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Abstract

Background: Chronic Obstructive Pulmonary Disease (COPD) is one of the top 10
causes of death worldwide, representing a major public health problem. Researchers
have been looking for new technologies and methods for patient monitoring with the
intention of an early identification of acute exacerbation events. Many of these works
have been focusing in breathing rate variation, while achieving unsatisfactory
sensitivity and/or specificity. This study aims to identify breathing features that better
describe respiratory pattern changes in a short-term adjustment of the
load-capacity-drive balance, using exercising data.

Results: Under any tested circumstances, breathing rate alone leads to poor capability
of classifying rest and effort periods. The best performances were achieved when using
Fourier coefficients or when combining breathing rate with the signal amplitude
and/or ARIMA coefficients.

Conclusions: Breathing rate alone is a quite poor feature in terms of prediction of
breathing change and the addition of any of the other proposed features improves the
classification power. Thus, the combination of features may be considered for
enhancing exacerbation prediction methods based in the breathing signal.

Trial Registration : ClinicalTrials NCT03753386. Registered 27 November 2018, https://
clinicaltrials.gov/show/NCT03753386

Keywords: Respiratory pattern, Telemonitoring, Classification, Novelty detection,
Chronic obstructive pulmonary disease (COPD)

Background

Motivation

Chronic Obstructive Pulmonary Disease (COPD) is one of the top 10 causes of death
worldwide, representing a major public health problem [1]. It is characterized by per-
manent and progressive obstruction of the airways, which may result in an accelerated
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decline in respiratory function. Increasing breathing difficulty often leads to a reduction
in daily activities and a deterioration in the quality of life.

Besides, patients with COPD may experience periods of acute deterioration of symp-
toms, called exacerbations. Exacerbations are complex events that negatively impact the
health of the patient. Their severity can be very variable, requiring hospitalization in
cases of moderate or severe events [2]. In France, an exacerbation with hospitalization is
responsible for an average additional cost of approximately 8300 euros [3].

In addition, with each new exacerbation, the chances of further exacerbation and the
risk of mortality increase [4].

Early management of exacerbations is essential to reduce mortality, limit the patient’s
loss of ventilatory capacity and reduce hospitalisations and costs of health [5].

It is nowadays possible to use passive and non-invasive equipment to follow patients
under oxygen therapy at home by measuring and recording a breathing signal. Using
machine learning on such signals for an early detection of abnormality in the respiratory
process could be a major challenge to improve the COPD patient care.

Related work

Within this context, researchers have been looking for new technologies and methods
for monitoring COPD patients with the intention of early identifying acute exacerba-
tion events. Some methods, based on self-reported symptoms or manually entered data
[6-10] are limited, since they depend on subjective assessment and on patient com-
pliance. Others have been focusing in remote monitoring devices, enabling automatic
follow-up of physiological data and reducing the need for intervention for data acquisition
by patients or the health team [11-16].

Some of the methods described employ an online learning process, that can be con-
sidered as a novelty detection approach. Sometimes called one-class classification, the
novelty detection consists of describing a “normality” class, from which new points can
be classified as belonging or not. They are often used in medical problems modelling, in
which a lot of the data belongs to “normality” while the “abnormal” events not only are
rare, but also variable, meaning that the characteristics of abnormality may not be known
a priori [17, 18].

In the case of exacerbation prediction, one frequent hypothesis is that changes in the
breathing pattern may occur before exacerbation. More specifically, some authors have
found that a significant change in breathing rate may be related to an exacerbation event
[11, 13, 14, 16].

Among the remote monitoring devices proposed, some have the particularity of being
coupled with a non-pharmacological treatment. That is the case of some non-invasive
ventilation (NIV) machines [11, 14, 16] that allow monitoring with minimal patient effort,
since it only depends on patients treatment compliance. In the most recent of these stud-
ies, a model for prediction of exacerbations based only on the respiratory rate performed
with 93.5% sensitivity and 64.8% specificity. The model performance was increased when
combining breathing rate with other measures from NIV [16].

With the same principle, other methods were proposed based on data from devices
that monitor patients under long-term oxygen therapy (LTOT) [13]. Compared to NIV,
no mask is used, the breathing is only spontaneous and measures concern only the nasal
pressure. In the latter study, an increase in breathing rate was able to predict exacerbations
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with 66% sensitivity and 93% specificity. LTOT is the most used non-pharmacological
treatment among patients with COPD in France [19]. Therefore LTOT monitoring
devices allow to cover another part of the population, while capturing measures from
patient’s spontaneous breathing. Nonetheless, those devices are for now limited to the
monitoring of breathing rate and treatment compliance.

