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MOTIVATION Single-cell microscopy experiments, when paired with appropriate inducible control sys-
tems and physiological reporters, allow for precise probing of cell-wide spatiotemporal signaling dynamics.
Interpretation of these data and inter-experiment comparisons can be difficult, though, due to inherent vari-
ability both fromcell-intrinsic factors (e.g., protein expression and subcellular localization) and cell-extrinsic
factors (e.g., instrumentation-dependent diffractive phenomena). To address these challenges, we created
an in silico framework to study single-cell signaling via microscopy experiments. We apply this framework
toward dynamic membrane recruitment of a cytosol-sequestered protein, a powerful approach to control
signaling, specifically focusing on BcLOV4 optogenetic technology. This framework can improve single-
cell signaling analysis and guide forward the design of optogenetic tools.
SUMMARY
We describe a modular computational framework for analyzing cell-wide spatiotemporal signaling dynamics
in single-cell microscopy experiments that accounts for the experiment-specific geometric and diffractive
complexities that arise from heterogeneous cell morphologies and optical instrumentation. Inputs are unique
cell geometries and protein concentrations derived from confocal stacks and spatiotemporally varying envi-
ronmental stimuli. After simulating the systemwith amodel of choice, the output is convolved with themicro-
scope point-spread function for direct comparison with the observable image. We experimentally validate
this approach in single cells with BcLOV4, an optogenetic membrane recruitment system for versatile control
over cell signaling, using a three-dimensional non-linear finite element model with all parameters experimen-
tally derived. The simulations recapitulate observed subcellular and cell-to-cell variability in BcLOV4
signaling, allowing for inter-experimental differences of cellular and instrumentation origins to be elucidated
and resolved for improved interpretive robustness. This single-cell approach will enhance optogenetics and
spatiotemporally resolved signaling studies.
INTRODUCTION

Quantitative understanding of subcellular signaling dynamics is

key to cell physiology and predicting cell behaviors. To this

end, a growing number of increasingly complex models and

model design tools have been reported, e.g., Virtual Cell (VCell),

MCell/CellBlender, and COMSOL packages, among others

(Stiles et al., 1996; Schutter, 2000; Kerr et al., 2008; Moraru

et al., 2008; Menshykau, 2013; Hallett et al., 2016). While sin-

gle-cell analyses can reveal the physiological underpinnings of

heterogeneous cell behaviors, cell models often do not accu-

rately reflect such heterogeneity. They typically are fit to popula-
Cel
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tion-average phenotypes and apply simplifying assumptions

regarding cell geometry and protein expression (Cheong et al.,

2010; Handly et al., 2016). Thus, validated computational frame-

works to predict spatiotemporally resolved subcellular signaling

dynamics of unique single cells can advance quantitative

biology. Accounting for single-cell experimental variability from

extrinsic or non-cellular factors, such as instrumentation-depen-

dent diffractive phenomena in an optogenetics experiment,

would further improve comparisons between model and

experiment.

To these ends, we created a modular in silico framework

for spatiotemporally resolved study of single-cell signaling in
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Figure 1. Single-cell data-unique simulation framework

BcLOV4 refers to BcLOV4-mCherry.

(A) Workflow. BcLOV4-expressing HEK cells were imaged with a confocal (shown) or widefield microscope. Framework data-unique inputs were in two cate-

gories: cell-intrinsic (unique to the single cells) and cell-extrinsic (attributable to experimental parameters and hardware). Cells were reconstructed in 3D, meshed

using the initial membrane and nucleus contours, and initialized with the cytoplasmic protein concentration. Cell-extrinsic inputs were determined by the exper-

imental stimulation paradigm (i.e., light intensity, spatial patterning, duration, and duty cycle), and microscope excitation volume. The 4-state bulk-surface model

predicted the spatiotemporal behavior of that cell. The unprocessed results were convolved with the microscope point-spread function (PSF) so the model result

could be directly compared with experimentally observed data.

(B) Motivation for volumetric approach to capture geometric and diffractive effects unique to individual cells (e.g., surface area/volume ratio) and experiment

conditions (e.g., hardware PSF). Diffraction-limited excitation of a region of interest (ROI) and post-induction imaging are schematized for a laser-scanning

confocal microscope. Imaging effects includemembrane recruitment above/below the excitation plane, diffusion of activated protein in/out of the imaging plane,

and diffusion of dark-adapted protein into the ROI.

(C) 3D mesh generation from interpolated confocal z stacks to reconstruct single-cell-unique morphology.

(D) 3D mesh generation from widefield images. Hemi-ellipsoid projection was used to extrapolate a volume (i.e., flat bottom to account for cellTdish contact).

Scale bars, 5 mm (A) and 10 mm (B and C).
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microscopy experiments. The framework is composed of (1) cell-

intrinsic inputs that reflect unique cell geometry and protein

concentration, (2) cell-extrinsic inputs to reflect experiment-/

instrument-specific conditions, (3) a mathematical model to
2 Cell Reports Methods 2, 100245, July 18, 2022
predict the subcellular spatiotemporal response, and (4)

an output point-spread function (PSF) correction to allow

direct comparison between a unique model and corresponding

data (Figure 1). This framework accurately recapitulates
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non-equilibrium dynamics across a unique three-dimensional

(3D) cell and mirrors optical hardware-dependent experimental

conditions used to generate single-cell data. Thus, it will

enhance our biophysical understanding of signaling processes

and guide the onward design of spatiotemporally complex

signaling outputs.

We apply this framework to study dynamic membrane recruit-

ment of a cytosol-sequestered protein, a ubiquitous approach

in optogenetics and related chemical techniques to control

signaling (Inoue et al., 2005; Repina et al., 2017; Stanton et al.,

2018; Hannanta-Anan et al., 2019). It can be mediated by an

inducible heterodimerizing protein-protein interaction or by

inducible protein-lipid interaction with the plasma membrane it-

self in a single-component system (He et al., 2017; Glantz et al.,

2018; Li et al., 2021). Here, we study the single-component

BcLOV4 that we have previously used for versatile blue light con-

trol over GTPase signaling (Hannanta-Anan et al., 2019; Berlew

et al., 2020, 2021, 2022).

We employ a non-linear 3D finite element model (FEM).

This is well suited to the complex geometries of mammalian

cells and organelles, which are inherently highly irregular in

morphology, size, protein expression, and protein distribution.

It is unlike existing mathematical models of optogenetic mem-

brane recruitment that have been idealized (symmetric two-

dimensional [2D]), have been solved under steady-state

conditions and/or have assumed linearity with respect to con-

centration, despite the fact that the 3D recruitment process is

dynamic and increasingly non-linear with membrane binding

site occupancy (Valon et al., 2015; Niu et al., 2016; de Beco

et al., 2018; Natwick and Collins, 2021). In brief, model bio-

physical parameters were experimentally derived. For each

cell, the mesh was autogenerated from cell images and then

seeded with the initial protein concentration. Use of actual

cell geometry and protein concentration ensured accurate pre-

diction of the spatiotemporal signaling outputs in response to

arbitrary light inputs. Furthermore, inclusion of instrument-

dependent diffractive effects, by way of PSF correction of the

simulated output, permitted direct correlation with its corre-

sponding single-cell image data.

We use the framework to explore how cell-specific

morphology, optogenetic protein-specific biophysical proper-

ties, and the hardware-specific optical properties of the stimula-

tory input all shape the resultant observed signaling output.

These analyses successfully identified the origins of detection

artifacts that confound data interpretation. To demonstrate gen-

erality, we also show how existing software tools can be inte-

grated into the modular framework by implementing it in VCell

to similar effect. This work establishes a foundation for further

spatiotemporally accurate models of peripheral membrane pro-

tein signaling and shows how single-cell models can reflect and

combat experimental heterogeneity for improved interpretive

robustness.

