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Control of blood glucose induced 
by meals for type‑1 diabetics 
using an adaptive backstepping 
algorithm
Rasoul Zahedifar & Ali Keymasi Khalaji*

In this study, an adaptive backstepping method is proposed to regulate the blood glucose induced by 
meals for type‑1 diabetic patients. The backstepping controller is used to control the blood glucose 
level and an adaptive algorithm is utilized to compensate for the blood glucose induced by meals. 
Moreover, the effectiveness of the proposed method is evaluated by comparing results in two different 
case studies: in the presence of actuator faults and the loss of control input for a short while during 
treatment. Effects of unannounced meals three times a day are investigated for a nominal patient in 
every case. It is argued that adaptive backstepping is the preferred control method in either case. The 
Lyapunov theory is used to prove the stability of the proposed method. Obtained results, indicated 
that the adaptive backstepping controller is stable, and the desired level of glucose concentration is 
being tracked efficiently.

Diabetes mellitus is a group of metabolic diseases that leads to  hyperglycemia1 or  hypoglycemia2, where due to 
the defects in insulin secretion, insulin action, or  both3, glucose level goes higher or lower than the safe zone, 
 respectively4. According to WHO, diabetes is one of the leading causes of death in the world, while 422 million 
people worldwide have diabetes.

According to the American Diabetes Association, there are four types of diabetes entailing: type 1, type 2, ges-
tational diabetes (diabetes while pregnancy), and specific types of diabetes (such as genetic defects in insulin 
action)5. Type-1 diabetes (T1D) is a chronic condition in which pancreatic β-cell destruction typically culminates 
in absolute insulin deficiency (pancreas releases little or no amount of insulin)6. The main symptoms of T1D 
are polyuria (excessive urine production), polydipsia (feeling of extreme thirstiness), and weight  loss7. In the 
United States, according to CDC (Centers for Disease Control and Prevention), more than 34 million (about 1 in 
10) have diabetes, where 5–10 percent have type 1 diabetes. A schematic of the consequences of diabetes in the 
long term is illustrated in Fig. 1. The risk of T1D is rising worldwide and nearly 90,000 children are diagnosed 
each  year8. As a result, the injection of exogenous insulin, for the rest of the patient’s life, is needed to keep the 
glucose level of type 1 diabetes  safe9.

Currently, no one knows how to prevent type 1 diabetes, yet we do know how to control it. The most com-
mon way is to inject insulin daily up to 4 or 5 times. Another method is the infusion of subcutaneous insulin 
continuously. The efficacy comparison between these two methods can be found  in10,11. But another new prom-
ising approach was investigated by the introduction of artificial pancreas, where diabetes meets control theory. 
The artificial pancreas, also known as the closed-loop control of blood glucose, is a system combining a sensor, 
a control algorithm, and an insulin  pump12. In this approach, the goal is to mimic the function of pancreatic 
insulin, in which, the sensor provides the measurements of the blood glucose concentration (BGC) and passes 
the information to a feedback-control system that would decide on how much insulin is needed to keep the 
patient’s glucose within the safe  zone13.