The TeleOx® (Srett, Boulogne-Billancourt, France) is a medical device designed to
evaluate adherence and treatment efficacy in LTOT patients. The device is placed on
the oxygen circuit between the source and the nasal cannula of the patient, adding no
new constraints for the patient. Initially developed to follow patients compliance to treat-
ment, TeleOx® also enables monitoring flow rate of oxygen and the respiratory rate of
the patient at regular intervals (45 seconds every 5 minutes) [20].

As described in [20], TeleOx® data is computed by associating a pressure sensor and a
fluidic oscillator flow sensor. From those sensors, TeleOx® measures a signal that corre-
sponds to patients’ nasal pressure, which can be used to compute a proxy of the patients
oxygen flow and respiratory rates. These parameters are recorded in the device memory
for further upload in a server. The recorded data show a higher level of noise than respi-
ratory data at hospital but allow to follow patients at home, with no invasive device nor
manipulation needed.

Aim of the present article

Predicting exacerbations is widely used as the main objective in clinical studies. Yet, this
is a difficult outcome to monitor, as there is no consensus in the definition of an exacer-
bation. Moreover, it requires a long term follow-up and shows high variability between
patients.

Since exacerbations correspond to an imbalance between the respiratory muscle load-
capacity-drive relationship [21], we look for another way of analysing how this balance
reflects in breathing and detecting changes in a shorter-term follow-up, using the
TeleOx® device.

In its stable state, a patient with COPD has a precarious load-capacity balance. Its basal
load level is already high because of increased airway resistance and decreased dynamic
chest wall elastance. To compensate this excess load, the respiratory muscles of these
patients are highly demanded. In addition, COPD often comes with muscle weakness,
which reduces the ability of the respiratory muscles to compensate for this load. COPD
patients are therefore exposed to a significant risk of imbalance.

During an episode of acute respiratory infection, the increase, even moderate, of the res-
piratory load may be greater than the compensatory capacity of the respiratory muscles,
already in high demand in the basic state. This decompensation generates an increase in
symptoms such as dyspnea and coughs and a reduction in oxygen saturation.

In healthy subjects, the balance between respiratory load and compensatory capacity
has more potential to adapt to different situations. At rest, a small proportion of the
capacity of the respiratory muscles is sufficient to compensate for the low breathing loads.
During an increase in the respiratory load (pneumonia, asthma attack, physical effort,
etc.), the activity of the respiratory muscles can be increased without exceeding their
maximum capacity.

Therefore, even for a healthy individual, a change in the load-capacity-drive balance
involves changes in the way he or she breathes. Thus, the prediction of exercising may
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be used as a proof-of-concept problem before looking at decompensations in patients
with COPD. This paper focuses on the use of machine learning techniques in order to
(a) identify features that well describe respiratory pattern changes in healthy individuals
using annotated data, and (b) verify if those same features enable to identify respiratory
pattern changes in patients with COPD.

To do so, we compare the use of the breathing rate alone with the couple breathing rate-
breathing amplitude which is more representative of the subject’s breathing load. We also
compare them to more complex and standard feature extraction methods for time series
data which are ARIMA models and Fourier decomposition. This comparison is made in
terms of prediction capability using generalized linear mixed effect models.

In a second time, we provide a proof-of-concept procedure to show the ability of the
selected features to detect abnormality. To do so, we apply a one-class classification
method, that is, we train a model only on resting data and evaluate its ability to predict

exercising.

Results

Data and feature extraction

In total, dataset from twenty healthy subjects contained 439 rest periods and 78 effort
periods. In the COPD dataset, 1567 rest periods and 571 effort periods were recorded
from eight patients.

In Fig. 1, we present an example of what a 45 seconds period of recording by TeleOx®
can look like for a healthy subject at rest. This signal, although not exactly corresponding
to the respiration, is used as a proxy of it to extract the features.

Figure 2 presents two examples of healthy nasal pressure recordings. The dark gray
area corresponds to the 3 minutes of exercising. One can see on those examples that the
strategy adopted to increase the respiratory load is different from one person to another.
The top individual modifies the amplitude of his breathing, while the second increases
his breathing rate. This very different behavior justifies the use of models for which the
classification rules are learned individual per individual, rather than in common.

