 The generated alignment validated 
CONTIGuator outputs (See Supplementary Figure S1). The 
downstream analyses were performed using the newly built cir-
cular genomes.

Genome annotation and pan-genome analysis

Functional annotation of the newly assembled genomes was 
performed using PROKKA, version 1.2 (default parameters).28 
The annotation GFF files served as input to the Roary, version 
3.11.2 pipeline (default parameters), allowing the pan-genome 
size estimation.29,30

Analysis of the accessory genome

Virulence genes and antibiotic resistance genes (ARGs) were 
identified by BLASTing (BLASTX with e-value, identity, and 
coverage cutoffs set, respectively, to 0.1, 90% and 75%), the 
assembled genomes against the protein sequences from the viru-
lence factors database (VFDB) and the comprehensive antibi-
otic resistance database (CARD).31-33 Within this framework, 
particular interest was devoted to the allelic variation of the 
pneumolysin gene in NC isolates. To achieve this, we compared 
the pneumolysin sequences from NC samples to 22 pre-existing 
and fully sequenced serotype 1 pneumolysin.34 The multiple 
alignments of nucleotide and protein sequences were generated 
using the AliView software, version 1.26.35 Sequence variations 
detection was performed using the Clustal Omega web server 
(https://www.ebi.ac.uk/Tools/msa/clustalo/).36 Prophages in the 
analyzed genomes were first screened using PHASTER37 and 
VirSorter38 web servers. Simultaneously, integrative and conju-
gative elements (ICEs) were investigated with a BLASTN 
(e-value, identity, and coverage cutoffs set, respectively, to 0.1, 
90%, and 75%) search against ICEberg database and using the 
ICEfinder web tool (https://db-mml.sjtu.edu.cn/ICEfinder/
ICEfinder.html).39

Recombination rate estimation and hotspots 
identif ication

We used progressiveMauve, version 2.4.0, to generate a whole-
genome alignment of the circularized genomes.40 The resulting 
alignment was then used as input for Gubbins, version 2.3.5, to 
detect recombination events.RAxML was used for phylogeny 
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analysis (100 bootstrap iterations).41 Detected recombination 
events were visualized using the Phandango web tool (https://
jameshadfield.github.io/phandango/).42 Identified recombina-
tion hotspots were annotated using the consensus sequences 
generated from 67 genomes alignment.

Lineage dating by Bayesian evolutionary analysis

As an initial step of the lineage dating process, a core-genome 
single nucleotide polymorphism (SNP) alignment was achieved 
by Snippy, an open-source software available on GitHub: 
https://github.com/tseemann/snippy. Gubbins (default param-
eters) was used to generate a recombinant-free Snippy align-
ment. The resulting nonrecombinant core SNP alignment was 
introduced in BEAUti, version 2.4.8, after temporal signal 
assessment by Tempest software, version 1.5.1.43,44 Tip dates 
were specified as years of sample collection. Through the use of 
the smart model selection web server,45 we determined that the 
general time reversible (GTR) with 4 discrete gamma-distrib-
uted rate categories was the most appropriate model. The sub-
stitution rates were fixed to 1.57e−6 as previously determined.12 
We used the strict clock model in combination with the coales-
cent Bayesian skyline demographic model. BEAST, version 
2.4.8, was then run with 800 000 000 Markov Chain Monte 
Carlo (MCMC) generations with a 10% burn-in. The log files 
generated by BEAST were summarized by Tracer, version 
1.7.1.46 A 200 cutoff of the estimated sample size (ESS) was 
used to retain concluding simulations. Summary and visual 
trees were respectively generated using TreeAnnotator, version 
2.4.843 (available from http://beast.bio.ed.ac.uk) and FigTree, 
version 1.4.447 (available from http://tree.bio.ed.ac.uk/soft-
ware/figtree/).

Results and Discussion
Population structure of NC S. pneumoniae serotype 1

New Caledonia serotype 1 is subdivided into two sequence 
types (ST): ST306 and ST3717, also known as SLV-306 and 
corresponding to a single locus variant of ST306 (G301A) in 
the aroE housekeeping gene. ST306 is the predominant ST 
with 62 isolates, while ST3717 is represented by only 5 iso-
lates. The ST306 was reported as the most prevalent serotype 
1 ST in NC and was associated with the 2000s outbreaks.7,8 
The ST306 is a worldwide distributed serotype, suspected to 
be an important determinant behind the increase of the sero-
type 1 IPD expansion.5,48 The ST3717 was not ubiquitously 
distributed and exclusively reported in NC according to the 
MLST database https://pubmlst.org/ and Hello and collabo-
rators.8 As reported here, the particular population structure 
of serotype 1 corroborates with the results of Brueggemann 
and Spratt.5 The authors suggested that a low carriage rate of 
this serotype might explain this observation, by decreasing 
the likelihood of clone transfer between countries and 
continents.5