To design such an artificial pancreas, several control methods and algorithms have been proposed in the litera-
ture. To name a few, a PID-based controller is proposed to provide a real-time adjustment of  parameters14,15.  In16, 
the PID controller is designed such that it is turned on only after meals and remains off before. Model predictive 
controller (MPC) is among the widely investigated  methods17–19 according to its advantage; its capability to adapt 
itself to the changes occurring in interpatient variability as time passes. However, the efficiency of MPC depends 
on how much accurate the assumed model is. Another method applied in literature is fuzzy logic algorithms that 
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require a set of rules based on advanced knowledge of the system or  problem20,21. An adaptive control scheme is 
proposed  in22, in which the controller is adjusted according to the changes in the system’s behavior. The backstep-
ping method, firstly introduced  in23 for nonlinear dynamical systems, is among the popular controller methods. 
It has a recursive design procedure and proved to be highly applicable to control blood  glucose24,25, yet flexible 
to be used along with other methods, especially with adaptive  control26,27. To bring adaptive control into the 
picture, the Lyapunov  theory28–30, is the key to determining the adaptive rule. But, to control the blood glucose 
of T1D using the backstepping algorithm, there is still a gap in the literature that if it is advantageable to apply 
the adaptive control as well, to compensate for the uncertain effect of meals. There are various approaches to deal 
with the uncertainties of the dynamics of the system. To name a few, one technique is to use a neural  network31, 
while the other one is adaptive control or a combination of  both32. Compared to backstepping, adaptive back-
stepping can afford uncertainties of the model, while it might get out of control using the backstepping method. 
Therefore, adaptive backstepping is more reliable, especially in the presence of uncertainties, which can be seen 
in real-world applications. To the best of our knowledge, there is no investigation on a comparison between the 
efficiency of backstepping and adaptive backstepping methods to control T1D with an uncertain disturbance of 
meals. Furthermore, our proposed adaptive backstepping algorithm is robust in the presence of actuator faults 
and loss of control input for a short time, compared with the previous research on this subject in the literature.

In this paper, based on the Bergman minimal  model33, two protocols are proposed such that blood glucose 
concentration tracks exponentially desired trajectories; one is achieved from backstepping and the other from 
adaptive backstepping. The effect of the meals, three times a day, has been considered in our analysis. Then, we 
claim a comparison of which method has the priority to have a better performance to control the blood glucose 
level of type 1 diabetic patients. Furthermore, to bring more strength to our argument, the performance of back-
stepping and adaptive backstepping methods are analyzed in two different case studies; in the first case study, 
the controllers are examined in the presence of actuator faults. In the second one, the controllers are analyzed 
to whether they hold their normal performance even if they confront an extremely low amount of gain affecting 
the input for a short while during treatment. It is concluded that under every circumstance, adaptive backstep-
ping has the advantage.

The rest of this paper is organized as follows: the widely-used Bergman minimal model is introduced in 
“Mathematical model of type-1 diabetes”. Next, the desired function of glucose concentration is defined in 
“Control algorithm”, after which the analyses of backstepping and adaptive backstepping to achieve the final 
protocols are presented in “Backstepping method” and “Adapting backstepping method” respectively. This is 
followed by our investigation into two different case studies in “Numerical simulation”. In the end, numerical 
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Figure 1.  A schematic of the consequences of diabetes in the long term.
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evaluation with the emphasis on comparison of the aforementioned methods, as well as case studies, are given 
in “Case study 1: actuator faults” and "Case study 2: controller failure for a short while".

Mathematical model of type‑1 diabetes
The dynamics model of the blood glucose-insulin system is generally non-linear. A review study about different 
dynamical models can be found  in34. The most commonly used mathematical model for the blood glucose-
insulin system known as Bergman minimal model was introduced in  198033. In comparison with other models, 
the main advantage of the Bergman minimal model is its simplicity, where the relation of input and output is 
regulated with the minimum possible parameters, without further involvement of biological complexity. The 
dynamic equations of the system are as  follows35–38:

where G(t) is the glucose concentration in the blood plasma in mg/dl , X(t) is the interstitial insulin in 1/min 
and I(t) is the insulin concentration in the blood plasma in µU/ml (or µIU/ml ), Gb and Ib are the basal levels of 
glucose and insulin respectively, n is the time constant for insulin disappearance, p1 , p2 and p3 are the insulin-
independent constant rate of glucose uptake in muscles and liver, the rate for the decrease in tissue glucose uptake 
ability, and the insulin-dependent increase in glucose uptake ability in tissue per unit of insulin concentration 
above the basal level. The control input u(t) in µU/(ml/min) denotes the insulin injection rate, and D(t) shows 
the glucose taken from meals which are uncertain in measure as a disturbance. The parameter D(t) is defined 
by the following decaying exponential  function35:

where A and B are two positive constants. The parameter values of the model (1) for a type-1 diabetic patient 
are represented in Table 1 13,35.