One example of recording for a COPD patient is given in Fig. 3. Oxygen flow is not
used in the analysis but it allows for understanding variations in the pressure signal. Only
periods where continuous oxygen flow is detected are used in following analysis.

Figures 4 and 5 show examples from healthy and COPD recordings, respectively, and
the corresponding features computed every 45 s. COPD recordings often include periods
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Fig. 1 Example of pressure signal recorded with TeleOx®. Window of 45 seconds of nasal pressure signal
from a healthy subject recording
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Fig. 2 Full pressure signal TeleOx® recordings for two healthy subjects. Dark gray areas correspond to the 3
minutes of exercising while the light gray areas correspond to breathing while drinking, coughing, speaking
and oral breathing. Subjects were at rest in other areas
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Fig. 3 Pressure signal and oxygen flow for 8-hours recording from COPD patient. Gray areas correspond to
estimated exercise times
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Fig. 4 Extracted features example from a healthy subject recording. a Raw pressure signal, b breathing rate,
signal amplitude and ARIMA coefficients and ¢ Fourier transform. In a and b, dark gray areas correspond to
the 3 minutes of exercising while the light gray areas correspond to breathing while drinking, coughing,
speaking and mouth breathing

where features are not computed, which correspond to periods where oxygen is not used,
patient is not detected or the quality of the signal is considered insufficient.

Supervised classification
Classification methods were performed with healthy and COPD datasets separately. Gen-
eralized linear mixed models (GLMM) performances are presented in Tables 1 and 2 for
healthy and COPD datasets respectively. Figure 6 shows the ROC curves for the different
combinations of features in both cases.

In the healthy dataset, the comparison between methods shows a clear hierarchy in their
capacity to discriminate rest and exercise. Breathing rate and ARIMA coefficients alone
are clearly weaker than their combinations with amplitude or Fourier coefficients. In the
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Fig. 5 Extracted features example from a COPD patient recording. a Raw pressure signal, b breathing rate,
signal amplitude and ARIMA coefficients and c. Fourier transform. In a and b, dark gray areas correspond to
estimated exercise times

Table 1 Performance of supervised classification models in exercise detection for the healthy
individuals dataset using different predictor variables and performance indices

Predictive variables Accuracy Sensitivity Specificity AUC

Breathing rate 0.886 0.993 0.282 0.734 (0.673-0.794)
Signal amplitude 0.957 0.986 0.795 0.987 (0.978-0.995)
ARIMA coefficients 0.859 0.959 0.295 0.820 (0.769-0.872)
Breathing rate and signal 0.965 0.984 0.859 0.995 (0.991-1.000)
amplitude

Breathing rate, signal 0.963 0.979 0.872 0.977 (0.945-1.000)
amplitude and ARIMA

coefficients

Fourier coefficients 0.954 0.973 0.846 0.975 (0.948-1.000)

(frequencies <2 Hz)

Page 7 of 16
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Table 2 Performance of supervised classification models in exercise detection for the COPD patients
dataset using different predictor variables and performance indices

Predictive variables Accuracy Sensitivity Specificity AUC

Breathing rate 0.748 0.950 0.194 0.741 (0.718-0.764)
Signal amplitude 0.787 0.951 0338 0.773 (0.751-0.796)
ARIMA coefficients 0.806 0.945 0424 4(0.793-0.835)
Breathing rate and signal 0.801 0.939 0422 0.798 (0.776-0.819)
amplitude

Breathing rate, signal 0.825 0.932 0.531 0.848 (0.829-0.867)
amplitude and ARIMA

coefficients

Fourier coefficients 0.797 0.933 0422 0.811(0.791-0.832)

(frequencies <2 Hz)

COPD dataset, the combination of breathing rate, amplitude and ARIMA coefficients is
superior to any other case tested.

There is also a clear difference between healthy individuals and COPD patients but it is
difficult to tell if it is due to COPD or to the lesser confidence of the data labeling.

One-class classification

ROC curves of the results of one-class classification models based on the Mahalanobis
distance are shown in Fig. 7. The performances obtained by each method are presented
in Tables 3 and 4 for healthy and COPD datasets, respectively.