Gene contents investigation of NC S. pneumoniae

The functional annotation of the newly reconstructed genomes 
revealed that NC S. pneumoniae serotype 1 genomes harbored 
a mean number of 2052 of protein-coding genes (SD: 14.88). 
The pan-genome was composed of 2240 genes. 1938 genes 
(86.5%) are shared by at least 99% of isolates (hard core-
genome) (Figure 1A). A summary of shared and unique genes 
are available in Supplementary Table S4. These results differ 
from Chaguza and collaborator’s findings which reported a 
smaller core genome composed of 1520 genes across 226S. 
pneumoniae serotype 1.50 This difference can be explained by 
the smaller number of samples in our study (67 vs 226), to the 
limited geographic location of samples (NC vs African and 
Asian countries) and to the shorter time of collection (2004-
2009 vs 1994-2011).50 Hence, a larger number of samples 
would likely give a more accurate estimation of the pan-genome 
of NC S. pneumoniae serotype 1.

Even with latter observations, we can hypothesize that the 
observed pan-genome is moderately open, reflecting the simul-
taneous increase of gene pool with the strains number (Figure 
1B).51,52 The pan-genome of S. pneumoniae is usually consid-
ered as open due to the ability to capture exogenous DNA 
through horizontal gene transfer.53 This genome would be less 
flexible for serotype 1 due to the reduced carriage rate (~9 days), 
which limits the opportunity of DNA exchange with the naso-
pharynx microbial community.4

ARGs in the accessory genome

For decades, penicillin was the standard treatment for pneu-
mococcal infections, leading to a substantial increase of 
resistant clones to beta-lactams.54-57 Depending on disease 
severity, clinical manifestations, and local community antibi-
otic resistance patterns, a wide range of alternative treat-
ments can be administered.58,59 These treatments contributed 
to the emergence of resistant clones, and notably to fluoro-
quinolones and macrolide antibiotics.56 The serotype 1 was 
described as rarely resistant to macrolides, penicillin, and 
quinolones.4 Conversely, serotype 1 exhibits the highest rate 
of multidrug resistance (MDR) compared to the other sero-
types mainly by expressing resistance to cotrimoxazole, tetra-
cycline, and chloramphenicol.60

Our ARG investigation showed that all pre-PCV13 sero-
type 1 genomes are characterized by the ubiquitous presence of 
the same ARGs. Among these, we noticed the presence of the 
efflux pumps encoding genes namely pmrA and patB.61 The 
over-expression of these efflux pumps genes were reported as 
conferring a low-level fluoroquinolone resistance.61 We also 
reported the presence of RlmA(II), a methyltransferase encod-
ing gene, involved in 23S methylation rRNA, linked to high 
resistance to lincosamides and low resistance to macrolides and 
streptogramin B antibiotics.62 While no phenotypic data for 
lincosamides, fluoroquinolone, and streptogramin B were 
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reported, the macrolide resistance was previously reported in 
the NC surrounding area. In addition, PBP1a, PBP2x, and 
PBP2b were also detected. Alterations in these genes were 
associated with amoxicillin and penicillin resistance, in con-
formance with resistance traits previously observed in NC.7,8,63

Virulence factors in the accessory genome

Through virulence genes screening, we identified a set of 36 
virulence factors among which, some are crucial for the patho-
genesis of S. pneumoniae (Supplementary Table S5 for viru-
lence genes annotation and VFDB classification). All virulence 
genes were equally distributed across all isolates, and this inde-
pendently of the isolation site. This finding supports the idea 
that isolates from the same geographical location tend to have 
similar virulence and invasiveness patterns.64 These “core” viru-
lence genes are known to be implicated in pneumococcal 
pathogenesis during the colonization and invasion.

Certainly, the most important virulence genes detected are 
those from the cps locus encoding for the polysaccharide cap-
sule (cpsD, cpsG, cps2L, cps4A, cps4D, wzh, wzg, wze, and wzd).65 
These genes impact on S. pneumoniae pathogenesis through 
various pathways, such as assisting the pathogen to evade the 
immune system and to colonize the nasopharyngeal tract.66 In 
addition, several surface proteins playing a role in host cell 
adhesion, and therefore, the nasopharyngeal colonization, were 
retrieved. The latter, are coding for either Choline-Binding 
Proteins (cpbD, cpbG, pce, lytA, lytC, and lytB),67 the pilus-
encoding pathogenicity islets (pitA, sipA, pitB, and srtG1),68 
two neuraminidases (NanA and NanB),69 or other surface pro-
tein like eno, pavA, srtA plr, srtH, slrA, and pfbA.2,70 In addition, 
genes that ensure the host tissues degradation (hysA, eno, pce, 

and gapA)71 or provide to S. pneumoniae essential nutrients 
(piaA, piuA, PsaA, htrA, lmb, and tig) were found.71-74 Moreover, 
we detected genes involved in the immune invasion. These 
mechanisms consist in immunoglobulin lysis (iga), C3 comple-
ment system interference (ply, nanA, srtH, lytA, lytB, gapA, and 
cppA),75 inflammation induction (ply, lytA, and htrA) and 
opsonophagocytosis inhibition (CPS genes, PiaA, PiuA, nanA, 
and srtH).66,69,76,77