Remark 1 Note that for the unit of I(t) , and consequently the input u(t) , we use µU/ml (or µIU/ml ), where U 
( IU  ) stands for Units (International Units). However, in the International System of Units (SI), a mass-based 
( pmol/L ) unit is used instead, yet the conversion rate is still under discussion. So, we proceed with the conven-
tional form of the unit. For more information about the conversion rate, readers are referred  to39.

Remark 2 As people usually eat more at lunch, parameters A and B in Eq. (2) are chosen such that the lunch is 
taken more quantitatively than dinner and the dinner is taken more than breakfast. The values of these param-
eters are represented in Table 2.

Control algorithm
First, a time-varying desired trajectory Gd(t) is introduced as the reference signal for the glucose concentration 
G(t) to be tracked. The signal is defined as Gd(t) = G∞ + (G0 − G∞)exp(−t/τ) so that it decreases exponentially 
from the initial value G0 to the set final value G∞ = 100 with the time constant τ = 100 min.

Ġ(t) = −p1(G(t)− Gb)− G(t)X(t)+ D(t)

Ẋ(t) = −p2X(t)+ p3(I(t)− Ib)

(1)İ(t) = −n(I(t)− Ib)+ u(t)

(2)D(t) = Aexp(−Bt)

Table 1.  Model parameters.

Parameter Explanation Value Unit

Gb Basal glucose level 90 mg/dl

Ib Basal insulin level 7 μU/ml

n The time constant for insulin disappearance 0.2814 1/min

p1 The insulin-independent constant rate of glucose uptake 0 1/min

p2 The decrease rate in tissue glucose uptake ability 0.0142 1/min

p3 The insulin-dependent increase in glucose uptake 1.5× 10
−5 ml/μU/min

Table 2.  Disturbance parameters.

Value

Breakfast Lunch DinnerParameter

A 0.4 0.6 0.5

B 0.01 0.01 0.01
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Consider the error between the actual output and the reference defined as:

From this point forward, x1 , x2 , x3 , and x1d are used instead of the parameters G(t) , X(t) , I(t) , and Gd(t) 
respectively. Also, the notation of time (t) is removed for convenience.

Backstepping method. In this section, the goal is to converge the error signal e1 to zero exponentially. The 
step by step designed protocol is as follows.

First step. Firstly, a positive definite Lyapunov function candidate is defined as V1 =
1
2 e

2
1 . If its time derivative 

i.e., V̇1 = e1ė1 , is negative definite, it means e1 is converging exponentially to zero. Hence the following stable 
error dynamics is chosen:

where k1  is a positive constant. Therefore, ė1 from Eq. (4) can be applied into V̇1 and consequently:

It can be concluded that e1 is converging exponentially to zero. Also, Eq. (4), can be written as:

Now, ẋ1 can be replaced from Eq. (1) into Eq. (6):

The x2 obtained from the above equation is the desired x2 for the next step and it is denoted with x2d . There-
fore, we have:

Note that as D is unknown, we are not allowed to bring it to the controller.

Second step. In the next step, the error signal for the actual value of the second state and its desired value is 
defined as e2 = x2 − x2d . Accordingly, the second Lyapunov function candidate is defined as V2 =

1
2 e

2
2 . The 

same scenario for achieving x2d is applied to obtain x3d . First, the desired error dynamics is selected as follows:

where k2  is a positive constant. Based on Eq. (9) we have ė2 = −k2e2 , and substituting it in the derivative of V2 , 
leads to:

Therefore, the derivative of the Lyapunov function candidate V2 is obtained as a negative definite function. 
Consequently, e2 would be converging to zero exponentially. Equation (9) can be written as follows:

Substituting the corresponding value of ẋ2 from Eq. (1) into Eq. (11), yields:

And now, x3 obtained from Eq. (12) is the desired one:

Third step. In the last step, the error signal e3 = x3 − x3d can be calculated and its Lyapunov function candidate 
is chosen as V3 =

1
2 e

2
3 accordingly. Similar to the previous steps, assuming the following stable error dynamics 

for e3:

where k3  is a positive constant. This error dynamics leads to the following negative definite function for V̇3:

Therefore, the exponential convergence of e3 to zero can be concluded. To proceed towards this goal, Eq. (14) 
can be written as:

(3)e1 = G(t)− Gd(t)

(4)ė1 + k1e1 = 0

(5)V̇1 = e1ė1 = e1
(

−k1e1
)

= −k1e
2

1 ≤ 0

(6)(ẋ1 − ẋ1d)+ k1(x1 − x1d) = 0

(7)
{

−p1(x1 − Gb)− x1x2 + D − ẋ1d
}

+ k1(x1 − x1d) = 0

(8)x2d =
1

x1
[−p

1
(x1 − Gb)− ẋ1d + k1(x1 − x1d)]

(9)ė2 + k2e2 = 0

(10)V̇2 = e2ė2 = e2
(

−k2e2
)

= −k2e
2

2 ≤ 0

(11)(ẋ2 − ẋ2d)+ k2(x2 − x2d) = 0

(12)
{

−p2x2 + p3(x3 − Ib)− ẋ2d
}

+ k2(x2 − x2d) = 0

(13)x3d = Ib +
1

p3
[p2x2 + ẋ2d − k2(x2 − x2d)]

(14)ė3 + k3e3 = 0

(15)V̇3 = e3ė3 = e3
(

−k3e3
)

= −k3e
2

3 ≤ 0
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Substituting the corresponding value for ẋ3 from Eq. (1) into Eq. (16), yields:

where u  is the input. Therefore, the input u  can be achieved from Eq. (17) as:

By selecting positive gains for ki(i : 1 → 3) , the control input obtained in Eq. (18) can lead e1 to converge to 
zero exponentially, as a result, x1 → x1d .

Adaptive backstepping method. In this section, an adaptive rule is designed to compensate for the dis-
turbances of glucose taken from meals. A step-by-step procedure can be used until the desired input is acquired.

First step. In the first step, the Lyapunov function candidate is chosen as V1 =
1
2 e

2
1 , which its derivative can be 

obtained as:

Applying the corresponding value of ẋ1 from Eq. (1) into Eq. (19) yields:

Therefore, the desired value for x2 in Eq. (20) can be chosen as:

where ̂D is the estimation of D , and k1 is a positive constant. The error between D and its estimation value is as 
˜D = D − ̂D . Substitution from Eq. (21) into Eq. (20), yields:

where the term −˜De1 will be canceled in the next step.

Second step. In this step, the next Lyapunov function candidate is chosen as:

The time derivative of Eq. (23) can be written as:

The corresponding value of ẋ2 can be replaced from Eq. (1) into Eq. (24) and it yields to:

Now, the desired value of x3 is chosen as:

Also, the following disturbance estimation equation is considered as an adaptive rule.

Thus, substituting from Eq. (26) and Eq. (27) into Eq. (25), we get:

where the derivative of V2 is negative semi-definite in the next step the error signal e3 is brought into the picture.

Third step. In the last step, V3 is defined as V3 = V2 +
1
2 e

2
3 , which its time derivative is obtained as:

By replacing the corresponding value of ẋ3 from Eq. (1) into Eq. (29), we have:

(16)(ẋ3 − ẋ3d)+ k3(x3 − x3d) = 0

(17){−n(x3 − Ib)+ u− ẋ3d} + k3(x3 − x3d) = 0

(18)u = n(x3 − Ib)+ ẋ3d − k3(x3 − x3d)

(19)V̇1 = e1ė1 = e1(ẋ1 − ẋ1d)

(20)V̇1 = e1
{

−p1(x1 − Gb)− x1x2 + D − ẋ1d
}

(21)x2d =
1

x1
[−ẋ1d + k1e1 − p1(x1 − Gb)+ ̂D]

(22)V̇1 = −k1e
2
1 −

˜De1

(23)V2 = V1 +
1

2
e22 +

1

2δ
˜D2

(24)V̇2 = V̇1 + e2ė2 +
1

δ
˜D ˙̂D = −k1e

2
1 −

˜De1 + e2(ẋ2 − ẋ2d)+
1

δ
˜D ˙̂D

(25)V̇2 = −k1e
2
1 +

˜D

(

−e1 +
1

δ

˙̂D

)