In most tested conditions, the performances are slightly weakened compared to the
supervised context. This was expected, since this method learns only about normal
events, while supervised methods have access to both normal and abnormal events to
learn the classification rules. The hierarchy between the proposed methods remains how-
ever similar, although the superiority of the combination of breathing rate, amplitude and
ARIMA coefficient for the COPD dataset disappears.

Discussion

The breathing rate alone has the lowest performance for classifying rest and effort periods
for healthy individuals. Any other feature alone or combined leads to better performance
among the considered models. The models combining breathing rate with amplitude,
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Fig. 6 ROC curves for the detection of exercise periods in the supervised context using combinations of the
proposed features. a Healthy subjects and b Patients with COPD
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breathing rate with amplitude and ARIMA coefficients and Fourier coefficients present
comparable and better performances.

Performances with data from patients with COPD are lower. Indeed, the periods labels
are not as precise as for the healthy individuals dataset. Not only the time schedule is
approximate, but also these patients may take exercising easier or execute physical activ-
ities in the rest periods. For some of those patients, any movement can become really
challenging and be a physical effort, as walking, standing up, showering, etc.

In both cases, this study demonstrates a significant gain in combining breathing rate
with amplitude and potentially ARIMA coefficients, or using Fourier decompositions.
This gain can be measured in either Accuracy, Sensitivity/Specificity or AUC, and can be
medically interpreted by the fact that changing one’s breathing rate is not the only way to
adapt to changes in the load-capacity balance.

The supervised approach however has a major pitfall, which is that it needs abnormal
data to learn the classification rules. In practice, two options are then available: learn rules
about the entire population, or monitor patients for a sufficiently long period so several
abnormal events are observed for each patient. The first solution is not relevant from
a physiological point of view because it disregards the variability between patients. The
latter is not attainable, since exacerbations arrive at different frequencies and may differ
from one another, even for the same patient.

A novelty detection method, or one-class classification, may thus be preferred in the
case of medical data. Normal data acquisition for each individual then allows to detect
any possible change in the features. For instance, the second healthy subject presented in
the Fig. 2 increases mainly its breathing rate during the exercising periods. Nevertheless,

Table 3 Performance of one-class classification models in exercise detection for the healthy
individuals dataset using different predictor variables and performance indices

Predictive variables Accuracy Sensitivity Specificity AUC

Breathing rate 0.655 0.597 0.706 0.684 (0.647-0.721)
Signal amplitude 0.905 0.903 0.907 0.958 (0.942-0.971)
ARIMA coefficients 0.817 0.795 0.836 0.855 (0.828-0.880)
Breathing rate and signal amplitude 0918 0.887 0.945 0.974 (0.964-0.981)
Breathing rate, signal amplitude 0919 0.895 0.941 0.976 (0.967-0.983)
and ARIMA coefficients

Fourier coefficients (frequencies <2 0.929 0.951 0.909 0.971 (0.957-0.979)

Hz)
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Table 4 Performance of one-class classification models in exercise detection for the COPD patients
dataset using different predictor variables and performance indices

Predictive variables Accuracy Sensitivity Specificity AUC

Breathing rate 0.594 0537 0.615 0.592 (0.561-0.619)
Signal amplitude 0.678 0577 0.715 0.685 (0.655-0.709)
ARIMA coefficients 0.634 0610 0.642 0.654 (0.627-0.678)
Breathing rate and signal amplitude 0.650 0.629 0.658 0.683 (0.656-0.712)
Breathing rate, signal amplitude 0.644 0.629 0.649 0.686 (0.661-0.711)
and ARIMA coefficients

Fourier coefficients (frequencies <2 0.655 0.639 0.662 0.705 (0.681-0.731)
Hz)

as soon as the subject sits down, there is an increase in the signal amplitude, a change not
described previously. If the model is trained in a supervised manner with rest and effort
periods, those first periods after exercising may be considered as rest.

On healthy subjects, the performances obtained using the Mahalanobis distance based
model are similar to those obtained with GLMM, although a bit weaker for some of the
predictors.

For the patients with COPD, the loss in performance is greater. Prediction with breath-
ing rate alone achieves the lowest performances. Besides, in the supervised context, the
model created by combining breathing rate, amplitude and ARIMA coefficients presented
a superior performance than with any other predictive variable. In the unsupervised
learning case, this combination is similar to other tested conditions. A slightly higher per-
formance is obtained when using Fourier coefficients, which combines signal’s frequency,
magnitude and variability.