RESULTS

BcLOV4 is a well-posed and simple test bed for validating the

framework. Its optical stimulation can bemodulated with subcel-

lular precision, and the diffractive properties of the optical hard-
ware are measurable when testing how well the framework

accounts for cell-extrinsic and experiment-specific factors. As

BcLOV4 directly binds the plasma membrane in a light-depen-

dent manner, its minimal single-component nature simplifies

modeling by limiting the set of equations and the terms/

constants to be measured; it also streamlines experiments

without the need to express and quantify multiple proteins in

live cells. Henceforth, ‘‘BcLOV4’’ refers to the fluorescently

labeled BcLOV4-mCherry, unless stated otherwise; also, ‘‘lit

state’’ or ‘‘lit’’ refers to its photoactive state, and ‘‘dark state’’

or ‘‘dark’’ refers to dark-adapted protein.

There are several components of the framework implementa-

tion described herein: (1) the automated mesh generation from

image volumes of corresponding cells; (2) the set of non-linear

partial differential equations (PDEs) and associated custom

solver; (3) the experimental measurement of biophysical con-

stants in the model; and (4) the convolution of the microscope

PSF to correlate the theoretical output to the experimental

observable.

Automated 3D mesh generation
The 3D mesh was necessary for biophysical accuracy. Since

the stimulation volume has a non-negligible axial extent, the

protein diffuses in three dimensions in and out of the imaging

plane, to and from the membrane, and within the bulk cytosol

(Figure 1B). Diffractive effects lead to inevitable contributions

of cytosolic fluorescence to membrane fluorescence signal

and vice versa (Figure 1B), which can confound data interpre-

tation. This led us to generate a unique tetrahedral mesh for

each experimental cell and construct a 3D FEM. Mesh genera-

tion was almost fully automated from fluorescence micrographs

of HEK cells expressing BcLOV4. The shape of the plasma and

nuclear membranes were reconstructed from confocal micro-

scopy image stacks by interpolation in the z axis (Figure 1C),

or were extrapolated by hemi-ellipsoid projections (i.e.,

adherent cells on flat-bottom substrates) when only one focal

plane was available (Figure 1D). Mesh nodes were initialized

with the corresponding protein concentration in the starting

dark-adapted state.

Bulk-surface reaction-diffusion system
We modeled the recruitment process as a four-state system:

(1) photoactivated lit-state and cytosolic (uC); (2) dark-adapted

and cytosolic (vC); (3) lit-state and membrane-localized (uM); or

(4) dark-adapted and membrane-localized (vM) (Figure 2A).

The vM state includes the period that BcLOV4 stays associ-

ated with the membrane (�60 s) after thermal reversion of

the flavin photoadduct (Glantz et al., 2018; Glantz et al.,

2019). The set of PDEs defines a non-linear reaction-diffusion

model dependent on the photoconversion, lipid binding ki-

netics, and diffusion rates of BcLOV4 (Equation 1). The non-

linearity reflects the decrease in available membrane binding

sites with protein translocation. The PDEs specifically belong

to a category of models termed bulk-surface models, due to

the inherent protein coupling between the 3D cytoplasm

(the bulk) and 2D membrane (the surface) (Equation 2). This

maturing class of models is of paramount importance to

studying cell signaling that occurs at the inner leaflet
Cell Reports Methods 2, 100245, July 18, 2022 3



Figure 2. Experimentally determined biophysical constants

BcLOV4 refers to BcLOV4-mCherry, unless stated otherwise.

(A) Four-state bulk-surface reaction-diffusion model of BcLOV4 membrane recruitment.

(B) Binding constants and rates directly measured in live HEK single cells by cytoplasmic depletion fluorescence microscopy. Diffusion rates were determined by

FRAP microscopy (Figures S3 and S4). When needed for feasibility, upper/lower bounds were chosen as conservative values, as noted. Flavin photochemistry

was measured by absorbance spectroscopy using FPLC-purified bacterial-expressed recombinant protein without fused mCherry (STARMethods; l = 455 nm).

The parameter set, along with fluorescence-derived absolute protein concentration (Figure S1) and measured hardware PSF (STAR Methods), is sufficient to fit

the global minimum of the proposed single-cell models.
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(Madzvamuse and Chung, 2016; Cusseddu et al., 2019; Pa-

quin-Lefebvre et al., 2020).

Bulk-surface FEM on stationary volumes has been described

(Madzvamuse and Chung, 2016; Cusseddu et al., 2019; Pa-

quin-Lefebvre et al., 2020). Here, we adapt the model equations

to describe the given bulk-surface reaction-diffusion model

for a unique 3D volume. Consider the cytoplasm as a volume

U in R3 enclosed by the plasma membrane, a closed hypersur-

face dU. We define uCðx; tÞ; vCðx; tÞ : U/R3 as the cytosolic

lit and dark-state protein, respectively, and similarly define

uMðx; tÞ; vMðx; tÞ : dU/R2 as the membrane-bound lit and

dark-state protein, respectively; here, the units are molecules/

mm3 for uC; vC , and molecules/mm2 for uM; vM . We then pose

the system of coupled PDEs:
duC

dt
= DcytoV

2uC + kon;pvC � koff ;puC

dvC
dt

= DcytoV
2vC � kon;pvC + koff ;puC

duM

dt
= DmemD dUuM + kon;pvM � ðkoff ;p + koff ;litÞuM + kon;litðSmax � uM � vMÞuC

dvM
dt

= DmemD dUvM + koff ;puM � ðkon;p + koff ;darkÞvM + kon;darkðSmax � uM � vMÞvC;

(Equation 1)
with the bulk-surface coupling enforced using Robin-type

boundary conditions (Cusseddu et al., 2019):

Dcytoðn$VuCÞ = koff ;lituM � kon;litðSmax � uM � vMÞuC

Dcytoðn$VvCÞ = koff ;darkvM � kon;darkðSmax � uM � vMÞvC;
(Equation 2)
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where DdU is the Laplace-Beltrami operator, n is the outward-

facing unit normal vector to U, Dcyto (mm
2/s) is the cytoplasmic

diffusion coefficient, Dmem (mm2/s) is the lateral diffusion coef-

ficient along the membrane, kon,p (s�1) is the rate of photocon-

version from dark to light state, koff,p (s
�1) is the rate of thermal

reversion from lit to dark state, koff, dark (s
�1) is the rate of un-

binding from the membrane in the dark state, koff,lit (s
�1) is the

rate of unbinding from the membrane in the lit state, kon,dark
(M�1 s�1) is the rate of binding to the membrane in the dark

state, kon,lit (M
�1 s�1) is the rate of binding to the membrane

in the lit state, and Smax (molecules/mm2) is the maximal sur-

face density of binding sites. Importantly, all constants are

empirically measured in this work (Figure 2B), as detailed

later.
Given the non-linearities in the PDEs, model initial conditions

were expressed in absolute protein concentration units rather

than relative fluorescence units, to allow for direct correlation

to single-cell data and inter-cell comparisons. The conversion

between mCherry fluorescence to BcLOV4 concentration was

calibrated by established methods with intracellular access via
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patch micropipettes (Cherkas et al., 2018). The cytosolic con-

centration was typically �0.5–3 mM protein (mean = 4.02 mM,

95% confidence interval [CI] = 3.44–4.82 mM, N = 107 cells).

The mean of the calibrated single-cell imaging distribution

mirrored the population average estimated directly from cell

lysate (mean = 3.72 ± 0.79 mM, N = 4 plates) (Figure S1).

