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Abstract We present a method to explore the effective nullspace of nonlinear inverse problems without
Monte Carlo sampling. This is based on the construction of an artificial Hamiltonian system where a model
is treated as a high-dimensional particle. Depending on its initial momentum and mass matrix, the particle
evolves along a trajectory that traverses the effective nullspace, thereby producing a series of alternative
models that are consistent with observations and their uncertainties. Variants of the nullspace shuttle
enable hypothesis testing, for example, by adding features or by producing smoother or rougher models.
Furthermore, the Hamiltonian nullspace shuttle can serve as a tunable hybrid between deterministic and
probabilistic inversion methods: Choosing random initial momenta, it resembles Hamiltonian Monte
Carlo; requiring misfits to decrease along a trajectory, it transforms into gradient descent. We illustrate the
concept with a low-dimensional toy example and with high-dimensional nonlinear inversions of seismic
traveltimes and magnetic data, respectively.

Plain Language Summary All geophysical data are inherently limited in their ability to
constrain the properties and dynamics of the Earth, such as material parameters deep inside our planet,
future atmospheric circulation, or fluid flow in a geothermal reservoir. As a consequence, there are
generally many representations (also called models) of the Earth that explain our data to within their
uncertainties. The ensemble of these admissible representations is the “nullspace.” Here we present an
efficient tool to explore the nullspace. This is based on treating an Earth model as an artificial particle
under the influence of gravity. Much like a real planet, the particle travels in an orbit. Each position
in the orbit corresponds to an admissible model of the Earth. In addition to developing the theory,
we demonstrate the efficiency of our method using examples from traveltime tomography and
magnetic surveying.

1. Introduction
Geophysical research is largely driven by the need to solve inverse problems where the model parameters m
of a system are to be estimated based on observed data that are typically sparse and noisy. An admissible set of
model parameters m̂ that explains the observations to within their uncertainties may be found through the
approximate minimization of a suitable misfit functional 𝜒(m) that quantifies differences between observed
and simulated (synthetic) data (e.g., Menke, 2012; Parker, 1994; Tarantola, 2005).

Owing to the presence of observational uncertainties, deviations m̂+Δm from the approximate minimizer
m̂ may still be plausible, provided that their misfit remains within a prescribed tolerance 𝜀 ≥ 0, that is

𝜒(m̂ + Δm) ≤ 𝜒(m̂) + 𝜀. (1)

The ensemble of models m̂+Δm that satisfy equation (1) defines the effective nullspace, the full exploration
of which constitutes the complete solution of the inverse problem (Backus & Gilbert, 1970).

In special cases where the forward problem is linear and 𝜒 is the least squares misfit functional, the effective
nullspace can be characterized exactly and independently of m̂ using the linear nullspace shuttle (Deal &
Nolet, 1996; de Wit et al., 2012). For nonlinear problems or more complicated misfit functionals, the effec-
tive nullspace may be explored with the help of Monte Carlo methods (e.g., Mosegaard & Tarantola, 1995;
Sambridge & Mosegaard, 2002). However, even when the model space dimension n is only moderately high
(n ≿ 10–100, as orders of magnitude) the required number of forward problem solves is often prohibitively
large, and so the problem of characterizing the effective nullspace remains open.
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The goal of this work is to develop an efficient method to explore the effective nullspace for inverse problems
where the forward modeling equations are nonlinear and/or where the misfit functional is not quadratic.
For this, we work under the assumption that an approximation m̂ of some optimal model has been found,
using, for instance, iterative optimization methods (e.g., Nocedal & Wright, 1999).

This article is organized as follows: In section 2 we introduce the concept of the Hamiltonian nullspace
shuttle, which treats a model as a high-dimensional particle that traverses the effective nullspace. Section
3 explains properties of the shuttle's orbit, that may be tuned, for instance, to add specific features to a
model or to explore particularly rough or smooth parts of the effective nullspace. Depending on the choice
of tuning parameters, the nullspace shuttle may be further specialized into either a Monte Carlo sampler
or a gradient descent method. Following numerical considerations in section 4, we provide examples from
nonlinear traveltime tomography and the inversion of magnetic data in section 5.

