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Alzheimer’s disease (AD) is one of the most common forms of dementia that has
slowly negative impacts on memory and cognition. With the assistance of multimodal
brain networks and graph-based analysis approaches, AD-related network disruptions
support the hypothesis that AD can be identified as a dysconnectivity syndrome.
However, as the recent emerging of individual-based morphological network research of
AD, the utilization of multiple morphometric features may provide a broader horizon for
locating the lesions. Therefore, the present study applied the newly proposed individual
morphological brain network with five commonly used morphometric features (cortical
thickness, regional volume, surface area, mean curvature, and fold index) to explore
the topological aberrations and their relationship with cognitive functioning alterations in
the early stage of AD. A total of 40 right-handed participants were selected from Open
Access Series of Imaging Studies Database with 20 AD patients (age ranged from 70 to
79, CDR = 0.5) and 20 age/gender-matched healthy controls. The significantly affected
connections (p < 0.05 with FDR correction) were observed across multiple regions,
both enhanced and attenuated correlations, primarily related to the left entorhinal
cortex (ENT). In addition, profoundly changed Mini Mental State Examination (MMSE)
score and global efficiency (p < 0.05) were noted in the AD patients, as well as
the pronounced inter-group distinctions of betweenness centrality, global and local
efficiency (p < 0.05) in the higher MMSE score zone (28–30), which indicating the
potential role of graphic properties in determination of early-stage AD patients. Moreover,
the reservations (regions in the occipital and frontal lobes) and alterations (regions in the
right temporal lobe and cingulate cortex) of hubs were also detected in the AD patients.
Overall, the findings further confirm the selective AD-related disruptions in morphological
brain networks and also suggest the feasibility of applying the morphological graphic
properties in the discrimination of early-stage AD patients.

Keywords: Alzheimer’s disease, individual morphological brain networks, multiple morphometric features, graph
theory, cognitive functioning
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INTRODUCTION

Alzheimer’s disease (AD) is one of the most common forms
of dementia that has slowly negative impacts on memory
and cognition. Eventually, its irreversibility and progression
could cause severe neurodegenerative disorders. The late
dysconnectivity hypothesis (i.e., the absence of synchronized
activity across brain regions) of AD suggests the memory
impairments and other cognitive problems are the results of
local synaptic disruptions (Arendt, 2009; Gouras et al., 2010).
It has been histopathologically defined as an accumulation of
β-amyloid (Aβ) plaques (Aβ proteins can exert a toxic effect on
surrounding neurons and synapses) and neurofibrillary tangles
composed of tau amyloid fibrils (Weiner et al., 2012; Dai et al.,
2015).

Recent investigations have exhibited that the cerebral
connectomes can be modeled into large-scale brain networks
with multiple neuroimaging data and can be further analyzed
based on the graph theory (Achard et al., 2006; He et al., 2007;
Gong et al., 2009). It allows the quantitative examination of the
local and global topological organization of the human brain,
such as small world architecture, network efficiency, modularity,
and spatial distribution of hubs (Bullmore and Sporns, 2009).
So far, AD-related disruptions of brain networks have been
reported in both functional and structural research, supporting
the hypothesis that AD can be regarded as a dysconnectivity
syndrome. For instance, by inspecting the relationship of blood
oxygen level dependent (BOLD) signal across brain regions,
significantly increased local efficiency but decreased global
efficiency have been observed in resting-state functional brain
networks of AD patients (Zhao et al., 2012), as well as the
reduced modularity (Brier et al., 2014). Meanwhile, diminished
clustering coefficient has been found in the AD patients by
using cortical thickness covariance networks, which are formed
mathematically through the implement of Pearson correlation
across regions (He et al., 2008; Li et al., 2012). Reid and Evans
(2013) have also reviewed the investigations of morphological
networks in AD, and the findings are compatible with functional
and pathological reports. Also, AD is one of the brain disorders
involved with metabolic distress, which will selectively attack
the high-cost components in the entire connectome and lead
the network to become a more lattice-like graph (Bassett and
Bullmore, 2009; Bullmore and Sporns, 2012). The functional
studies have documented that the AD-related disrupted areas
yield a highly consensus estimate of default mode network
(DMN), which is a set of brain regions that typically deactivate
during performance of cognitive tasks (Buckner et al., 2009). Dai
et al. (2015) also found the medial and lateral prefrontal and
parietal cortices, as well as insula and thalamus are selectively
targeted by AD in the entire brain network. The study of
diffusion tensor tractography has also detected that the hub
regions targeted by AD are predominantly located in the frontal
lobe (Lo et al., 2010). Moreover, a thickness-based morphological
network study has revealed that AD patients are associated with
reduced nodal centrality, revealing the amount of short paths
that connected to a node within the network, mostly in the
temporal and parietal heteromodal association cortex regions

but increases in the occipital cortex regions (He et al., 2008).
While, a volume-based morphological study has demonstrated
that patients with mild cognitive impairment and AD could
retain their hub regions in the frontal lobe but not in the
temporal lobe (Yao et al., 2010). Furthermore, the graph-based
analysis provides an approach to explore the relationship
between network properties and cognitive functioning, which
could help researchers to obtain more accurate predictions
and diagnoses of AD (Gits, 2016). Such decreased functional
connectivity of DMN is found related to the declined cognitive
functioning (Binnewijzend et al., 2012), and altered path length
of morphological networks in the medial posterior cortex showed
the strong relationship with cognitive disruption (Tijms et al.,
2013).