The requisite bulk-surface coupling cannot be accurately

handled by built-in MATLAB routines or the standard versions

of many multiphysics packages. Thus, we derived the weak

form and constructed FEM matrices via FELICITY (Walker,

2018). A custom solver (see STARMethods) was built for the pur-

pose of computational efficiency. Run times ranged from 5 to

10 min per cell (per single core of a 3.7 GHz processor) for a

typical experiment (duration = 200 s, Dt = 0.1 s, and maximum

element size = 5 mm3). Under these 3Dmesh conditions, the error

was <1% versus the outputs simulated with ultrafine mesh con-

ditions of millisecond resolution on the 10-nm scale for a typical

cell (Figure S2). This throughput facilitated the simulation of

every experimental cell for the high-resolution studies herein.

Measurement of biophysical constants
We experimentally derived all constants (Figure 2B) necessary to

validate the model and gauge its accuracy. The photoinduced

reaction-diffusion model constants capture the flavin photo-

chemistry, diffusion, and membrane binding kinetics. All

parameters weremeasured in situ in HEK cells, except for photo-

chemical constants measured by in vitro spectroscopy using

purified recombinant protein that lacked the mCherry tag.

Diffusion constants were measured by fluorescence recovery

after photobleaching (FRAP) microscopy (Figure S3). The

measured cytosolic diffusion (Dcyto = 8.932 mm2/s) is consistent

with our previous estimate (Glantz et al., 2018). The membrane

lateral diffusion (Dmem % 0.028 mm2/s) is slower than those of

proteins bound to a freely mobile lipid or lipid-modified binding

partner (0.1–1 mm2/s), but unsurprising for a protein that binds

themembrane via distributed electrostatic interactions (Kenwor-

thy et al., 2004; Hammond et al., 2009; Ambroggio et al., 2010;

Ribrault et al., 2011; Yasui et al., 2014; Bendezú et al., 2015; Nat-

wick andCollins, 2021). The lowDmem indicates that BcLOV4 pri-

marily spreads along the membrane not by lateral diffusion but

rather unbinding and rebinding (or ‘‘hopping’’ [Yasui et al.,

2014]) events that cause spreading via cytosolic diffusion.

Membrane binding affinity and kinetics of BcLOV4 to the inner

leaflet were measured in cellulo. The lit-state affinity was KD,lit =

1.19 mM (N = 23, Figures S4A–S4D), which is in line with similarly

in situ-measuredmembrane affinities for other anionic lipid bind-

ing domains (Smith et al., 2015). The affinity in the dark-adapted

state was KD,dark > 20 mM (Figures S4E–S4G), which is reported

as a minimum bound due to the lack of observable dark-state

membrane localization such that kon,dark could not be determined

by our bulk (versus single-molecule) technique in live cells. The

maximal surface density (Smax) of BcLOV4, which governs its

achievable dynamic range and the (non-)linearity of its mem-

brane recruitment, was measured by monitoring maximal

achievable cytosolic depletion; the membrane density is calcu-

lated from the protein that leaves the cytoplasm given the

known surface area-to-volume ratio from the 3D-reconstructed

confocal stacks. The measured value of �6,000 molecules/
mm2 (N = 83) is similar to onesmeasured in situ for overexpressed

proteins that bind endogenous membrane lipids (Smith et al.,

2015).

PSF convolution for comparing models with real-world
data
Finally, we convolved themodel output with the optical hardware

PSF to improve direct comparison of model outputs to micro-

scopy findings. Likewise, the optical input of the framework

also factors in the diffraction-limited excitation beam profile to

account for off-focal plane excitation, which can impact the

signaling induced by cytosolically diffusible proteins.

Owing to diffractive effects, observed membrane fluores-

cence is inherently a partial function of cytosolic protein concen-

tration, where the �7-nm-thick membrane accounts for just a

fraction of the�100–400 nm axial depth-of-field of optical micro-

scopes at high magnification. Thus, measurements of dynamic

localization that equate membrane density with membrane fluo-

rescencewill vary widely with the hardware system. (Figures S5A

and S5B). However, fluorescence quantification of the larger

cytoplasm can be less susceptible to these confounds because

its fluorescence is not as affected by diffractive effects or subtle

morphological changes (Figure S5C). Hence from here on, mea-

surements of protein depletion and recovery are done by

tracking cytoplasmic fluorescence.

Single-cell model performance
We compared model outputs with results from spinning-disk

confocal stimulation and imaging of BcLOV4 (Figure 3). The

model was able to mirror the salient spatiotemporal behavior

of BcLOV4, including undulations in cytosolic protein level from

repetitive unbinding/rebinding cycles in response to sparsely

pulsatile stimulation (Figures 3A and 3B). Deconvolution of

confocal z-stack data before geometry generation did not signif-

icantly impact resultant cell meshes or cell-wide mean-squared

error, likely due to the excellent axial sectioning capabilities of

confocal microscopy.

Like any other computational approach, the model’s accuracy

depends on the granularity of the initial mesh conditions. For

example, the standard output does not account for sharedmem-

branes with neighboring cells or for lysosomal voids that appear

as fluorescent puncta upon post-induction protein binding

(Figures 3A and 3B). Accounting for lysosomal binding had

limited impact on BcLOV4 membrane recruitment accuracy

at normal biogenesis levels, but slowed the simulation by

�10-fold, scaling by O(n2) the number of lysosomes (Figure S6).

The 3D non-linearmodeling approachwasmore accurate than

3D linear and 2D (non-)linear modeling (Figures 3C and S2D–

S2F; see STAR Methods for calculation of error). Note that this

comparison represents a best-case scenario for the 3D linear

and 2D (non-)linear models, since we initialized them with the

absolute protein concentrations rather than with relative or

assumed concentrations (Valon et al., 2015; Natwick andCollins,

2021). These data suggest that both the geometric aspects and

the non-linearity contribute to model performance. They also

suggest that linear models of membrane recruitment that treat

the membrane as an infinite binding sink (Figure 3D), while valid

at low cytosolic concentrations, are less appropriate for
Cell Reports Methods 2, 100245, July 18, 2022 5



Figure 3. Single-cell finite element models for pulsatile whole-field (unpatterned) stimulation with confocal imaging

BcLOV4 refers to BcLOV4-mCherry. Predicted model outputs closely mirror experimental data across duty cycles (4; 0.1 s blue light pulses, 12.24W/cm2). Cyto-

solic depletion and recovery are quantified in lieu of membrane fluorescence that is more susceptible to confounds from diffraction and cell motility (Figure S5).

(A) 4 = 1%. (i) Experiment and corresponding model prediction. (ii) Cytosolic depletion time course of same cell; inset schematizes the phases of a stimulatory

period. Scale bar, 5 mm.

(B)4 = 10%. (i) Experiment andmodel. (ii) Cytosolic depletion time course of same cell, which lacks perceivablemembrane unbinding or cytosolic repletion during

each 1 s period. Model recapitulates nuclear void and subcellular distribution in the cytosol and plasma membrane but does not account for neighboring cells or

for lysosome binding that greatly increases computational time with minimal accuracy benefit (Figure S6). Scale bar, 5 mm.

(C) Mean-squared error (MSE) of the described 3D non-linear model (of panels A and B) versus a 3D linear model, 2D non-linear model, and 2D linear model.

Pooled dataset contains cells stimulated at 4 = 0.67%–10% (N = 17). Linear models performed worse for high protein concentrations (Figures S2D–S2F). Paired

Wilcoxon signed rank test: *p < 0.05, **p < 0.01.

(D) Schematized non-linear modeling of dynamic membrane recruitment. The system is linear at lowmembrane binding site occupancy or low cytosolic BcLOV4.

High concentrations typical of overexpressed inducible/optogenetic signaling systems require non-linear models due to high fractional occupancy of membrane

binding sites upon photoactivation.
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overexpressed proteins in engineered cells. This influence can

specifically be seen by the poor performance of linear models

for high-concentration cells (Figure S2F).