+ e2(−p2x2 + p3(x3 − Ib)− ẋ2d)

(26)x3d = Ib +
1

p3
[p2x2 + ẋ2d − k2e2]

(27)˙̂D = δe1

(28)V̇2 = −k1e
2
1 − k2e

2
2

(29)V̇3 = V̇2 + e3ė3 = V̇2 + e3(ẋ3 − ẋ3d) = −k1e
2
1 − k2e

2
2 + e3(ẋ3 − ẋ3d)

(30)V̇3 = −k1e
2
1 − k2e

2
2 + e3(−n(x3− Ib)+ u− ẋ3d)
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Therefore, the control input u can be chosen as:

Consequently, substituting from Eq. (31) into Eq. (30), yields:

As can be seen, by choosing positive gains for ki(i : 1 → 3) , V̇3 would be a negative semi-definite function. 
Regarding the reference signal x1d is an exponentially decreasing function, hence it is globally bounded, so is e1 . 
Moreover, ẋ1d , x1 , and ̂D are also globally bounded. So, the global boundedness of x2d is concluded, and conse-
quently, e2 is globally bounded. Furthermore, ẍ1d , x2 and ˙̂D are also globally bounded, which yields to the global 
boundedness of x3d and as a result, e3 is globally bounded. Hence, the function V3 is globally bounded as t → ∞ 
and V̇3 is uniformly continuous (in other words V̈3 is bounded). Then by Barbalat  Lemma28, V̇3 → 0 as t → ∞ . 
As a result, e1 → 0 as t → ∞ , and x1 → x1d is achieved. A schematic of how the proposed control algorithm 
works is demonstrated in Fig. 2, where BGC stands for blood glucose concentration. The input is insulin injection 
rate, while the output is blood glucose level. It should be noted using continuous glucose monitoring (CGM), 
the states x1 and x2 can be measured, while the state x3 can be estimated in real  time40,41.

Numerical simulation
In this section, we represent numerical simulations of a type-1 diabetic patient under the Bergman minimal 
model and designed inputs in Eq. (18) and Eq. (31). For this purpose, we use the values of nominal parameters 
shown in Table 1. The simulations are investigated in a 24 h analysis, starting from fasting glucose level (no food 
taken for at least 8 h) at 6 A.M. The meals are taken at 8 A.M. as breakfast, 2 P.M. as lunch, and 8 P.M. as dinner. 
The effects of foods are placed somehow in which the lunch meal amount is more than dinner while dinner is 
more than breakfast. For type-1 diabetic patients, the fasting level of glucose is higher than 126 mg/dl3. So, we 

(31)u = n(x3 − Ib)+ ẋ3d − k3e3

(32)V̇3 = −k1e
2
1 − k2e

2
2 − k3e

2
3

Actuator Controller

Sensor

Desired BGC 

Diabetic Patient

Meal Disturbances

BGC

=
1

1
1 1 1

( 1 ) ]

+
1

3
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Figure 2.  Block diagram of the adaptive backstepping algorithm proposed for the regulation of blood glucose 
for type-1 diabetics.
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should set the initial condition G0 higher than this level. The initial conditions are as follows: G(t0) = 150 mg/
dl, X(t0) = 0 1/min, and I(t0) = 100 μU/ml. The gains are chosen as k1 = 0.43 , k2 = 0.46 , k3 = 0.62 , analogous 
for both methods, with δ = 0.001 as the adaptive rule gain.

The blood glucose level for a nominal patient under the control algorithm is depicted in Fig. 3. In Fig. 3, there 
are three colored zones divided by their safety level for type-1 diabetic patients. the zones are classified into the 
safe zone, warning zone, and dangerous zone. The area above 180 mg/dl (hyperglycemia) and below 70 mg/
dl (hypoglycemia) are labeled as dangerous zone, between 130 mg/dl and 180 mg/dl as the warning zone, and 
between 70 mg/dl and 130 mg/dl is the safe zone.