2. Navigating the Effective Nullspace
Our method rests on the interpretation of a model m in terms of an n-dimensional particle. The particle has
a time-dependent position, with each position corresponding to a new realization of a model. To describe the
movement of a model along a trajectory, we construct artificial equations of motion, known as Hamilton's
equations in classical mechanics. This requires us to define a potential energy U, which we choose to be
equal to the misfit, that is U(m) = 𝜒(m). The potential energy results in a force proportional to−∇U, which
gives the model momentum, described by an (artificial) n-dimensional momentum vector p. The mass of
the particle is described by an n × n symmetric, positive definite mass matrix M. This allows us to define a
kinetic energy as

K(p) = 1
2

pTM−1p . (2)

Since the inverse of a symmetric, positive definite matrix is also symmetric and positive definite, the kinetic
energy is generally greater than or equal to 0. The sum of potential and kinetic energies defines the artificial
Hamiltonian, H(m,p) = U(m) + K(p) of the system. Propagating the particle in (artificial) time t according
to Hamilton's equations (e.g., Landau & Lifshitz, 1976; Symon, 1971),

dmi

dt
= 𝜕H

𝜕pi
,

dpi

dt
= − 𝜕H

𝜕mi
, i = 1, … ,n , (3)

produces a continuous trajectory of models, along which the Hamiltonian is preserved. Choosing the approx-
imate optimum m̂ as starting point of the trajectory therefore results in a sequence m(t) that satisfies

H[m(t),p(t)] = 𝜒[m(t)] + 1
2

p(t)TM−1p(t) = H(m̂, p̂) = 𝜒(m̂) + 1
2

p̂TM−1p̂ . (4)

When the initial momentum p̂ is set such that K(p̂) = p̂TM−1p̂∕2 = 𝜀, equation (4) implies

𝜒[m(t)] ≤ 𝜒(m̂) + 𝜀. (5)

It follows that all models m(t) along the trajectory are within the effective nullspace, in the sense of equation
(1), because p(t)TM−1p(t) ≥ 0. Thus, to explore the effective nullspace, it is sufficient to propagate some near
optimum m̂ along a Hamiltonian trajectory where the initial kinetic energy is equal to the misfit tolerance
𝜀. Freedom of choice, and potential to tune the method, lies in the design of the mass matrix M and the
direction of the initial momentum p̂. Examples will be given in sections 3 and 5.

With the exception of few special cases, Hamilton's equations in (3) need to be solved numerically, using,
for instance, the leapfrog method with time step 𝛥t:

pi(t + Δt∕2) = pi(t) −
1
2
Δt 𝜕U

𝜕mi

||||t , (6)

mi(t + Δt) = mi(t) + Δt 𝜕K
𝜕pi

||||t+Δt∕2
, (7)

pi(t + Δt) = pi(t + Δt∕2) − 1
2
Δt 𝜕U

𝜕mi

||||t+Δt
. (8)
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The choice of suitable numerical integrators will be further discussed in section 4.

3. Orbital Properties
Before considering concrete inverse problems, we study some special cases in order to understand basic
properties of the Hamiltonian nullspace shuttle, as well as the role of the mass matrix M and the initial
momentum p̂, which we are free to choose. Though our arguments will be based on the leapfrog method,
they equally hold for other numerical integrators such as Newmark or Euler schemes.

3.1. Zero Tolerance: Relation to Iterative Gradient Descent
When a misfit increase from the approximate optimum m̂ to some m̂ + Δm cannot be tolerated, we set
𝜀 = 0, which implies vanishing initial momentum, p̂ = 0. Using equations (6) and (7), it follows that the
first leapfrog step from t = 0 to t = 𝛥t is

mi(Δt) = m̂i −
1
2
Δt2M−1

ik
𝜕𝜒(m̂)
𝜕mk

, (9)

where the summation convention for repeated indices is implied. Equation (9) establishes a relation between
the first step of effective nullspace exploration under zero tolerance and gradient descent methods. Choosing
the mass matrix M to be the identity matrix I, transforms (9) into a steepest-descent step with steplength
𝛥t2∕2. Alternatively, when M equals the Hessian H of the misfit function 𝜒 , we retrieve Newton's method
with modified steplength. In both cases, the trajectory descends on the misfit surface, as required by setting
𝜀 = 0.