Intrinsic and extrinsic determinants of spatial
confinement
We next used our single-cell approach to explore how optical

stimulation paradigm and hardware affect spatiotemporal reso-

lution, specifically the spatial confinement of membrane recruit-

ment, a motivating metric in optogenetics. In brief, a small

1.5 3 0.5 mm stimulatory region of interest (ROI) was patterned

by laser-scanning confocal microscopy (LSCM), and the resul-

tant fluorescence membrane profile over 1 min was fit with a

Gaussian to estimate the membrane spread (Figures 4A–4C).

The spatial spread primarily occurs during the initial few seconds

post excitation when the protein rapidly diffuses in the cytoplasm

(Figures 4C and 4D, N = 14 cells). Upon binding, the spreading

occurs by lateral diffusion and by rebinding events subject to
6 Cell Reports Methods 2, 100245, July 18, 2022
cytosolic diffusion. While great attention in optogenetics has

been given to minimizing lateral diffusion to reduce spreading

(Valon et al., 2015; Van Geel et al., 2018), its contributions to

spatial resolution are likely outweighed by cytosolic diffusion

when the photoactivated protein is cytosolic, as is commonly

the case.

To systematically explore the determinants of spatial confine-

ment, we simulated both themolecular-level biophysical interac-

tions and the optical hardware used for induction and visualiza-

tion (Figures 5A and 5B). We predicted the sensitivity of spatial

confinement to these two parameter classes for a typical protein

concentration of 1 mM (Figures 5C and 5D). For the biophysical

parameter sensitivity analysis, we used the cellular geometry

from the confocal experiment of Figure 4 and a range of biophys-

ical constants informed by experiments here or elsewhere

(Bartelt et al., 2018; Natwick and Collins, 2021). For hardware

analysis, we used a geometry generated by hemi-ellipsoid pro-

jection of an idealized cell (see STAR Methods).



Figure 4. Spatial confinement of BcLOV4

BcLOV4 refers to BcLOV4-mCherry.

(A) Scheme of laser-scanning confocal microscopy (LSCM) patterning of a narrow peri-membrane excitation ROI (�1.5 3 �0.5 mm, blue region, l = 405 nm).

Confinement measurements tracked fluorescence time course along the membrane profile (orange line).

(B) Membrane profile fluorescence evolution of a representative cell. (i) Unwrapped profile (blue shaded area denotes excitation region). (ii) Heatmap and (iii)

corresponding model prediction of complex spatiotemporal dynamics generally agreed. Black lines denote excitation region. Heatmaps are normalized so that

peak fluorescence over the entire time course is set to 1.

(C) SD of the Gaussian profile (solid black line ± 95% CI, N = 14) from the heatmaps, a proxy for the degree of spatial confinement. (i) Experiment and (ii) model

prediction. The SD initially rapidly increases because of cytosolic diffusion-limited association. BcLOV4 is then largely immobile due to slow lateral diffusion and

membrane affinity.

(D) Biophysical processes (i.e., excluding hardware contributions) that govern spatial resolution of optically inducible recruitment, pre-/post-binding to the

membrane.

See Figure 5 for sensitivity analysis.
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Spatial resolution was most profoundly improved by parame-

ters (lower Dcyto, higher kon,lit, lower koff,lit, and higher koff,p) that

directly decrease the average distance traveled by a cytosoli-

cally diffusing lit-state protein by slowing it, improving binding,

decreasing rebinding, or decreasing the lit-state lifetime (Fig-

ure 5C). An ideal Dmem = 0 can only improve the confinement

to the spatial resolution limit set by the other parameters (Fig-

ure 5Ci–viii). However, Dmem is indeed limiting for the less com-

mon heterodimerization configuration where the photosensory

protein is the membrane-localized component (Toettcher et al.,

2011; Natwick and Collins, 2021). Of note, increasing Smax im-

proves resolution by reducing diffusion times and distances; it

also enhances the maximum possible inducible signaling (Nat-

wick and Collins, 2021).

The analysis of how optical hardware excitation volume im-

pacts recruitment spatiotemporal dynamics found that a laser-

scanning confocal system (1P) induces greater signaling than

more axially precise total internal reflection fluorescence (TIRF)

and 2P, by exciting a proportionally larger volume for similar

membrane surface areas (Figure 5D). When only one optical

pulse is delivered, TIRF and 2P potentially become less focal,

with increasing SD as membrane-bound protein continues to

spread after the excitation volume depletes of photoactivated

protein (greater than tens of seconds); conversely in 1P, cyto-

solic photoexcited proteins continue to populate the illuminated

surface area. If confinement is defined as the profile width at half

the experimental maximum (instead of instantaneous relative

maximum), TIRF and 2P are more focal because the protein den-
sities are rapidly clipped by the quantification threshold. Thus,

the primary spatiotemporal benefit of axial confined TIRF and

2P is an improved impulse response of induced signaling.

In silico resolution of inter-experiment variability
Given its accuracy in predicting cell-wide dynamics, the frame-

work provides a powerful means to improving robustness in sin-

gle-cell studies by bridging inter-experiment variability in silico.

To this end, we explored differences between subcellular digital

micromirror device (DMD)-stimulation experiments on widefield

versus confocal microscopes. We observe a phenomenon on

widefield microscopes whereby cytoplasmic fluorescence ap-

pears enhanced within a patterned stimulation ROI, as if it

continuously recruits protein from distal unstimulated regions

(Figure 6A). The paradoxical enhancement is the opposite of

the expected rapid cytoplasmic depletion from the ROI. It is

not observed when we use a confocal microscope to image a

similarly DMD-stimulated cell (Figure 6B). This discrepancy sug-

gests that the enhancement is due to the poor axial sectioning

capability of a widefield microscope (Figure 6C). Post hoc anal-

ysis found that the hardware-dependent imaging artifact stems

from the combination of (1) PSF-limited photonic integration of

membrane-bound protein within the ROI and (2) simultaneous

photobleaching throughout the cell (Figures 6D–6F).

Next, we explored how cell geometry affects the observed ki-

netic constant for membrane association (ton), a commonmetric

for comparing optogenetic recruitment tools (Buckley et al.,

2016; Zimmerman et al., 2016). While it is known that cell size
Cell Reports Methods 2, 100245, July 18, 2022 7



Figure 5. Determinants of spatiotemporal resolution and signaling magnitude of optically inducible membrane recruitment
BcLOV4 refers to BcLOV4-mCherry.

(A) Diffractive differences between hardware for induction. Larger stimulation volumes increase cytosolic diffusion lengths and consequently decrease spatial

resolution.

(B) Spatial confinement post stimulation impacted by: (1) cytosolic diffusion distance before membrane binding; (2) unbinding frequency and distance traveled

before rebinding, and (3) distance traveled by lateral diffusion.

(C) Sensitivity analysis of spatial confinement to the intrinsic biophysical parameters. Values span those derived here for BcLOV4 and elsewhere for heterodime-

rization systems. SD of the protein distribution along a modeled membrane matching the experimental conditions of Figure 4. (i) Binding site availability (Smax), (ii)

kon,lit, (iii) koff,lit, (iv) koff,p of the chromophore photocycle, (v) kon,dark, (vi) koff, dark, (vii) cytosolic diffusivity, or (viii) lateral diffusivity along the membrane. The role of

lateral diffusion is limited for large excitation volumes and/or when binding kinetics permit extensive cytosolic diffusion when rebinding.