It can be easily seen that without treatment, the blood glucose level rises to a dangerous level, which proves 
that insulin for type-1 is not required for the control, but for  survival3. Furthermore, regarding the efficiency of 
backstepping and adaptive backstepping methods, backstepping has been performed mostly in warning zone, 
even touching dangerous zone after lunch and dinner meals are taken. While, adaptive backstepping has shown 
a satisfying control performance as it keeps the glucose level in the safe zone, even during mealtime. Using the 
adaptive backstepping technique, a lunch meal with its huge influence could only increase blood glucose from 
100 mg/dl to almost 112 mg/dl.

In Fig. 4, the graph of inputs is represented for comparison of backstepping and adaptive backstepping 
algorithms. In the beginning, as the fasting blood glucose rate was assumed to be matched with uncontrolled 
type-1 diabetes, the inputs confront jumps in insulin rate to compensate for high blood glucose levels as soon 
as possible. The insulin injection amounts are within reasonable ranges as almost 40 μU/ml is required during 
lunch for adaptive backstepping. The more insulin injected, the more decreasing blood glucose level could be, yet 
backstepping performance is not rewarding with a lesser insulin rate. Arguably, we do not have limits to use more 
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Figure 3.  Blood glucose level for a nominal patient under the control algorithm.
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Figure 4.  Insulin injection for a nominal patient under the control algorithm.
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insulin dosage within practicable range, especially when it is humans’ lives under discussion. Having the same 
controller gains, backstepping failed to apply more insulin amounts to show a better, yet necessary performance.

In Fig. 5 the estimation of blood glucose induced by meals as a disturbance is demonstrated.
Figure 5 indicates how well-ordered the proposed disturbance estimation is comparatively following its actual 

value. The adaptive backstepping advantage is relied on how efficiently the adaptive rule works.
In the last step, the graph shown in Fig. 6 represented the effectiveness of the adaptive backstepping algorithm 

to control the blood glucose level of the nominal patients with different initial conditions. Starting from even 
the harshest initial condition, with blood glucose level at 320 mg/dl, the safe zone is gradually obtained only 
75 min after breakfast is eaten.

Case study 1: actuator faults
It is not deniable that the actuators may become obsolete after a while and show signs of faults in their perfor-
mance. But the controller should be designed in advance such that it is robust towards actuator faults. In this sec-
tion, the performance of backstepping and adaptive backstepping methods are compared under such conditions. 
To implement this purpose, multiplicative and additive actuator faults are applied to the controller in the form of:

where ϕ(t) indicates the additive actuator fault and ρ(t) is the multiplicative actuator fault, such that 
0 < ρ(t) ≤ 1 . Actuator faults are applied as harshly as possible; therefore, it would be a challenging task for the 
proposed algorithm. Towards this goal, the parameters are set as follows: ρ(t) = 0.01+ 0.99exp(−0.1t) and 
ϕ(t) = 0.1(1− exp(−0.1t)).

(33)ufaulty(t) = ρ(t)u(t)+ ϕ(t)
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104
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Figure 5.  Estimation of blood glucose induced by meals as a disturbance.

Figure 6.  Blood glucose control with different initial conditions under the proposed control algorithm.
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Remark 3 Although it is not very realistic to design the actuator fault this much more severe, the faultier it is, 
the more robust the proposed algorithm can be claimed.

Remark 4 The additive fault, evident from its name, is a kind of fault added to the channel of control input sepa-
rately. While, multiplicative fault steps on the normal value of input as a time-dependent gain, the more ρ(t) 
closed to zero, the faultier, and consequently weaker, the input  becomes42.

The blood glucose level in the presence of actuator faults under the control algorithm is demonstrated in 
Fig. 7.

In Fig. 7, it is again obvious that the adaptive backstepping algorithm can control blood glucose even under 
such harsh conditions of actuator faults. However, the backstepping algorithm failed as the blood glucose level 
surged towards almost 250 mg/dl, while it was around 200 mg/dl without actuator faults after lunch was taken. 
On the contrary, for adaptive backstepping, the glucose level peaks at 120 mg/dl and 113 mg/dl, with and without 
actuator faults, respectively.