Notably, most of these above-mentioned morphological
findings are performed in a group-level, and the only AD
studies based individual morphological networks are formed
with cube-based intensity (Tijms et al., 2013, 2014). Thus,
still less is known of AD based on individual morphological
brain networks, and multiple morphometric features may
provide the further suggestions for lesions identification. The
present study used the newly proposed individual morphological
brain network to explore the connective anomalies in the
early stage of AD. Weighted connections were applied to
eliminate the influence of different thresholds. Instead of the
conventional way to accomplish the statistical analyses and
identify the hubs, the individual effects were considered for
the first time rather than by averaging across the intra-group
subjects. Cognition was also estimated with graphic properties,
including network efficiency, modularity, and betweenness
centrality (BC). Here, we hypothesize that network structures
of AD patients would be found with alterations concentrated
at specific regions. We also posit that graphic properties could
explain cognitive functioning to some extent, and provide the
further assistance in the future diagnoses of AD in the early
stage.

MATERIALS AND METHODS

AD Patients and Control Subjects
The MR imaging data were from Open Access Series of Imaging
Studies Database1, including 20 early-stage AD patients (10
females and 10 males) aged from 70 to 79 (mean = 73.20 with
standard deviation = 2.35) and 20 normal control participants
(10 females and 10 males) aged from 70 to 79 (mean = 73.35 with
standard deviation = 2.21). The informed and written consents
were obtained from each participant (Marcus et al., 2007).
The age of subjects in different groups was equally distributed
(p = 0.84, independent two-sample two-tailed t-test) with similar
medians (74 in the control group, 73 in the AD group). All
the participants underwent ADRC’s full clinical assessment.
Dementia status was established and staged using the CDR scale
(Morris, 1993; Morris et al., 2001), in which a CDR value of 0,
0.5, 1, 2, and 3 represent no dementia, very mild, mild, moderate,

1http://www.oasis-brains.org/
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and severe dementia, respectively. Subjects with CDR = 0 and
CDR = 0.5 were used for the groups of normal control and
AD separately. Cognitive function of all subjects was evaluated
using the Mini Mental State Examination (MMSE; Folstein et al.,
1975). The AD and control groups had an average MMSE score
of 26.3 (range from 20 to 30) and 29 (range from 26 to 30),
respectively. For more details on the clinical and demographic
information of the participants, please refer to Marcus et al.
(2007).

Image Acquisition
For each participant, three or four individual T1-weighted
magnetization-prepared rapid gradient-echo (MP-RAGE) images
were acquired using the same 1.5 T Vision scanner (Siemens,
Erlangen, Germany) with the following parameters: repetition
time = 9.7 ms, echo time = 4.0 ms, inversion time = 20 ms,
flip angle = 10◦, sagittal orientation with 128 slices, and
resolution = 1 mm × 1 mm × 1.25 mm. Multiple T1 images
obtained for each subject were motion corrected and then
averaged to achieve an image with improved signal-to-noise
ratio. For additional details on the post-processing regarding raw
images, please refer to Marcus et al. (2007) and Supplementary
Materials 1.

Measurement of Multiple Morphometric
Features
The multiple morphometric features were measured through
an image analysis suite, FreeSurfer v5.3.02, whose performance
has been endorsed by studies using images acquired from
different MRI scanners or sequences (Khan et al., 2008; Shi
et al., 2013; Mulder et al., 2014). We applied the program
“recon-all” of FreeSurfer to achieve the measurements, whose
mathematical background has been described by Dale et al.
(1999) and Fischl et al. (1999) in detail. In short, the
raw images were firstly resampled into 256 × 256 × 256
with an isotropic resolution of 1 mm × 1 mm × 1 mm.
Then, intensity bias correction, skull stripping, volumetric
labeling, and white matter segmentation were completed in the
volume-based stream. In the following surface-based stream,
the inner and outer surface of gray matter were extracted as
the gray-white and gray-pial interface separately. Therefore, the
cortical morphometric features were measured based on every
vertex between the inner and outer surfaces, including cortical
thickness (Fischl et al., 1999), mean curvature (Li et al., 2014),
gray matter volume, surface area (Panizzon et al., 2009) and
fold index (Schaer et al., 2008). Notably, all the computations of
surfaces were conducted in the native space, allowing the features
as mentioned above to be measured without deformation.
Finally, the built-in Desikan-Killiany cortical atlas (Desikan
et al., 2006) was applied to obtain the regional measurements,
which has the parcellation of 34 regions for each hemisphere
based on the structural pattern of the gyrus and sulcus
(Supplementary Table 1). The procedure of morphometric
features extraction is diagramed in the upper dashed boxes in
Figure 1.