(D) Effect of stimulation method. Systems with larger excitation volumes drive more potent signaling but reduce spatial precision. (i) Simulated excitation of

23 2 mm region at the bottom of a model cell (excitation duration = 100 ms, cytoplasmic [BcLOV4] = 1 mM) by different stimulation methods (10W/cm2 irradiance

at focal plane). Highlighted volumes show the 1W/cm2 isosurfaces of the excitation volume. (ii) Peakmembrane-bound protein recruitment, baselined to subtract

pre-bound protein in the dark state. The rapid drop-off in peak recruitment for axially confined stimulation (2P, TIRF) due to low levels of activated cytosolic

BcLOV4 results in decreased induced signaling. (iii) Spatial resolution quantified by SD for a Gaussian distribution fit (1P) or the full width at half maximum

/2sqrt(2ln(2)) (2P, TIRF) of the membrane profile at each time point. Axially confined methods do not outperform classic 1P excitation for this measure overall,

but better retain focality during initial recruitment (t < 5–10 s). (iv) Spatial resolution quantified by width at half of initial/absolute maximum. Inset schematizes

the steep drop-off at longer time points by this metric from threshold clipping.
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and geometry can impact signaling (McBeath et al., 2004;

Meyers et al., 2006; Neves et al., 2008; Hara and Kimura,

2009), these factors are often overlooked in optogenetics. Spe-
8 Cell Reports Methods 2, 100245, July 18, 2022
cifically, the plasma membrane surface area to cytoplasmic vol-

ume ratio (SA/V) critically impacts the binding site availability

Smax relative to total number of diffusible molecules. Increasing



Figure 6. 3D FEA-derived resolution of hardware-dependent interpretive confounds

BcLOV4 refers to BcLOV4-mCherry.

(A) Example of observed paradoxical fluorescence enhancement. Widefield imaging of DMD-excited cells (12 mW/cm2, duty cycle 4 = 10%) shows (i) apparent

protein depletion from distal unstimulated regions and notable brightening within the stimulation field (white box). Scale bar, 10 mm. (ii) Fluorescence-derived

cytosolic concentration traces within stimulation field (cyan quantification box in i), distal unstimulated region (orange box in i), and their (iii) ratio normalized to 1.

The fluorescence enhancement in the stimulation field erroneously suggests photoinduced diffusional gradients lead to protein accumulation within the stim-

ulation field.

(B) Confocal images of DMD-excited cells do not show the large fluorescence enhancement within the stimulation region. Analyzed as in (A).

(legend continued on next page)
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SA/V accelerates ton byminimizing the roles of hopping and non-

linearity, as observed in single cells across heterogeneous

protein concentrations and stimulation duty ratios (Figures 7A

and 7B, N = 13).

We also demonstrated that a cell-unique model experimen-

tally validated in one experiment can be used to predict the

outcome of another of entirely different hardware, stimulation

paradigm, and analysis (Figure 7C). We compared ton deter-

mined by (1) fitting cytosolic depletion from confocal micro-

graphs of pulsatile-stimulated cells (i.e., method used here)

versus (2) colocalization correlation analysis with a membrane

marker from widefield images of continuously stimulated cells

(our previous method [Glantz et al., 2018]). Notably, the marker

here is purely virtual, not coexpressed as before. In silico trans-

position recapitulated a salient interpretive confound that ton
derived by cytoplasmic depletion (�5 s) is systematically slower

than by marker colocalization (�1.5 s). The latter perceived

acceleration is a consequence of the mathematical correlation

(Figure 7D). Because the marker has background cytoplasmic

fluorescence, the acceleration reflects the synergistic increase

in correlation along both the cytosolic and membrane segments

and a faster approach to mathematical saturation. Such predic-

tive simulations show how computational approaches can

improve interpretive robustness by permitting results from one

lab or experiment to be compared with those emulating another.

Implementation in other computational environments
While the mesh generator and solver were custom-built for

computational efficiency, the single-cell framework can be im-

plemented in other software. It is modular in that the (1) 3D

cellular mesh, (2) time-varying 3D-patterned distribution of opti-

cal excitation, (3) reaction-diffusion model (or other relevant

model), and (4) PSF convolution can all be treated as separate

components imported and exported between computational

environments. Thus, we implemented the approach in VCell (Fig-

ure S7), a general environment for simulating cell signaling (Mor-

aru et al., 2008) that can natively mesh a 3D cell (based on the

finite volume method, with a uniform orthogonal mesh) and ac-

count for PSF convolution. We integrated the calculation of

spatiotemporally complex 3D distributions of optical excitation

(e.g., laser raster) into VCell by introducing the optical input dis-

tribution computed within our framework as a specific ‘‘light’’

element, taking inspiration from work elsewhere in modeling

FRAP experiments (K€uhn et al., 2011) (Figure S7A).

We successfully replicated our analyses in an end-to-end

fashion with closely approximated results (Figures S7B–S7D,
(C) Model-derived explanation of paradoxical cytosolic fluorescence enhancem

membrane-bound protein. The cytosol darkens quickly outside the field whereas

decomposition.

(D) Model of single cell with approximated contours by volumetric extrapolation

patterned illumination (red box, 12 mW/cm2, 4 = 2.5%). Geometric uncertainty of

(g = 0.6) to improve discrimination. Scale bar, 5 mm. (ii) Decomposition of the mod

result in (i). (iii) Theoretical isolated contribution of membrane-bound protein to th

(E and F) Partial recapitulation of rebinding phenomena observed (E) within and

(photobleach-corrected). Inset: simulated initial image with measurement field ove

the net signal. The�0.4 mMequivalent difference between the two cytosolic region

can be by PSF-limited integrated fluorescence of membrane-bound protein (E-iii

ulation field.
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related to Figure 5D). The computational runtime increased

in VCell versus the fully custom solution (�10-fold slowdown

to simulate a TIRF experiment). Since its inputs are contin-

uous functions, VCell recomputes the intensity of excitation

light at each meshpoint at every timestep, even when it is un-

changed. Conversely, the custom FEM can utilize coarser

mesh sizes to reconstruct the topologies and store the optical

input elements in local memory. Nevertheless, the successful

replication demonstrates that one can employ the modeling

tools of choice and those best suited for the single-cell

modeling task at hand.

DISCUSSION

Predictions by our single-cell framework agreed with experi-

mental single-cell data. Many features contribute to its utility

in studying peripheral membrane protein dynamics: 3D non-

linear dynamics without concentration assumptions, volumetric

reconstructions of single cells, optical beam profiling and PSF

convolution to simulate hardware-specific effects, and valida-

tion by a global optimal solution for the set of PDEs (i.e., all

the fundamental constants and absolute concentrations were

measured).

While we successfully simulated anticipated outcomes and vi-

sual outputs of single-cell experiments, the quality of the simu-

lated micrograph depended (1) on the mesh fidelity of the initial

volumetric reconstruction as already described, and (2) on the

underlying biophysics accounted for in the model. For example,

the model does not recapitulate BcLOV4 recruitment ‘‘hot

spots’’ (e.g., punctate membrane fluorescence in Figures 1

and 3A), which likely form by de novo aggregation on the mem-

brane given that BcLOV4 is monodisperse in the cytosol (based

on identical FRAP-measured and theoretical cytosolic diffusiv-

ities). While we cannot exclude a role for curvature in this phe-

nomenon, our current understanding from in vitro studies (of lipid

headgroup selectivity) of the BcLOV4 membrane interaction is

that it is more governed by membrane anionic charge density

than by curvature (Glantz et al., 2018).

Optogenetic membrane recruitment-based signaling
implications
Single-component BcLOV4 recruitment reaches a fractional oc-

cupancy of [S]/Smax � 30% for typical cellular concentrations,

similar to the occupancy reached by the iLID system (Natwick

and Collins, 2021). Since the total induced signaling magnitude

depends on the cytosolic concentration of the payload, a
ent within a stimulation field by PSF-dependent axial signal integration of

the brightening within it counteracts photobleaching. See (D), (E), and (F) for

of one focal plane. (i) Cell and corresponding simulated image in response to

the initial mesh precludes pixel-wise accuracy of the output. Gamma corrected

el output. Theoretical isolated contribution of cytoplasmic protein to the model

e model result in (i).