Insulin injection in the presence of actuator faults under the control algorithm is displayed in Fig. 8.
In Fig. 8, the graph of control inputs is given to indicate that the value of the input has remained in a reason-

able range. Even the gains of the system to keep the adaptive backstepping algorithm well-performed, are still 
the same as without actuator faults. The difference can be seen in Fig. 9, as the disturbance estimation transcends 
its actual value and still can keep adaptive backstepping working properly.

In Fig. 9, compared to Fig. 5, where the disturbance estimation tracked its true value almost accurately, the 
parameter ̂Doverestimated parameter D, especially around meal time. This is due to the existence of actuator 
fault, which are considered to be more severe and far from reality to evaluate the robustness of the controller. 
The faultier the actuator, the more robust the proposed algorithm can be claimed.
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Figure 7.  Blood glucose level in the presence of actuator faults under the control algorithm.
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Figure 8.  Insulin injection in the presence of actuator faults under the control algorithm.
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While the disturbance is overestimated due to an actuator fault, the controller tries to correct the faulty input 
effect by estimating the disturbance. As shown in Fig. 7, blood glucose levels return to the safe zone, but despite 
the high fault of the actuator, ideal answers can not be expected.

Case study 2: controller failure for a short while
As discussed before, insulin is required for the survival of type-1 diabetic patients. But what happens if the 
controller almost fails to work for a short while. The algorithm should be examined to the extent that if such a 
condition happens, it would not culminate in disaster for patients. To investigate this case study, control inputs 
are designed as follows:

where, between 10 A.M. and 12 P. M., a very low amount of gain is multiplied by the input value. The efficiency 
of the adaptive backstepping algorithm is concluded one more time, compared to backstepping, to control blood 
glucose concentration.

In Fig. 10, the graph of blood glucose levels is presented where adaptive backstepping still holds the advan-
tageable place. Noticeably, the appropriate reaction of adaptive backstepping to this condition is gentler while 
quicker. Adaptive backstepping jumps from almost 100 mg/dl to 130 mg/dl and comes back to its normal trend 
in only 15 min. However, backstepping increases from almost 130 mg/dl to 175 mg/dl, and it takes more than 1 h 

(34)u =

{

u t < 10A.M.ort > 12P.M.
0.002u 10A.M. < t < 12P.M.

Figure 9.  Estimation of blood glucose induced by meals as a disturbance in the presence of actuator faults.
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Figure 10.  Blood glucose level in the 2-h absence of controller.
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to get back to its previous state. The considerable fact is that, during this process, adaptive backstepping remains 
in the safe zone, while backstepping takes steps nearer to the dangerous zone.

In Figs. 11 and 12, the graph of inputs and disturbance estimation under this case study are depicted, 
respectively.

In Fig. 11, a small amount of deviation is seen at the start of this 2-h-period. The range of inputs almost stands 
the same as the former ones, though the gains are not alike. The gains are k1 = 0.45 , k2 = 0.45 , and k3 = 1.5 
similar for both methods, with δ = 0.007 as the adaptive rule gain.

Conclusion
Based on the Bergman Minimal model of glucose-insulin level of type-1 diabetics, the adaptive backstepping 
method had been proposed and compared with the backstepping algorithm. The effects of the meal taken three 
times a day had been considered in the model. The effectiveness of the adaptive backstepping method had excelled 
over that of the backstepping algorithm. Moreover, to indicate that adaptive backstepping is more robust in 
different conditions compared to backstepping, two case studies were investigated. One in the presence of the 
actuator faults and the other in the presence of an extremely low amount of gain to act on input for a short while. 
The efficiency of the proposed algorithm had been analyzed using numerical comparison results. All situations 
confirmed that adaptive backstepping had been much more promising than the backstepping method to control 
the blood glucose level of type-1 diabetic patients.

Data availability
No datasets were generated or analysed during the current study.
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