It is also notable that, although breathing rate alone classifies better than random guess-
ing for both healthy and COPD subjects, its performance is quite poor in all cases as
previously described. Combining the breathing rate with any other feature described here
seems to be beneficial for the identification of periods of exercising. This observation is
again true for all considered classification criteria, that is Accuracy, Sensitivity/Specificity
or AUC.

Conclusions

The conclusion of this study is that breathing rate alone is a quite poor feature in terms
of prediction of breathing change, in the sense that the addition of any of the other
proposed features clearly improves the classification power, in both supervised and nov-
elty detection framework. From this point of view, the most promising features are
the Fourier coefficients and the combinations of breathing rate with other predictive
variables, notably the signal amplitude.

Besides, although this study do not consider breathing change patterns specifically
related to exacerbation events, these new features may also enlighten other kinds of
load-capacity balance changes and thus potentially enhance exacerbation prediction
methods.

Methods

Monitoring device

TeleOx® (Srett, Boulogne-Billancourt, France) firmware was adapted so the signals
recorded by the pressure sensor and the fluidic oscillator flow sensor are kept with the
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computed parameters. Signals are recorded at 10 Hz. This manipulation limits the data
acquisition to eight hours of recording, after which all data must be erased before a new
data acquisition.

Data

Data was collected from a set of twenty healthy subjects and eight patients with COPD
from two different protocols.

Healthy subjects study protocol consisted of simulating oxygen therapy by replacing
the oxygen source by an air source. Each subject followed instructions for a total of 30
minutes, executing activities as: resting, drinking, coughing, speaking, mouth breathing,
exercising and recovering, at given time intervals. Raw pressure and flow signals were
recorded with TeleOx®. All participants provided written informed consent for study
participation.

Participants with COPD were recorded over a period of eight hours in a purely
observational manner. The patients were enrolled while hospitalized at the Service de
Pneumologie, Médecine Intensive et Réanimation, Groupe Hospitalier Pitié-Salpétriére.
The inclusion criteria required that patients had COPD, were under oxygen therapy and
already monitored with a TeleOx®. The regular TeleOx® was replaced by a TeleOx®
with the new firmware in the morning (around 10 am). Eight hours later, the TeleOx®
were recovered and the regular TeleOx® were plugged back. Patients followed the Unit
predefined schedule, including a bike session in the morning and supervised gymnastics
in the afternoon. This allowed an estimation of the periods of exercising during the day.

Feature extraction
Signal treatment was based on the TeleOx® original algorithm. Therefore, features were
extracted considering 45 seconds windows and features were only computed when subject
presence was identified.

This means that, for each healthy subject, there were 40 windows. For COPD patients,
the number of windows is variable, according to patients adherence to oxygen therapy.

Periods with less than 4 identified breaths or with breathing lengths too variable were
considered as poor quality periods and ignored from analysis.

The following paragraphs detail the features which prediction power are compared,
isolated or combined.

Breathing rate
Breathing rate is a commonly used feature for monitoring patients with COPD. As
described previously, it has already been shown that there is a correlation between
breathing rate increase and forecoming exacerbation.

Breathing rate is computed as the inverse of the median breathing length in the 45
seconds period. This feature calculation has been validated in a previous paper [20].

Amplitude

More than a change in breathing rate, a visual analysis of healthy records shows a
significant change in signal amplitude during different moments of recordings. The
amplitude is computed as the median amplitude at inspiration, which corresponds to the
distance between pressure signal minima and the estimated baseline.
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Fourier coefficients
Another way of analysing frequency, amplitude and variability of the signals is by using
Fourier transforms. The Fourier decomposition makes it possible to analyze periodic
functions by describing their frequency spectrum, which means that it highlights the
frequencies present in the signal and their respective magnitude.

The Fourier coefficients of the function f are given by :

T
cn=1/T / f)e "t (1)
0

Where T is the period, @ = 27 /T is the pulsation of T" and the magnitudes are given
by the absolute values of ¢,,.

We chose to only keep frequencies bellow 2 Hz to limit the number of features. Besides,
a breathing rate of 2 Hz already has no physiological sense, so we can consider that above
this frequency we would only be analyzing noise.

ARIMA coefficients
ARIMA is a modelisation approach for time series data relying on the assumption that
the signal is autoregressive, that is the value at each time point can be written as resulting
from a linear model according to the preceding points and their errors [22].