2http://surfer.nmr.mgh.harvard.edu/

Individual Morphological Brain Network
Construction
Above all, it is worth mentioning that there are significant
differences existed among the order of magnitudes of
morphometric features (10−1 to 104). Thus, the z-scores
were computed initially (dividing by the standard deviation after
subtracting the mean value) for each feature as the standardized
values before the network construction. The method of individual
morphological brain network based on multiple morphometric
features has been described and validated in the previous study
(Li et al., 2017) and Supplementary Materials 2. In brief, all
the five morphometric features were concatenated into a feature
vector for each region. Then, the interconnected matrix was
generated by computing the Pearson correlation coefficient
for each pair of the feature vectors. Hence, the morphological
brain network with 68 nodes and 2278 weighted edges were
obtained for each participant. The pipeline of network formation
is illustrated in the lower dashed boxes Figure 1.

Graph Properties Analyses
All the graphic properties were computed using the Brain
Connectivity Toolbox (BCT; Rubinov and Sporns, 2010). The
calculation of z-score values (see Individual morphological
brain network construction) were realized by the normalization
function in the statistical analysis software SPSS v22.0 (SPSS Inc.,
Chicago IL, United States), as well as all the statistical analyses.
The visualization was done by the toolkit of BrainNet Viewer (Xia
et al., 2013).

Network Efficiency
Network efficiency is firstly defined by Latora and Marchiori
(2001), which estimates how efficient a network could be to
exchange information. On a global scale, efficiency (Eglobal)
estimates the exchange of information across the entire network
where information is concurrently transferred. The local
efficiency (Elocal) takes into account the ability of information
exchange through the subgraph of the whole connections. We use
the program “efficiency_wei” in BCT to realize the computation
of efficiency in this study.

Network Modularity
A modular structure is revealed by subdividing the network
into multiple node communities, with a maximally possible
number of intra-module links and a minimally possible number
of inter-module links (Girvan and Newman, 2002). The degree
to which the network may be subdivided into such delineated
and non-overlapping groups is quantified as modularity (Q)
(Newman and Girvan, 2004). The higher Q indicates a strong
partition of the network. Q was determined as the highest value
of rounds (Rubinov and Sporns, 2010). The calculation of Q was
performed through the program “modularity_und” in BCT.

Spatial Distribution of Hubs
Betweenness centrality (BC) is defined as the number of shortest
paths between any two nodes that running through the node,
indicating the nodal ability of information flow throughout the
network (Freeman, 1977). The original BC was normalized to
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FIGURE 1 | The flow diagram illustrates the pipeline of all the steps involved in the present study. Briefly, for each subject, the raw T1 images were firstly resampled,
then processed through volume and surface-based stream in FreeSurfer, and finally obtained regional morphometric feature measurements. Hence, each region was
represented as a feature vector. Next, the morphological brain network was built by performing the Pearson correlation across regions. Therefore, every individual has
a set of graphic properties, and the inter-group comparisons were conducted by investigating the distinctions of those properties as an intra-group concatenation.

obtain nBC for identifying the hubs by dividing the mean value
across the regions. The nodal degree is not used as a descriptor
because, in contrast with BC, it only measures the connections
linked to the node instead of the shortest path. Hence, the
hubs were identified as the nodes with a higher value of nBC,

which was more than the summation of the mean and standard
deviation for the entire network. Based on the individual brain
network, the hubs for each subject were obtained initially. Then
the nodes would be recognized as the hubs for the group if more
than 30% of subjects in the group have it as a hub. The threshold
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value of 30% was determined based on the experiments. In this
study, the program “betweenness_wei” in BCT was employed to
complete the computation of BC.

Statistical Analyses
Kolmogorov–Smirnov test of the SPSS was used to reveal the
normality of each graphic property. Some of the K-S test results
indicated a significant departure from a normal distribution
for obtained network properties. Fisher’s transformation also
failed to realize the conversion to normality. Thus, a rank
transformation was applied for network properties values so
that the parametric analyses could conduct (Conover and Iman,
1981; Tijms et al., 2013). Ties were replaced by the mean ranks.
The significant inter-group variations of Eglobal, Q, and MMSE
scores, as well as Elocal, BC and interregional connections for
each region, were revealed by the independent two-sample t-tests.
Levene’s test for equality of variances was also considered that
if the difference of variance falls in the rejection area, the
adjusted p-value was to be selected. The t-test results would
be under the false discovery rate (FDR) correction to adjust
for the multiple hypothesis testing if necessary (Storey, 2002).
The tests were performed at a significance level of 0.05. It is
worth to mention that the tests were performed between groups
with a concatenation of individual graphic properties. Spearman
correlation was also used to assess the relationship between
cognitive functioning (MMSE) and graph properties (Eglobal,
Elocal, mBC and Q), which mBC is the average BC across regions
for each subject. The influences of age and gender were excluded
due to the strong inter-group similarities. The outliers were
checked and excluded for all the variables.