Among the detected virulence genes, we particularly focused 
on the pneumolysin, one of the most promising protein vaccine 
antigen.78 The discovery of clones harboring mutated pneumo-
lysin has questioned the efficiency of pneumolysin-based vac-
cines, expected to be highly genetically conserved.78,79 With 
this in mind, a deepening of the virulence analysis was per-
formed by investigating the pneumolysin allelic profile in NC 
isolates. Substitutions (K224R, A265S, T172I, and Y150H) 
and deletions (V270, K271) were observed in both ST306 and 
ST3717 pneumolysin sequences (Figure 2).

These mutations (K224R, A265S, V270, and K271) are 
known to play a crucial role in diminishing the hemolytic activ-
ity.34,48,79 Added to T172I and Y150H mutations, the hemo-
lytic activity became depleted.79 The hemolytic function 
depletion, even primordial, confirms its uncorrelation to inva-
siveness loss and lower epidemic-prone capacity.34

Contribution of mobile genetic elements in S. 
pneumoniae serotype 1 diversif ication

Mobile genetic elements (MGEs) can deeply influence bac-
terial pathogenic potential.80,81 When querying the ICEberg 
or using the ICEfinder web tools, we did not detect any 
ICE.56,82,83

Figure 1. Pan-genome size of NC S. pneumoniae isolates: (A) Proportions of gene coding sequences in the pan-genome divided into 4 categories: the 

hard-core and the soft-core genome, representing respectively 99% and 95% to 99% of genes shared between isolates. The shell genes are present in 

15% to 95% of isolates, whereas the cloud genes are distributed in less than 15% of isolates.29,30,49 (B) Cumulative number of genes in the pan-genome. 

Box plots indicate first and third quartiles with medians shown as horizontal lines.
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The MGE investigation was then broadened to prophage 
sequences. Those elements are also linked to the transmission 
of virulence traits (ie, pblA and pblB) and resistance gene (ie, 
tetM) in S. pneumoniae.84,85 Consistent with previous findings, 
we barely retrieve prophages in serotype 1 S. pneumoniae.86 
Indeed, two “questionable” and 37 putative prophage regions 
were detected using PHASTER and VirSorter, respectively.37,38 
Those detected by PHASTER correspond to the Enterobacteria 
phage phi92, having a region size of ~11 KB. The 37 viral puta-
tive regions detected by VirSorter had a mean region size of 
13 KB.38 Considering that the average of a complete prophage 
sequence is about 45 Kb,87 we hypothesized whether the “ques-
tionable” and “putative” regions detected by both tools might be 
potential “remnants” prophages.84

Homologous recombination rate and hotspots in NC 
S. pneumoniae serotype 1

Homologous recombination is a key factor for the acquisition  
of ARGs, virulence traits, and new metabolic properties by 
pathogens.80,88 Previous studies depicted the crucial role of 
recombination in the transmission of fluoroquinolones, beta-
lactams, trimethoprim, and sulfamethoxazole resistance in S. 

pneumoniae.56,83,89 Herein, NC S. pneumoniae full-genome screen-
ing showed that no recombination events were detected in ARGs. 
In contrast, screening of virulence genes highlighted a recent 
recombination event occurring in the lamin-binding protein 
(lmb) gene, and more ancestral recombination events in piaA 
(pneumococcal iron acquisition A), slrA (Streptococcal 
Lipoprotein Rotamase A), pce (Choline-binding protein E) and 
cps2L (Figure 3). These genes are likely to be beneficial to S. pneu-
moniae, either during colonization or during the invasion process. 
The pce gene has a dual role in the virulence of S. pneumoniae by 
being associated with the process of neutrophil decreasing activity 
and plasminogen binding.71 The SlrA is yet another virulence 
gene, promoting upper airways colonization during the initial 
step of pneumococcal infection.71,90 The piaA and lmb genes pro-
vide, respectively, the Fe and Zn nutrients necessary for the adap-
tation of S. pneumoniae to different microenvironments while 
progressing to an invasive status.71,91 The most notable virulence 
gene detected in the recombination hotspot is the cps2L, part of 
the cps gene cluster coding for S. pneumoniae capsular polysac-
charide. The pneumococcal capsular polysaccharide is targeted by 
the PCV vaccine and defines the S. pneumoniae serotype, its car-
riage duration, recombination rate, and therefore, its virulence 
and invasiveness.92,93 However, the cps locus organization 