(F) outside the stimulation field. (i) PSF-limited cytosolic depletion time course

rlaid. (ii) Theoretical cytosolic and (iii) membrane fluorescence contributions to

s (E-i and F-i) cannot be explained by cytosolic concentration (E-ii and F-ii), but

and F-iii). Dotted lines denote approximate steady-state level outside the stim-



Figure 7. Computational resolution of inter-experimental differences in observed membrane association kinetics (ton)

BcLOV4 refers to BcLOV4-mCherry. Kinetics measured in one experiment can be reasonably extrapolated to data generated in another (e.g., different cell or

experimental condition).

(A) ton varies across a physiological range of cell surface area-to-volume ratios (SA/V) that determine membrane binding site availability relative to total intra-

cellular BcLOV4 (0.1 s pulse, l= 405 nm, duty cycle4 = 10%, 12.24W/cm2). SA/V range of�0.15–1.2mm�1 spans geometries from a large 20-mm-radius cell with

negligible nuclear fractional volume to a small 5-mm-radius cell with sizable 4-mm-radius nucleus.

(B) Log-order acceleration of ton with increasing SA/V as the main contributor to intercellular differences in recruitment kinetics. Experimental cells and corre-

sponding FEM (experiment: black, 95%CI; simulation: red) and calculated ton (blue band, in idealized spherical cells) across SA/V and stimulation duty ratios (as

in A, 4 = 0.67%–10%).

(C) In silico ‘‘transposition’’ of a cell between experiments. (i) Validated cell-unique FEM from a pulsatile stimulation experiment with ton quantified by cytosolic

depletion is simulated as if it was in a different experiment of continuous stimulation and quantified by colocalizationwith a virtually introducedmembranemarker.

(ii) Simulated transposition of one cell with virtual GFP-CAAX (experiment-derived marker background fluorescence of �10% relative to its membrane fluo-

rescence; error = 95% CI; �0.5 mM protein to match previous work [Glantz et al., 2018]). Colocalization correlation analysis along a line profile transecting the

membrane results in faster perceived recruitment dynamics than by cytoplasmic depletion. Predictions on markerless experimental cells using virtual markers

here agree with previous work (inset table).

(D) Post hoc analysis reconciles data quantified by the two methods. (i) Schematized GFP-CAAX marker with constant membrane/cytosol ratio. (ii) ToolTmarker

correlation initially improves in both the membrane and cytosol to synergistically accelerate perceived colocalization increase. The correlation improvement

subsequently slows when membrane colocalization increase is counterbalanced by cytosolic colocalization decrease (when cytosolic BcLOV4 depletes beyond

the cytosolic marker level).
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single-component system whose surface-bound partner is in

natural excess can decrease the metabolic load by �80% over

an optimized heterodimerization system, i.e., one expressed

with a 4-fold excess of the surface component (Natwick and

Collins, 2021). Likewise, since the BcLOV4 Smax (�6,000 mole-

cules/mm2) exceeds that of lipidated peripheral membrane pro-

teins (500–1,500 molecules/mm2 [Del Piccolo and Hristova,

2017; Angert et al., 2020]), BcLOV4 likely has a greater achiev-

able membrane density than a heterodimerizer; consequently,

it may drive greater signaling induction over a broader concen-

tration range of linear binding kinetics.

It was unanticipated that when the photosensory domain is

cytosolic, its cytosolic diffusion has a much larger role than

lateral diffusion in the spatial confinement, which becomes espe-

cially important under binding-limiting cases. Also unexpectedly,

we found that axially confined stimulation improved the impulse

response of induced signaling more than the spatial resolution.

However, in systems with a membrane-localized photosensor,

the confinement should be determined primarily by lateral diffu-
sion and is largely independent of excitation volume. Thus, a sys-

tem with a membrane-localized photosensor is likely more ideal

for maximizing spatial confinement; however, this configuration

comes at the expense of increased metabolic load and/or

decreased signalingmagnitude for the fractional occupancy rea-

sons described above.

Our studies elucidated the biophysical determinants of perfor-

mance in optogenetic membrane recruitment and emphasized

how in silico approaches can enhance interpretive robustness

in single-cell signaling studies. The validated framework pro-

vides a foundation for the principled design of improved tools

and complex stimulation paradigms for tight and potentially

closed-loop spatiotemporal control of cell signaling. Consider-

able progress in optogenetics has been made in model-guided

signaling gradient formation (de Beco et al., 2018; Izquierdo

et al., 2018), and improved strategies could further advance

the field in the study of oscillatory waves and more complex

pattern formation (Chiou et al., 2018; Hörning and Shibata,

2019; Borgqvist et al., 2021).
Cell Reports Methods 2, 100245, July 18, 2022 11
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FEM in cell signaling
FEM is widely used to study mechanics and transport, including

in cell motility (Neilson et al., 2010; Elliott et al., 2012) and defor-

mation biomechanics using non-stationary surface elements

(Boccaccio et al., 2011; Hughes et al., 2018). Its application for

spatially modeling intracellular signaling is less common but

more theoretically advanced for describing a coupled bulk-

surface system of membrane recruitment than alternative ap-

proaches (Madzvamuse and Chung, 2016; Cusseddu et al.,

2019; Paquin-Lefebvre et al., 2020). Beyond equation-based ap-

plications, rules-driven or agent-based modeling frameworks

such as PhysiBoSS (Letort et al., 2019) are particularly useful

when spanning multiple scales, such as incorporating intracel-

lular signaling cascades with cell-cell interactions (Bonabeau,

2002; Gorochowski, 2016). Most existing multi-scale agent-

based frameworks of cell signaling still approximate cells as

ideal spheres. We envision that single-cell FEM and excitation

light beam computation techniques described herein are

extendable to rules-driven models and would benefit them by

facilitating tolerance to experimental imaging conditions and

cell heterogeneity.

In summary, we described a conceptual framework that can

improve computational models of single-cell signaling and mi-

croscopy experiments. We applied it to study BcLOV4 spatio-

temporal dynamics to identify key performance determinants

in optogenetic membrane recruitment-based signaling. We

demonstrated how the approach can be used for improved

robustness when interpreting single-cell data. By accounting

for both the intrinsic biophysical contributions of the optogenetic

tool and the extrinsic contributions of the optical system used for

stimulation and imaging, this approach can guide forward the

design of improved optogenetic tools and experiments for dis-

secting peripheral membrane protein signaling dynamics.

Limitations of the study
The current framework was designed for single-machine

computation. Future work includes expanding its throughput

via distributed computation functionality. While VCell models

can be distributed to run on its cloud server, the current study

was not compatible with this online server owing to the presence

of spatiotemporally varying inputs. Specifically, VCell does not

natively provide a simple interface through which to model

time- and space-varying inputs at this time. The described local

VCell implementation introduced this functionality without ac-

cess to the underlying codebase; this approach required sin-

gle-machine computation. Accordingly, the described runtime

performance assessments represent hardware-matched head-

to-head comparisons. Despite these limitations, the described

framework is more broadly envisioned as an adjunct to existing

tools and is intended to streamline the analysis of complex sin-

gle-cell signaling studies.
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Texas Red-DHPE Biotium 60,027

Fluorescent polystyrene beads Degradex 2101C/2211

Fluorescent microspheres Spherotech FP-0252-2/FCM-02556-2

Lucifer Yellow Biotium 80,015

TransIT-293 transfection reagent Mirus Bio MIR2700
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Deposited data