RESULTS

Aberrant Interregional Connections
The independent two-sample one-tailed t-tests revealed the
significantly altered interregional connections of AD patients
with FDR correction (p < 0.05). The tests were performed based
on the concatenation of individual interregional correlations
for each connection (see section “Materials and Methods” and
Figure 1). Consequently, 52 out of 2,278 connections were
identified with profound variations in the AD patients (illustrated
in Figure 2 and listed in Table 1 in the order of decreased
positive correlations, decreased negative correlations, increased
positive correlations, and increased negative correlations).
Broadly speaking, lateralization of anomalies was not detected,
and 65.4% of the aberrations showed attenuated correlations
in the AD patients (correlation toward to zero). In particular,
17 decreased positive correlations were noticed mostly in the
temporal, frontal and parietal lobes (Figure 2A and Table 1).
For instance, the connections between the left entorhinal cortex
(ENT) and bilateral pars opercularis, and between the middle
temporal gyrus and parietal lobe within the right hemisphere.
Additionally, 17 attenuated negative correlations were observed
in the AD patients (Figure 2B and Table 1), such as the
connections between the left ENT and various bilateral regions
in the occipital lobe. Moreover, there was 18 connections

distinguished with pronouncedly enhanced correlation in the
AD patients (9 positives and 9 negatives) (Figures 2C,D and
Table 1), predominantly involved with the temporal, frontal and
parietal lobes. Furthermore, the widespread altered connections
were found to be concentrated in the specific regions, such as the
left ENT.

Divergences of Graphic Properties and
Cognitive Functioning
To demonstrate the divergences of cognitive functioning and
multiple graphic properties between normal controls and AD
patients, independent two-sample one-tailed t-test (p < 0.05)
was utilized. FDR correction was applied when identifying the
remarkable distinction of regional BC and Elocal between groups.
Likewise, the tests were performed based on the concatenation of
individual MMSE scores and all the graphic properties for each
group. The results of statistical tests revealed a notable decline in
MMSE scores in AD patients (p = 3.66 × 10−5, plotted as the
average across subjects in each group, Figure 3A). Additionally, a
profound reduction of Eglobal was also detected in the AD patients
(p = 4.79 × 10−3, plotted as the average across subjects in each
group, Figure 3B). However, there was no significant inter-group
variations observed of Q (plotted as the average across subjects in
each group, Figure 3C), as well as Elocal (plotted as the average
across subjects and regions in each group, Figure 3D) and BC
(plotted as the average across subjects and regions in each group,
Figure 3E) for all the regions.

Cognitive Performance Association
The relationship between cognitive functioning and each graphic
property was further investigated by using the Spearman
correlation coefficient. The results indicated that the MMSE
scores were barely related to the modularity (r = 0.015), while
slightly associated with the Eglobal (r = 0.14), mElocal (denotes
the mean Elocal across all the regions for each subject, r = 0.24)
and mBC (stands for the mean BC across all the regions for
each subject, r = −0.22). But notably, there was only one
normal control has the MMSE score lower than 28 (26), and the
distribution of graphic properties showed a distinction between
groups in the higher MMSE scores. For instance, the mBC
of patients were generally greater than the normal controls
(Figure 4A), while the Eglobal and mElocal of patients were
predominantly lower than the controls (Figures 4B,C). The
independent two-sample t-test further confirmed the significant
inter-group differences of mBC (p = 0.007), Eglobal (p = 0.01),
and mElocal (p = 0.004). Hence, we defined a higher MMSE
score zone (from 28 to 30 and marked out with two dashed
lines in the Figure 4), and thus MMSE score and graphic
properties would be combined as the criteria to identify the AD
patients. Specifically, subjects with the lower MMSE score than
28 would be considered as AD patients, and for the subjects with
higher MMSE scores, the graphic properties may provide the
extra assistance to distinguish the patients from normal controls.
Practically, there were 7 out of 8 patients with higher MMSE score
distinguished from normal controls based on Eglobal, mElocal,
and mBC, separately. The one patient failed to be identified by
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FIGURE 2 | (A) Shows the altered interregional connections of decreased positive correlation. (B) Illustrates the changed connections of decreased negative
correlation. (C) Reveals the cases of increased positive correlations, and (D) exhibits the decreased negative ones. Colors of the dot are defined to differentiate
various lobes: red denotes the frontal lobe, green denotes the temporal lobe, blue denotes the occipital lobe, yellow denotes the parietal lobe, gray denotes the
cingulate cortex, and purple denotes the insula.

graphic properties was the same patient with the similar Eglobal,
mElocal, and mBC with controls. Additionally, modularity, Q,
was excluded due to the blurred boundary between cohorts and
insignificant statistical analysis results (Figure 4D). The specific
MMSE scores and graphic properties of each subject in control
and AD group can be found in Supplementary Tables 2, 3,
separately.