Figure 2. Amino acid multiple sequence alignment of pneumolysin sequences. D39, Allele 5, and ply2 referred to pneumolysin sequences of respectively 

the reference strain (D39), NC serotype 1, and 22 serotype 1 retrieved from Jefferies et al’s34 study. The mutation positions compared to the reference 

pneumolysin D39 are highlighted in purple.
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facilitates the recombination events favoring the emergence of 
new capsules variants clones, more commonly known as NVT 
through capsule switching mechanism.82,93 This phenomenon 
was highly promoted by the introduction of PCV7. For instance, 
the replacement of the serotype 23F and serotype 4 clones by 
19A variants following PCV7 introduction.12,94 Similar events 
occurred in NC, where an increase of serotype 15B and 19A 
prevalence were described after-PCV7 introduction in 2008.13

In the second step of this analysis, we estimated the recom-
bination rate of NC S. pneumoniae isolates. The recombination 
to mutation (r/m) ratio was equal to 2.51 (with 2.45 and 3.24, 
respectively for ST306 and ST 3717) (Supplementary Table 
S6). This low recombination rate supports the previous find-
ings.50 Indeed, the serotype 1 recombination rate was estimated 
to be 1.51 in Southeast Africa, 0.05 in South Africa, and 4.22 
in West Africa and Southeast Asia isolates.50 In contrast, 
recombinant multidrug-resistant S. pneumoniae clones such as 
the PMEN1, PMEN2, and PMEN14, exhibited a higher r/m 
value of, respectively, 7.2, 14.9, and 34.06.11,41,95

Dating lineage by Bayesian evolutionary analysis

Prior to BEAST analysis, we tested the clock-likeness of the 
data set by Tempest software.44 Using a best-fit root, we 
obtained a chi-square value of 6.4508e−2 and a positive coeffi-
cient correlation value (R2: 0.254) (Supplementary Figure S2). 
The tree height was estimated to 1976.7363 using FigTree 
meaning that serotype 1 emerged prior to the PCV7 introduc-
tion in 2008 (Supplementary Figure S3).

The most common ancestor (tMRCA) of ST306 was esti-
mated to 2000.731 (95% highest posterior density [HPD]: 

1988.2523-2004.1678). This date corresponds to the first out-
break period caused by ST306 in NC.8 In addition, mutation 
rate median value was estimated to 0.5733 (substitutions/site/
year [95% HPD: 8.093e−3, 4.8331]), meaning that one mutation 
occurs every 2 years. One possible consequence of the emergence 
of ST3717 was caused by the Guanine-Adenine mutation in the 
ST306 aroE housekeeping gene. This finding is corroborated by 
the tMRCA (2002.5071) estimated for the ST3717.

Conclusion
Despite its high prevalence and association with the 2000s out-
breaks, the NC serotype 1 genomic specificity was investigated 
using only conventional low throughput methods. In this study, 
we provided further insights by describing the population 
structure and genomic features of NC S. pneumoniae serotype 1 
pre-PCV13 using the whole-genome sequencing. The results 
shown here confirm that the serotype 1 NC population was 
extensively dominated by ST306. The genomes of the whole 
population harbor multiple genes conferring resistance to anti-
biotics and contain a large number of virulence genes. NC 
genomes are also characterized by a relatively low rate of 
recombination and lack of MGE elements, involved in genomes 
diversification.

The absence of genomic data from other serotypes and phe-
notypic (in vivo/in vitro) experimental data from our samples, 
limited the spectrum of the analysis to the study of genomic, 
virulence, and antibiotic resistance features of NC S. pneumo-
niae serotype 1. Thus, investigations on S. pneumoniae serotype 
1 post-PCV13, and more broadly the overall pneumococcal 
populations in NC need to be performed to highlight the 
PCV13 impact.

Figure 3. Recombination hotspots in whole-genome alignment: (A) the phylogenetic tree was computed on recombination sites free alignment and was 

generated by GUBBINS. (B) Functional annotation of the consensus sequence where the light blue spots represent the mapping of the predicted CDS. (C) 

The detected recombination hotspots: red blocks represent ancestral recombination while the blue blocks represent specific recombination to one isolate. 

Recombination hotspots overlapping with virulence genes are labeled with a number: 1, 2, 3, 4, and 5, respectively, corresponding to cps2L, slrA, piaA, 

cpbE/pce, and lmb, respectively. (D) The bottom part of the figure corresponds to a graph measuring SNP density.
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