3.2. Prescribed Takeoff Direction: Adding Special Features
For approximately optimal models m̂ with nearly vanishing misfit derivative, we may use the nullspace
shuttle to add specifically designed features𝛥m to m̂ while remaining within the tolerance. Indeed, inserting
𝜕𝜒(m̂)∕𝜕mi = 𝜕U(m̂)∕𝜕mi ≈ 0 into equation (6), specializes equation (7) to

mi(Δt) = m̂i + ΔtM−1
ik p̂k . (10)

Thus, by choosing the initial momentum

p̂ = 𝛾MΔm , (11)

with scaling 𝛾 set to satisfy K(p̂) = 𝜀, the first leapfrog iteration adds 𝛥m to m̂. Further iterations will
continue in a similar direction until the growing misfit derivative away from the optimum starts to dominate
equation (6).

3.3. Smooth and Bumpy Rides
In both previous cases, the inverse mass matrix, M−1, modifies the initial direction of the trajectory, as
shown in equations (9) and (10). This property can be used to enforce model variations 𝛥m with a prescribed
smoothness or roughness. For instance, choosing M−1 to be a smoothing operator (e.g., a discrete averaging
or integration), will produce a trajectory of smooth models, thereby exploring the smooth part of the effec-
tive nullspace. Conversely, a roughening operator (e.g., a discrete differentiation) will generate a continuous
sequence of rough models. This is schematically illustrated in Figure 1.

4. Numerical Considerations
The nullspace shuttle concept critically relies on the conservation of total energy, H, expressed in equation
(4). However, all explicit numerical integrators, including leapfrog, are not energy preserving. For lin-
ear problems, where the nullspace of sufficiently small problems can already be fully characterized by
singular-value analysis, the implicit Crank-Nicolson scheme (Crank & Nicolson, 1947) preserves energy
exactly. For the more interesting nonlinear case, energy-preserving schemes have been developed more
recently (e.g., Quispel & McLaren, 2008; Simo et al., 1992). These schemes are generally implicit and
therefore prohibitively expensive for modern large-scale inverse problems.

We can nevertheless obtain an efficient algorithm by realizing that our principal goal is not to solve Hamil-
ton's equations but to have some recipe that produces a sequence of models in the effective nullspace. This
can be achieved most easily by rescaling the momentum after the time step 𝛥t from p(t + 𝛥t) to sp(t + 𝛥t).
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Figure 1. Schematic illustration of nullspace trajectories departing from the current model m̂ = m(0) into rougher
(left) or smoother (right) regions of the effective nullspace. Smileys represent rough or smooth realizations of models
along the trajectories.

The positive scaling factor s is determined such that the total energy at time t equals the total energy at time
t = 0, that is,

s2K(t + Δt) + U(t + Δt) = H(0) . (12)

The rescaling corresponds to a deceleration or acceleration of the nullspace shuttle so as to preserve its
total energy, and it may be applied after each time step or only when K(t + 𝛥t) + U(t + 𝛥t) exceeds an
upper threshold value. The modified scheme may not generally solve Hamilton's equations, but it serves
the purpose of traversing the effective nullspace. Numerical examples are provided in section 5.2. The
time step 𝛥t is usually chosen to be as large as possible while still ensuring numerical stability of the
integration scheme.

5. Examples
5.1. Toy Problem: Cycle Skipping in 1-D
To gain intuition, we first consider the simple example of a 1-D misfit functional, defined for the purpose of
illustration as

𝜒(m) = U(m) = 1 − cos m + 0.025m2 , (13)

with a scalar model parameter m. The global minimum is at m = 0, but local minima exist roughly at mul-
tiples of 2𝜋, when m is small. Misfit functionals of this kind are characteristic of cycle skipping, where time
shifts of bandlimited time series by few periods may be plausible, whereas large shifts become increasingly
unlikely.

The Hamiltonian and selected trajectories corresponding to the potential energy defined in (13) are
presented in Figure 2a for a 1 × 1 mass matrix equal to 1. Starting near the optimum at m̂ = 0.1 with a small
tolerance of 𝜀 = 0.12, produces an elliptical trajectory in phase space that orbits around the global mini-
mum. The effective nullspace explored in this case approximately ranges from −0.5 to 0.5, as shown in the
top panel of Figure 2b. Successively increasing the tolerance to 𝜀 = 2.4 and 𝜀 = 5.1 allows the trajectory to
cross the high-energy barriers and to explore more distant energy and misfit valleys.

While being simplistic, this example illustrates that the Hamiltonian nullspace shuttle explores locally
unless an increased tolerance allows it to travel further. A large tolerance may either result from genuinely
large observational errors or be chosen deliberately for the purpose of wider exploration.