Spatial Distribution of Hubs
The hubs of each subject were determined as the nodes with
greater nBC, and then the most “popular” individual hubs will
be selected as the group representations. In the control group,
11 nodes was estimated as the hubs with more than 30% of
the subjects have it as a hub individually (Figure 5A and
Table 2), including 2 auditory primary regions, 2 paralimbic
regions, and 7 unimodal or heteromodal association regions.
While in the AD group, 9 nodes were identified as the group
hubs with the same criteria mentioned above (Figure 5B and
Table 3), including 3 paralimbic regions and 6 unimodal or

heteromodal association regions. Those hubs in both groups were
predominately located in regions of unimodal or heteromodal
association cortex (13 regions), especially in the temporal lobe
(9 regions, 6 in NC and 3 in AD), frontal lobe (6 regions,
2 in NC and 4 in AD) and occipital lobe (4 regions, 2
in NC and 2 in AD), Moreover, it was interesting to find
that the hubs in the occipital lobe (bilateral lateral occipital
gyrus, LOCC) were well retained in the AD patients. But the
situations were quite different for the frontal and temporal lobes,
that only one hub in the frontal lobe maintained in the AD
group (left lateral orbitofrontal gyrus, LOF) and no hub in
the temporal lobe persevered. Additionally, the lateralization of
hub distribution was changed in the AD patients. For instance,
the well-distributed hubs in the temporal lobe transferred
into left-lateralization in the AD patients, while the left-sided
distribution of hubs in the frontal lobe relocated to the right
hemisphere. Furthermore, there were 49 regions identified as
hubs with less than 30% of subjects in the control group
(5–25%) and 53 regions in the AD group (5–25%). The specific
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TABLE 1 | Alterations of interregional connections between cohorts.

Correlations

Regions Regions NC AD t-value

Decrease in positive correlations

ENT_L INS_R 0.8 0.42 4.49

ENT_L BSTS_R 0.86 0.5 4.39

ENT_L CMF_R 0.64 0.18 3.58

TP_L POPE_R 0.83 0.71 3.22

ENT_L PARC_L 0.56 0.22 2.75

ENT_L POPE_R 0.86 0.67 2.54

POPE_R TP_R 0.79 0.69 2.41

ENT_L POPE_L 0.79 0.45 2.37

MT_R PSTC_R 0.3 0.02 2.24

MT_R SF_R 0.59 0.31 2.24

ENT_L TT_L 0.71 0.4 2.15

ENT_L ENT_R 0.97 0.83 2.05

MT_R PCUN_R 0.33 0.12 1.78

MT_R SP_R 0.36 0.16 1.43

MT_R PREC_R 0.37 0.21 1.11

MT_R RMF_R 0.24 0.12 0.86

MT_R SMAR_R 0.49 0.4 0.81

Decrease in negative correlations

ENT_L LOCC_L −0.97 −0.8 −4.65

CUN_L ENT_L −0.59 −0.26 −4.25

ENT_L LING_L −0.89 −0.62 −3.71

SF_L MOF_R −0.73 −0.38 −3.54

POPE_R SP_R −0.73 −0.49 −3.19

ENT_L CUN_R −0.55 −0.26 −3.07

ENT_L LING_R −0.85 −0.54 −2.93

MT_R RAC_R −0.32 −0.04 −2.68

POPE_R PREC_R −0.4 −0.1 −2.68

ENT_L PERI_L −0.75 −0.45 −2.64

POPE_R PSTC_R −0.66 −0.48 −2.54

ENT_L LOCC_R −0.93 −0.79 −2.24

ENT_L PERI_R −0.75 −0.51 −2.15

MT_R FP_R −0.44 −0.25 −1.90

MT_R PORB_R −0.42 −0.19 −1.63

MT_R TP_R −0.15 0.05 −1.20

MT_R TT_R −0.14 −0.06 −0.89

Increase in positive correlations

ENT_L FP_L 0.25 0.58 −4.02

ENT_L FP_R 0.3 0.59 −3.50

ENT_L PORB_L 0.48 0.67 −3.07

ENT_L PC_L 0.29 0.61 −2.93

ENT_L PORB_R 0.51 0.72 −2.68

ENT_L MOF_L −0.15 0.15 −2.24

MT_R POPE_R −0.04 0.19 −2.21

LOF_L FUSI_R −0.04 0.05 −0.43

MT_R INS_R 0.17 0.21 −0.29

Increase in negative correlations

ENT_L PREC_L −0.29 −0.55 3.97

ENT_L SF_L −0.45 −0.63 3.97

ENT_L ST_R 0.06 −0.29 3.54

ENT_L SF_R −0.49 −0.67 3.19

(Continued)

TABLE 1 | Continued

Correlations

Regions Regions NC AD t-value

ENT_L ST_L 0.06 −0.30 3.07

ENT_L PREC_R −0.34 −0.56 2.96

ENT_L SP_L −0.75 −0.79 2.15

ENT_L SMAR_R −0.42 −0.58 2.09

ENT_L SMAR_L −0.42 −0.62 2.05

The significantly altered connections were listed above in 4 categories (p < 0.05,
two-sample one-tailed t-test with FDR correction). The t-test was performed with
all the 20 subjects in each group for every connection. The correlations listed above
are represented as the average of all the subjects in each group. For each category,
the observations are listed in a descendant order of t-value. NC denotes normal
control.

ratios of subjects have these nodes as a hub in control and
AD group could be found in Supplementary Tables 4, 5,
separately.