We use the ARIMA model (1, 1, 1), which follows the following prediction equation:

Ve=u+y 1+ P 1 —y2) —0-€1+¢€ (2)

So, for every 45 seconds of recording, we estimate the parameters (i, ®,0) which
describe the temporal dynamics of the signal, where u is the signal constant, ® is the
auto-regression coefficient, 0 is the moving average coefficient of the model and ¢ is the

random error related to the observation.

Classification data

For healthy subjects, a total of 40 data points are extracted, corresponding to non-
overlapping sequences of 45 seconds of raw data. Each of those sequences is transformed
in a vectorial data by extracting the features described in the previous subsection.

Among those 40 points, the first 23 are considered as rest/reference. Drinking, cough-
ing, speaking and mouth breathing are included in the reference class, since those events
are expected to happen as the “normality” for patients with COPD. The following 4 points
correspond to exercising. The last 13 points are a transition between effort and rest and
thus are not used for classification methods.

For the recordings from patients with COPD, the labels are not that clear. The approxi-
mate periods of exercise (bike session and supervised gymnastics) belong to the exercise
class. All other data points are considered as reference. Like the healthy data, the ref-
erence certainly includes drinking, coughing, speaking and mouth breathing, as well as

other events as eating, moving and walking, which are unknown.

Supervised classification

To take into account the inter-individual variability, generalized linear mixed effect mod-
els (GLMM) were used in the supervised context. Different combinations of features were
tested so the ability of classifying rest and effort breathing can be compared. Healthy and
COPD datasets are trained and tested separately.
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Models are built using glmer function of the Ime4 package [23] in R, with random
intercepts and random slopes. The link function is logit.

The Fourier coefficients cannot be used directly because of the high number of coef-
ficients. To avoid the curse of dimensionality, we perform for each fold a PCA on the
training data and keep the first 5 principal components.

One-class classification

The supervised classification power is not the only criterion to select a combination of
features. Indeed, in the objective application, the algorithm will have to train based only
on a normal class and be able to detect abnormalities.

We choose to compare the abilities for such a task of the features listed in “Feature
extraction” section by using a method based on Mahalanobis distance [18, 24]. Given
training data of mean p and variance-covariance matrix X, the Mahalanobis distance of
a new measure x to the training data is defined by the following equation.

dw) = [ - w's" @ - w]" 3)

The underlying idea is to consider that reference data are spread according to a mul-
tidimensional normal law (which shape is given by the variance-covariance matrix) and
that the distance grows as the distribution of that law decreases. Figure 8 presents an
example of the Mahalanobis distance from a reference distribution in the plane breathing
rate-amplitude.

140 T L‘40 T T T T
+ Reference points 120
O  Far point 100 : o
120 ¢ o Close point 80 g
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---------- Mahalanobis distance
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Fig. 8 Example of Mahalanobis distances from reference points. In the one-class context, distances between
each new measure x and the all reference points are given by the Mahalanobis distance, considering the
reference’s mean and variance-covariance matrix
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For each subject, we divide the data points into training set and validation set. The
training set contains only rest points and is used as the reference. The validation set con-
tains both rest and effort points, for which we compute the Mahalanobis distance from
the training set. A 5-fold cross-validation method is used to both data from healthy sub-
jects and from patients with COPD. For each subject, healthy or COPD patients, a 5-fold
cross validation is used on the resting data: 4 out of the 5 folds are used to learn the mean
and variance-covariance matrix.

For the healthy dataset, the distance is computed for the last fold and the exercis-
ing data, ending up with one prediction for each resting point and five predictions
for each exercising point. For the COPD dataset, larger exercising data is available,
the distance is thus computed for the last fold of resting data and one fold of the
exercising data. We thus end up with one prediction for each data point (rest and
exercise).

This method is repeated varying the features used: 1. breathing rate; 2. signal amplitude;
3. breathing rate and amplitude; 4. ARIMA coefficients; 5. breathing rate, amplitude and
ARIMA coefficients and 6. Fourier coefficients.

The dimensionality of Fourier coefficients also needed to be reduced for the one-class
classification method. For each subject, a PCA using training resting data was used to
define the first 5 principal components. Mahalanobis distance and the method described
above is then completed using the projected data.

Sensitivity and specificity is given for the cut-off threshold that minimizes
the distance from the upper-left corner of the respective ROC curve, that is
VEPR? + (1 4+ TPR)2, where FPR is the false positive rate and TPR is the true positive

rate.
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