5.2. Nonlinear Traveltime Tomography
Equipped with the intuition from the previous example, we consider the more relevant problem of non-
linear traveltime tomography that accounts for the deflection of raypaths due to lateral heterogeneities
(e.g., Cerveny, 2001; Nolet, 2008). The model is parameterized using 70 × 40 grid points, leading to a
2,800-dimensional problem in a 70 km × 40 km-wide domain, shown in Figure 3. Six sources at the bottom
and 12 receivers at the surface produce artificial traveltimes, treated as observations Tobs

i , with i = 1, … , 72.
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Figure 2. Nullspace exploration for the 1-D cycle skipping example. (a) The Hamiltonian for the potential energy from equation (13) and a 1 × 1 mass matrix
M = 1 is shown in gray scale with contours. Trajectories for various tolerances 𝜀 at a total integration time of 23 artificial seconds are superimposed in red. (b)
Potential energy (misfit) as a function of the models m(t) explored along the trajectories.

The forward problem is solved by finite-differencing the eikonal equation (Podvin & Lecomte, 1991;
Rawlinson & Sambridge, 2004; Sethian, 1996), and the misfit (potential energy) is

𝜒(m) = U(m) = 1
2𝜎2

∑
i

[
Tobs

i − Ti(m)
]2 + 1

2
(m − mprior)TC−1

M (m − mprior) , (14)

with traveltimes Ti for a model m, composed of velocity values at the 2,800 grid points. The prior model mprior
contains a purely depth-dependent (finely layered) velocity model. Since we use artificial data, we arbitrarily
add random noise with a prior standard deviation of 𝜎 = 0.6 s. With the help of adjoint techniques, the
derivatives of U, needed to solve Hamilton's equations, are computed numerically (Leung & Qian, 2006;
Taillandier et al., 2009).

The nullspace trajectory starts at some acceptable model m̂ (Figure 3b), found via gradient-based, itera-
tive optimization. The notion of acceptable is to some extent arbitrary because the prior standard deviation
observational errors 𝜎, in a synthetic inversion are subjectively chosen and not determined by actual data.
To m̂ we try to add an elliptically shaped anomaly (Figure 3a), which determines the initial momentum
p̂ according to equation (11). The mass matrix is a scaled unit matrix, M = 𝜎−2I. After a short time on
the trajectory, the nullspace shuttle produces, by construction, alternative acceptable models that approxi-
mately contain scaled versions of the anomaly. See, for instance, Figure 3b for t = 4.0 s. As the elliptical
anomaly increases in strength, the potential energy increases, at the expense of decreasing kinetic energy.
Thus, the trajectory reaches a turning point, and the elliptical anomaly is again removed as the shuttle con-
tinues its journey. Subsequent alternative models often show more complex deviations from the initial model
(Figures 3d and 3e). Note that the potential energy always stays within the tolerance 𝜀 and below the constant
Hamiltonian H.

Figure 3, in the form of a movie can be found in the supporting information (Movie S1). This also contains an
example with random model perturbations and a nondiagonal mass matrix that promotes smooth variations
from the initial model (Movie S2). As demonstrated in Fichtner et al. (2018) and Zunino and Mosegaard
(2018) and discussed in section 6, this tomographic version of the nullspace shuttle can easily be modified
into a Hamiltonian Monte Carlo (HMC) sample of the posterior probability density.

5.3. Nonlinear Inversion of Magnetic Data
The nullspace shuttle concept can be straightforwardly transferred from traveltime tomography to other
nonlinear inverse problems, including the inversion of magnetic anomaly data for subsurface magne-
tization (e.g., Blakely, 1996). In most magnetic prospecting surveys, magnetometers only measure the
modulus of the total magnetic field at positions xi, denoted |B|i. Knowing the inducing geomagnetic field gi,
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Figure 3. Nullspace exploration for nonlinear traveltime tomography. (a) Chosen initial momentum p̂, which is proportional to the initial model update 𝛥m.
(b) Initial (near-optimal) velocity (v) model m̂, corresponding to time t = 0 s along the trajectory. (c) Snapshot of velocity models along the trajectory at time
t = 4 s (500 leapfrog iterations), showing an alternative velocity model within the effective nullspace. The initial model perturbation 𝛥m from panel (a) is
clearly visible in the center of the model. (d, e) Further alternative models taken along the trajectory at t = 24 s and t = 48 s. (f) Evolution of potential energy,
kinetic energy, and the Hamiltonian as a function of time along the trajectory. Note that the potential energy U (the misfit) always remains within the tolerance
𝜀 and below the constant Hamiltonian H.