Raw data This work Mendeley Data: https://doi.org/10.17632/

62xbycxn4y.1

Experimental models: Cell lines

HEK293T ATCC CRL-3216

Recombinant DNA

BcLOV4_mCherry_pcDNA3.1 Addgene 114,595

His6_BcLOV4_mCherry_BamUK Addgene 114,596

LAMP1_miRFP670nano_pN1 Addgene 127,435

Software and algorithms

MATLAB MathWorks https://www.mathworks.com/products/

matlab.html

Fiji Schindelin et al., 2012 https://fiji.sc/

Python (version 3.8) Van Rossum and Drake, 2009 https://www.python.org

FELICITY Walker, 2018 https://github.com/walkersw/felicity-

finite-element-toolbox/wiki

The Python Microscopy Environment Soeller Lab https://www.python-microscopy.org/

Virtual Cell Moraru et al., 2008 https://vcell.org

PyOptica https://pypi.org/project/pyoptica/ https://pyoptica.gitlab.io/pyoptica-blog/

PSF (version 2021.6.6) https://github.com/cgohlke/psf/ https://pypi.org/project/psf/

Numpy (versions 1.20.0) Oliphant, 2006 https://numpy.org/

PSF Generator Kirshner et al., 2013 http://bigwww.epfl.ch/algorithms/

psfgenerator/

FEM toolbox This work https://github.com/brianchowlab/BcLOV4-FEM

(https://doi.org/10.5281/zenodo.6587636)

Analysis scripts This work https://github.com/brianchowlab/reproducibility-

BcLOV4-FEM (https://doi.org/10.5281/zenodo.

6587665)

Other

HisTrap FF Cytiva 17,525,501

Amicon Ultra-4 centrifugal filter unit Millipore Sigma UFC901008D

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Quartz cuvette Starna Cell 16.100F-Q-10/Z15

Power meter Thorlabs PM100D

455 nm LED Mightex Systems 0301

Spectrophotometer Ocean Insight USB2000+

Widefield microscope Leica DMI6000B

Spinning Disk confocal microscope Nikon ECLIPSE Ti2

Spinning disk confocal scanner unit Yokogawa CSU-W1

Digital light projector Digital Light Innovations CEL5500

Laser-scanning confocal microscope Leica TCS SP8
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Ivan Kuz-

netsov (ivan.kuznetsov@pennmedicine.upenn.edu).bchow@seas.upenn.edu

Materials availability
This study did not generate new materials. The BcLOV4-mCherry plasmids for bacterial expression (His6_BcLOV4_mCherry_BamUK,

ID: 114596) and mammalian expression (BcLOV4-mammalian-recoded_mCherry_pcDNA3.1, ID: 114595) are available from Addgene.

Data and code availability
d Source data statement: Most of the raw data is available by Mendeley Data: https://doi.org/10.17632/62xbycxn4y.1. Due to

size limitations, some microscopy data has been excluded, but will be shared by the lead contact upon request.

d Code statement: The FEM toolbox is publicly available for MATLAB at Github: https://github.com/brianchowlab/BcLOV4-FEM

and Zenodo: https://doi.org/10.5281/zenodo.6587636. A tutorial and examples are provided. The scripts used to generate the

figures in this paper are available at Github: https://github.com/brianchowlab/reproducibility-BcLOV4-FEM and Zenodo:

https://doi.org/10.5281/zenodo.6587665.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell lines
HEK293T (ATCC, CRL-3216) cells were cultured in D10 media composed of Dulbecco’s Modified Eagle’s Medium with GlutaMAX

(Invitrogen 10566016), supplemented with Penicillin-Streptomycin at 100 U/mL and 10% heat-inactivated fetal bovine serum

(FBS). Cells were maintained in a 5%CO2 tissue-culture treated dishes in a water-jacketed incubator (Thermo/Forma 3110) at 37�C.

METHOD DETAILS

For the following sections, unless otherwise specified: (i) water was Milli-Q water (ddH2O, 18.2 MU $ cm), (ii) oligonucleotides were

synthesized by IDT, (iii) genetic constructs were verified by Sanger sequencing (Genewiz), (iv) all experiments referring to BcLOV4

specifically refer to the BcLOV4-mCherry fusion construct, unless specifically stated otherwise. Native sequence and mammalian

codon-optimized BcLOV4 plasmids are publicly available via Addgene.

Genetic constructs, protein expression and transfection
Recombinant BcLOV4 production

BcLOV4 was bacterially produced and purified by FPLC (fast protein liquid chromatography) as described previously (Glantz et al.,

2018). Protein was stored at 4�C and used within 2 days of purification.

Photocycle kinetics and quantum efficiency

BcLOV4 (without fused mCherry) absorbance scans were used to determine photocycle kinetics by monitoring absorbance at

450 nm (A450) as previously described (Glantz et al., 2018). To measure quantum efficiency of photoconversion (4Þ and kon,p,

15 s of baseline measurements were made at room temperature, and the A450 immediately was recorded after blue light stimulation
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of varying intensity (5 s, l = 455 nm, 0.06–7.43 mW/cm2). To extract the constants, we can model the amount of non-photoactive

BcLOV4 (c) as:

dc

dt
= � kon;pc (Equation 3)

where we can ignore lit-to-dark state thermal reversion because it occurs on timescales much longer than photoactivation; the frac-

tion of activated BcLOV4 after 5 s of excitation will be 1 � e� 5kon;p : The constants kon,p and 4 are related to each other by the rate of

photon absorption:

kon;p =

Z
44psexdl (Equation 4)

where sex is the absorption cross section in units of cm�2, 4p is the photon flux density in units of photons cm�2s�1, and l is the

wavelength of excitation light. Given:

sex = 2303e=NA
(Equation 5)

where e is the molar extinction coefficient (�12,500 M�1s�1) and NA is Avogadro’s number, and:

4p =
Pd

hn
(Equation 6)

where Pd is the power density of the excitation light, h is Planck’s constant, and n is the frequency of excitation, we approximate this

integral by assuming that our LED spectrum is narrow and centered at 455 nm:

kon;pz44psex

��
l = 455 nm

(Equation 7)

The fraction of BcLOV4 that is activated after 5 s is:

f = 1 � e� 544psex (Equation 8)

which can be fit to the experimental data to extract 4 and then use the value to calculate kon;p.

Dark-state reversion kinetics were measured by monitoring the absorbance at 450 nm (A450) post-stimulation for every 0.5 s for

2 min, and koff,p was fit as an exponential to reversion kinetics.

Mammalian cell culture and transduction

HEK293T (ATCC, CRL-3216) cells were cultured, plated, and transfected as previously described (Glantz et al., 2018). Cells were

imaged 24 h after transfection.

Microscopy calibration and assays
Widefield microscopy and spatial patterned excitation

Widefield imagingwas performed on an automated epifluorescencemicroscope equippedwith a custom-built spatial patterning sys-

tem (Berlew et al., 2020) to deliver blue light (l = 455/20 nm, 12 mW/cm2, 100-1000 ms pulses at duty cycle = 0.8–10%). Excitation

patterns were typically 25 mm-wide squares that illuminated �25-50% of selected cell area.

Spinning disk confocal microscopy

A Nikon Eclipse Ti2 microscope equipped with a CSU-W1 confocal scanner unit (Yokogawa) was used with a 60x/1.4 NA objective.

BcLOV4 was stimulated at l = 405 nm at either 50% [12.24 W/cm2 at the focal plane] or 100% [16.94 W/cm2 at the focal plane] laser

power. mCherry was excited at l = 552 nm and imaged using a Brightline mCherry-C-000 filter cube (562/40 excitation filter, 593

dichroic, and 641/75 emission filter). When necessary, spatially patterned excitation could be delivered via a Nikon DMD module

(tunable irradiance between 10 and 70 mW/cm2 at the focal plane). In general, excitation intensity was set at �12 mW/cm2 to allow

for accurate inter-comparison between widefield and confocal DMD excitation datasets.

Excitation intensity measurements

For widefield wholefield, widefield DMD excitation, and confocal DMD excitation, intensity at the focal plane was measured

with a Thorlabs PM100D power meter. PyOptica (Grochowicz and Miler, 2020) was used to calculate the expected out-of-plane

excitation or light intensity at different z-locations that would yield the observed DMD image formation at the focal plane.