DISCUSSION

By using multiple morphometric features to form the individual
morphological brain networks, the present study elucidated
the AD-related alterations of cortical connectomes and the
relationship between the morphological graphic properties
and cognitive functioning for the first time. The analyses
of topological structures were conducted based on the
concatenation of individual graphic properties, and the definition
of group-wise hubs was on account of the number of subjects
that harbors the regions as hubs individually. The main findings
are as followed: (1) that significantly affected connections were
observed across multiple regions, mainly related to the left ENT;
(2) that the profoundly changed MMSE score and Eglobal were
noted in the AD patients, as well as the pronounced inter-group
distinctions of Eglobal, mElocal and mBC in the higher MMSE
score zone; (3) that the reservations and alterations of hubs were
both detected in the AD patients. Taken together, the findings
further confirm the selective disruption in morphological brain
networks of the AD patients, and also indicate the feasibility of
applying the morphological graphic properties to provide the
auxiliary assistance in the AD diagnosis.

Interregional Similarities of
Morphometric Features
The interregional morphological similarity has been found
and repeatedly validated in recent studies based on various
morphometric features, such as cortical thickness and regional
volume (Lerch et al., 2006; He et al., 2007; Bassett et al.,
2008; Sanabria-Diaz et al., 2010). The observation indicates
the existence of the interplay of morphometric features across
brain regions while disregarding the anatomical distances.
Thus, the formation of a connected structure may capture
the long-term neurobiological effects (Mechelli et al., 2005).
Nevertheless, the underpinning mechanism of this covariance
pattern remains elusive. Some conjectures have been debated,
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FIGURE 3 | The bars represent the average level of (A) MMSE scores, (B) global efficiency, (C) modularity, (D) local efficiency and (E) betweenness centrality (BC),
separately. The error bar indicates the intra-group deviation. Gray denotes the normal control participants, while red marks the AD patients. The significant
differences between cohorts were found in Eglobal and MMSE scores, which indicated by an asterisk.

such as mutually trophic effects (Ferrer et al., 1995; Aid et al.,
2007), environment-related plasticity (Maguire et al., 2000;
Draganski et al., 2004; Mechelli et al., 2004), genetic influence
(Schmitt et al., 2008), and normal development (Raz et al., 2005;
Chen et al., 2011). The axonal tension theory has also been
mentioned recently (Tijms et al., 2012; Kong et al., 2015), stating
that the interconnected areas are becoming either thicker or
thinner as a result of being pulled by a mechanical force (Van
Essen, 1997).

Altered Morphological Graphic
Properties
The attenuation of both positive and negative correlations,
observed predominantly in the AD patients, may imply the
disrupted structural covariation across brain regions (Alexander-
Bloch et al., 2013). In particular, the temporofrontal connections,
commonly found in the healthy subjects by using intracranial

electroencephalographic (Lacruz et al., 2007), were mostly
undermined in the AD patients. The magnetoencephalographic
study of Hsiao et al. (2014) has also reported the deteriorated
synchronization between temporal and frontal lobes in the
AD patients, which is implied to be one of the reasons
of auditory deviance input. The occipitotemporal connections
were observed with significant detriments as well, which is in
accordance with the findings of affected white matter connections
between occipitotemporal brain regions (Gleichgerrcht et al.,
2015). In contrast to the decreases of interregional covariation,
enhanced correlations were also noticed in the AD patients.
The explanation of these strengthened connections is still
poorly understood, but there are some speculations like
functional compensation or synchronized atrophy of gray
matter in regions under attacked (Alexander-Bloch et al., 2013).
Additionally, previous human brain functional studies have
examined strong functional correlations between bilaterally
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FIGURE 4 | (A) Reveals the mBC BC changes according to the MMSE scores, where mBC is the mean BC across regions. (B) Shows the global efficiency cases,
and (C) represents the local efficiency situations based on the MMSE scores, where mElocal is the mean Elocal across regions. (D) Illustrates the modularity variations
related with MMSE scores. The figure depicts the graphic properties distribution associated with different MMSE scores. Gray dot denotes the normal control
participants, while red dot marks the AD patients. The dashed line marked out the higher MMSE score zone between 28 and 30.