the forward model,

|B|i =
√√√√√ 3∑

𝑗=1

( n∑
k=1

Ai,𝑗k mk + gi,𝑗

)2

, (15)

relates |B|i to a discretized model of intensity of magnetization m via the kernels Ai (Li & Oldenburg, 2000;
Zunino et al., 2009). We assume absence of remanent magnetization (Blakely, 1996) and consider the case
of apparent susceptibility mapping (Grant, 1973) using a 2-D set of observations and unknowns, simulating
an airborne survey. Our example consists of a grid with 1,760 cells and 440 observations at an altitude of
200 m (Figure 4). As mistfit, we again use the sum of squared differences from equation (14), adapted to
measurements of |B|i instead of Ti. The derivatives can be computed analytically based on equation (15).

The nullspace shuttle trajectory again starts at an acceptable model found by gradient-based optimization
(Figure 4b). To this we initially add a scaled version of the magnetization perturbation 𝛥m (Figure 4a) by
choosing the appropriate initial momentum p̂. The mass matrix is the unit matrix. Unlike the velocity per-
turbation in Figure 3, the elliptical magnetization perturbation is hardly visible during the nullspace shuttle
journey. This indicates that perturbations of this specific shape cannot be added to the initial model m̂ with-
out increasing the misfit beyond the tolerance, U(m̂) + 𝜀. Instead, more complex alternative models with
smaller-scale features are produced along the trajectory. A movie version of Figure 4 can again be found in
the supporting information (Movie S3).
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Figure 4. Nullspace exploration for nonlinear magnetic data inversion, similar to Figure 3 for traveltime inversion. (a) Chosen initial momentum p̂, which is
proportional to the initial model update 𝛥m. (b) Initial (near-optimal) magnetization model m̂. (c–g) Snapshots of magnetization (𝜇) models at different times
along the trajectory. (h) Evolution of potential energy, kinetic energy, and the Hamiltonian along the trajectory.

6. Discussion
We proposed a method to explore the effective nullspace of general nonlinear inverse problems. It rests on
the construction of an artificial Hamiltonian system where models are treated as high-dimensional particles.
The particles evolve along trajectories, thereby producing new models that are consistent with the obser-
vations and their uncertainties. In the following paragraphs, we place the method in the context of other
methods, and we elaborate on its most significant advantages and limitations.

The most significant advantage of the nullspace shuttle is its ability to produce alternative, acceptable mod-
els without Monte Carlo sampling or inversion restarts from different initial models. In the examples of
section 5, a large variety of different models could be produced within a few hundred to a few thousand
iterations, despite the high dimension of the model space. An important aspect of the nullspace shuttle is
that alternative models can be produced in a guided fashion. For instance, specific features may be added
to the extent permitted by the data, and rougher or smoother alternatives may be found. In this sense, the
Hamiltonian nullspace shuttle is a tool for efficient hypothesis testing.

Section 3 shows that the Hamiltonian nullspace shuttle can be interpreted as a hybrid between Monte Carlo
samplers and gradient-based descent methods. The category into which it falls depends on the tuning, that
is, the choice of the mass matrix, the initial momentum, and the tolerance. For instance, repeated runs of
the nullspace shuttle with randomly chosen initial momenta generates the test models of an HMC scheme.
Selecting or rejecting samples based on a Metropolis rule produces samples of the posterior distribution
e−𝜒 (Betancourt, 2017; Fichtner & Simute, 2018; Fichtner et al., 2018; Neal, 2011). In contrast, vanishing
initial momentum produces a family of gradient descent methods, as shown in equation (9). In this sense,
the nullspace shuttle may be considered as a superclass of methods that contains Monte Carlo samplers
and gradient descent as special cases. (An algorithmic detail that makes the nullspace shuttle different from

FICHTNER AND ZUNINO 650



Geophysical Research Letters 10.1029/2018GL080931

HMC is the enforcement of energy conservation at the price of breaking symplecticity of the numerical
integrator.)

A limitation of the Hamiltonian nullspace shuttle is its inability to explore the effective nullspace entirely
within a finite amount of (computing) time. Alternative, admissible models are found along trajectories that
may not fill the effective nullspace. Also, as illustrated in section 5.1, the nullspace shuttle may not be able to
cross a high-energy barrier between its current and a neighboring misfit valley. The nullspace shuttle does
serve the important purpose of finding other admissible models, but it may not find all of them.
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