FIGURE 5 | The spatial distributions of hubs for the (A) control and (B) AD group. Colors of the dot are defined based on the different lobes: red denotes the frontal
lobe, green denotes the temporal lobe, blue denotes the occipital lobe, and yellow denotes the cingulate cortex. ENT-entorhinal cortex, FUSI-fusiform gyrus,
IT-inferior temporal gyrus, LOCC-lateral occipital gyrus, LOF-lateral orbitofrontal gyrus, MOF-medial orbitofrontal gyrus, PARC-paracentral lobule, PC-posterior
cingulate, PTRI-pars triangularis, ST-superior temporal gyrus, TP-temporal pole, TT-transverse temporal gyrus. The size of sphere denotes the value of mean BC
across subjects within the group, the higher BC the bigger sphere.

homologous regions (Lowe et al., 1998; Hampson et al., 2002;
Wang et al., 2006), which may support the phenomenon of
simultaneously altered correlations related to the same regions
(e.g., left ENT and bilateral occipital and frontal regions,
Figure 2).

Moreover, the left ENT was noticed as the most critically
influenced region in the AD patients with both decreased
and increased correlations, which has also been implicated as
a primary site of dysfunction in AD by a convergence of
studies (Whitwell et al., 2007; Braak and Del Tredici, 2012;
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TABLE 2 | The nodes of the control group with more than 30% of subjects have it as a hub.

Regions Lobes Classes % of subjects avgBC

Left posterior cingulate Cingulate cortex Paralimbic 45% 32.9

Left entorhinal cortex Temporal lobe Association 40% 39.1

Left lateral orbitofrontal gyrus Frontal lobe Paralimbic 40% 39.1

Left temporal pole Temporal lobe Association 40% 28.9

Right lateral occipital gyrus Occipital lobe Association 40% 37.4

Left lateral occipital gyrus Occipital lobe Association 35% 35.4

Left transverse temporal gyrus Temporal lobe Primary (auditory) 35% 31.3

Right transverse temporal gyrus Temporal lobe Primary (auditory) 35% 32.5

Left paracentral lobule Frontal lobe Association 30% 26

Right entorhinal cortex Temporal lobe Association 30% 33.4

Right superior temporal gyrus Temporal lobe Association 30% 36.3

The hub regions of the control group are listed in a descending order of the ratio of subjects. The regions were classified as primary, association, and paralimbic as
described by Mesulam (1998). avgBC denotes that BC of each node is averaged across the subjects.

TABLE 3 | The nodes of AD group with more than 30% of subjects have it as a hub.

Regions Lobes Classes % of subjects avgBC

Right lateral occipital gyrus Occipital lobe Association 45% 36

Right medial orbitofrontal gyrus Frontal lobe Paralimbic 45% 37.5

Left lateral occipital gyrus Occipital lobe Association 40% 44.7

Left lateral orbitofrontal gyrus Frontal lobe Paralimbic 40% 39.1

Right pars triangularis Frontal lobe Association 35% 38.6

Left fusiform Temporal lobe Association 30% 31.1

Left inferior temporal gyrus Temporal lobe Association 30% 24.8

Left superior temporal gyrus Temporal lobe Association 30% 35.3

Right lateral orbitofrontal gyrus Frontal lobe Paralimbic 30% 32.4

The hub regions of the AD group are listed in a descending order of the ratio of subjects. The regions were classified as primary, association, and paralimbic as described
by Mesulam (1998). avgBC denotes that BC of each node is averaged across the subjects.

Khan et al., 2014). The function of ENT is generally believed
as the essential input of cortical information (the content and
context of an experience) to hippocampus (Knierim et al., 2014),
and thus may lead the disruption of episodic memory function
to be as one of the typical syndromes of AD patients (Nellessen
et al., 2015). However, the underlying reason of why the ENT
would be attacked the most is not clear yet. A longitudinal
study has found that the ENT is not just the “favorite region”
of AD, but also shows increased atrophy in the normal aging
procedure (Fjell et al., 2012). Therefore, this age-vulnerability
presumably renders the regions to be more sensitive to additional,
pathological AD-related changes (Fjell et al., 2014). Additionally,
selective disruption of structural connectivity in aMCI and AD
around ENT has been detected by Mallio et al. (2015), which
may allow the conjuncture of increased correlation based on
the synchronized alteration related to the ENT. In addition to
the ENT, right middle temporal gyrus (MT) was observed as
the second most attacked region. The atrophy of MT has also
been found in the studies of AD patients with mild syndromes
(Convit et al., 2000; Whitwell et al., 2007). Previous functional
neuroimaging research has suggested that the MT is involved in
several cognitive processes, such as semantic memory (Onitsuka
et al., 2004), which has also been detected in the AD patients with
loss semantic information (Mårdh et al., 2013).

Furthermore, the determination of group-wise hubs was
based on the ratio of subjects who have the region as a
hub individually in each group. As listed in Table 2, the
maximum owning rate of a hub is only 45% for both groups,
which implies the inter-individual difference is an unneglectable
factor when analyzing human brain (Kanai and Rees, 2011).
It is also in accordance with the findings that one control
has a lower MMSE score while one patient has such much
similar morphological brain network structure with controls.
Additionally, the profound difference of regional BC between
groups was not found in the present study (Figure 3E), which
may due to the recruiting of subjects, the same age range between
cohorts (70–79) and minor aberrations in the early stage of
AD. But the inter-group alterations of hubs were noted, such as
posterior cingulate cortex (PCC) and ENT, which are compatible
with previous studies (Hagmann et al., 2008; van den Heuvel
and Sporns, 2013). Evidence has demonstrated the metabolic
reduction in the PCC of the AD patients (Minoshima et al.,
1997; Liang et al., 2008), and also there is reduced number of
fibers derived from PCC to the whole brain (Zhou et al., 2008).
Moreover, the atrophy of bilateral ENT may result in the loss
of its covariation with other cortical regions (Chan et al., 2001).
However, there were also several regions maintained as hubs
in the AD group, such as the lateral occipital gyrus (LOCC).
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Previous studies have indicated that there are regions maintained
in the early stage of AD (He et al., 2008), which has also been
speculated as disproportionally affected by AD (Engels et al.,
2015).

Association Between Graphic Properties
and Cognitive Functioning
The MMSE score has been suggested as an efficient indicator for
the AD diagnosis, that it has been broadly applied to determine
the cognitive functioning condition of subjects in the multiple
research (Hebert et al., 2003; He et al., 2008). In the present study,
all the MMSE scores less than 25 were obtained from AD patients,
which makes a clear boundary between groups. However, as
illustrated in the Figure 4, there are also several patients have
higher MMSE scores even compared with the normal controls.
Hence, to differentiate the patients with the similar MMSE score
from the normal aging especially happened in the early stage of
AD becomes a priority. The functional and morphological studies
have demonstrated that the cognitive and memory declines in AD
patients are associated with the disrupted small-world structure,
which is particularly noted as longer characteristic path lengths
and larger clustering coefficients compared with the normal
aging (Yao et al., 2010; Liu et al., 2012; Brier et al., 2014). The
characteristic path length and clustering coefficient reveal the
integration and segregation, separately, of the network structure,
which also illustrated as the global and local network efficiency
(see section “Materials and Methods”). Accordingly, it may back
the thought that the morphological network properties of Eglobal
and Elocal could offer extra assistance when MMSE scores are
similar between AD patients and controls (Langer et al., 2012).
In addition, BC was also found as a sensitive indicator of AD
by previous studies (Tijms et al., 2013; Engels et al., 2015). The
reason why AD patients could have larger BC in the higher
MMSE score zone is unknown, yet we can speculate it as the
compensation for the reduced network efficiency so to reach the
similar cognitive functioning with the normal controls. Hence,
BC may also be able to provide the auxiliary information to
improve the accuracy of early-stage AD prediction. Whereas,
modularity was failed to distinguish the patients in the present
study, even though the functional research shows that AD
patients do have the altered brain network structure (Chen
et al., 2013). This phenomenon may due to the sensitivity of
modularity to the inter-individual difference, which results in
the profound varies across subjects both intra- and inter-groups.
Overall, the present study indicates that individual morphological
brain network properties could be applied as indicators for the
early diagnosis of AD, especially with BC and network efficiency.

Methodological Issues and Future
Research
There are several methodological issues noticed in the present
study, and they should be addressed and solved in future research.

The interregional connections were measured as the Pearson
correlation coefficient in the present study, as enlightened by
many earlier studies (He et al., 2007; Chen et al., 2011; Shi
et al., 2013). But the observation denotes the summation of the

direct and indirect connections across regions, and thus partial
correlation has been applied alternatively for eliminating the
influence of other regions (Bassett et al., 2008). Notably, the
number of variables should be less than the number of samples of
each variable in the partial correlation computation. However, the
number of regions (i.e., 68 variables) are far beyond the number
of morphometric features (i.e., five samples) in the present study.
Therefore, the adjusted partial correlation computation may be
employed to increase the accuracy of the results of interregional
connections in future research.

Moreover, only 20 gender and age-matched subjects were
recruited for each group due to the limitation of the database.
Hence, how quantitatively the Eglobal, Elocal, and BC can
differentiate patients from normal controls has also not been
thoroughly studied yet. The more convincible results should be
based on the broader population with adjustment for age, gender,
and education background. Also, different stages of AD have its
unique characteristics. Understanding of the entire development
progress may offer more information of how the normal aging
being disrupted gradually. Accordingly, more AD patients will be
recruited with various CDR scores (0.5, 1, 1.5, and 2) as well as
the subjects with mild cognitive impairment.

Furthermore, there were only five morphometric features
applied in the present study. The reason is that all the five
morphometric features have been formerly used to build the
morphological brain networks (Li et al., 2017), which implies
the feasibility of those features has been verified to represent
the morphological connectome structure. Nevertheless, more
features could be added to supplement the structural information
contained in the connection matrix. Not only the morphometric
features but also the features like texture, moments and other
general image features could be used in the morphological brain
network construction and analysis.

Last, the data used in this research is 1.5T because we want
to keep consistency with our previous methodological study
(Li et al., 2017). Indeed, it would provide more morphometric
information and diagnose assistance when using 3T images to
build brain networks. Hence, high-resolution images would be
selected priorly in the future study.
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