Because of the underfilling of the back-aperture of the objective, the excitation volume for DMD excitation is, at mm-distance

scales, a vertical square column of light with identical irradiance profiles in each z-plane. This approximation was used for all

DMD simulations.

For wholefield spinning disk confocal excitation, illumination intensity at the focal plane was measured by fitting

photobleaching curves of <5 mm water-in-oil emulsion droplets filled with 100 mM riboflavin. To estimate out-of-plane excitation,

we approximated the spinning disk unit as continuously scanning multiple diffraction-limited Gaussian beams across the
e3 Cell Reports Methods 2, 100245, July 18, 2022
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field-of-view (neglecting any beam-shaping occurring in the unit). The intensity of a Gaussian beam can be modeled as

(Dickson, 1970):

Iðr; zÞ = I0

 
w0

.
wðzÞ2

!
e
� 2r2=wðzÞ2 (Equation 9)

where r =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 + y2

p
and w is the beam radius and is defined as:

wðzÞ = w0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+

�
z=zR

�2
s

(Equation 10)

where zR is the Rayleigh range:

zR = pw2
0nsample

�
l

(Equation 11)

where nsample is the refractive index of the propagating medium and l is the wavelength of the light. Note that w0 can be estimated

from the point spread function (calculated as 109.8 nm). The time-averaged volumetric intensity distribution of delivered excitation

light was then approximated as the convolution of I(r,z) with a 2D kernel representing the amount of time the spinning disk scanner

spends at each point. For whole-field excitation, the average light intensity that out-of-focus planes of the cell are exposed to was

found to be approximately equal to the light intensity at the focal plane and hence a uniform excitation light intensity throughout the

cell volume was assumed in corresponding models.

Point spread function measurements

Spinning disk confocal PSFs were measured by taking z-stacks of 100 nm fluorescent beads (Degradex 2101C/2211). Widefield

PSFs were measured using larger beads 100-390 nm fluorescent beads (Spherotech FP-0252-2/FCM-02556-2). PSFs were

extracted from z-stacks using the Python Microscopy Environment (Baddeley et al., 2021) and subsequently de-convolved

to account for non-negligible bead diameter. 3D Gaussian (spinning disk) or Richards & Wolf (widefield) PSF models were fit

to the experimentally derived PSFs with the python PSF package (Gohlke and Holub, 2021) to limit noise for subsequent

analysis.

In cellulo measurement of kinetic constants

The values for kon,lit, koff,lit, kon,dark, and koff, dark, were extracted from in situ HEK cell measurements. Given the fast cytosolic diffusion

relative to the membrane binding rate of BcLOV4, binding was modeled as reaction-limited, and assuming isotropic diffusion, was

simplified to a four-state zero-dimensional model:

duC

dt
= kon;pvC � koff ;puC + koff ;lit

�
LuM � kon;lit

�
L ðSmax � uM � vMÞuC

dvC
dt

= � kon;pvC + koff ;puC + koff ;dark
�
LvM � kon;dark

�
L ðSmax � uM � vMÞvC

duM

dt
= kon;pvM � koff ;puM � koff ;lituM + kon;litðSmax � uM � vMÞuC

dvM
dt

= koff ;puM � kon;pvM � koff ;darkvM + kon;darkðSmax � uM � vMÞvC

(Equation 12)

where L is a characteristic length-constant, defined as the volume-to-surface area ratio of the cell, which is necessary to maintain

conservation of mass in the system. L is directly measurable via confocal imaging.

For BcLOV4 membrane unbinding post-excitation when t[ 1�
koff ;p

, uM; uCz0 and the model can be simplified to:

dvC
dt

= � koff ;dark
�
LvM � kon;dark

�
L ðSmax � vMÞvC

dvM
dt

= � koff ;darkvM + kon;darkðSmax � vMÞvC
(Equation 13)

Due to the relatively small expected value of kon,dark, it is neglected to recover the expression:

vM = vM;0e
� koff ;dark t (Equation 14)

Based on simulations, themodel was accurate to within 5% for t > 40 s post-completion of excitation. koff, darkwas thus determined

from a spinning-disk dataset of cytosolic fluorescence recovery after 5 s wholefield excitation of BcLOV4 at 16.94 W/cm2

(Figures S4E and S4F). To fit kon,lit and koff,lit, the 0D-model in Equation (12) was fit to a spinning disk dataset of dark-adapted

BcLOV4 stimulated 100 ms every 1 s (10% duty cycle) at 16.94 W/cm2 (Figures S4A–S4D).

Due to relative model insensitivity to the value of kon,dark, which primarily affects dark-state affinity and has minimal effect on

membrane binding or unbinding kinetics, it was better estimated as a bound. Given the fact that BcLOV4 at the membrane could

not be visualized in the dark state regardless of cytosolic BcLOV4 concentration, it followed that membrane fluorescence (Fmem)
Cell Reports Methods 2, 100245, July 18, 2022 e4
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was always less than or equal to cytosolic fluorescence (Fcyto), i.e., Fmem % Fcyto. Fmem is approximately a linear function of the

protein density at the membrane, which in turn is related to the dark-state BcLOV4 concentration by the Langmuir isotherm.

Hence:

Fmem = A1

Smax½BcLOV4�dark
½BcLOV4�dark +KD;dark

+A2 (Equation 15)

A1, A2 were determined using the giant unilamellar vesicles (GUV) calibration (see ‘‘Surface density calibration’’). Similarly, for Fcyto:

Fcyto = B1½BcLOV4�dark +B2 (Equation 16)

where B1, B2 were measured with patch micropipette microinjection of Lucifer Yellow (see ‘‘Concentration calibration’’). Assuming

Fmem % Fcyto, the lower bound on KD,dark of 20 mMwas determined from Equations 15 and 16, and consequently the upper bound on

kon,dark of 1125 M�1s�1, was used in the model as a ‘‘worst-case’’ value (Figure S4G).

Surface density calibration

The conversion between BcLOV4 surface density and membrane fluorescence was measured based on techniques by others (Dezi

et al., 2013). Briefly, phosphatidylcholine giant unilamellar vesicles (GUVs) with varying concentrations of Texas Red-1,2-dihexade-

canoyl-sn-glycero-3-phosphoethanolamine, triethylammonium salt (Tx-DHPE, Biotium) between 0.05 and 1% mole/mole were

generated using the water-in-oil emulsion transfer method (Nishimura et al., 2012). GUVs were imaged at their equatorial plane by

spinning-disk confocal microscopy, and a calibration curve was constructed which related Tx-DHPE density tomeasuredmembrane

fluorescence. GUVs were automatically identified in the image by the circle Hough transform and membrane fluorescence was ex-

tracted in MATLAB as the average signal measured along the circumference. The relative brightness of Texas Red versus mCherry

under our imaging conditions converted this to a curve of BcLOV4 density versus membrane fluorescence. On the spinning disk

confocal microscope used here, the measured membrane fluorescence is 1.2-fold the BcLOV4 surface density in molecules/mm2.

Concentration calibration

Due to model nonlinearities, all inputs and outputs need to be expressed in absolute concentration units. The fluorescence-derived

concentrations were measured based on previously used methods (Cherkas et al., 2018), wherein a known concentration of dye is

delivered to cells by whole-cell patch-clamp (Figure S1A). HEK cells’ transmembrane potentials were kept stable using an Axopatch

200B amplifier and Digidata 1440 digitizer (Molecular Devices) at room temperature. Patch micropipettes were pulled to obtain a

resistance of 3-10 MU (1.5 3 0.86 mm borosilicate glass, Sutter Instrument P-1000 pipette puller). Extracellular solution (Tyrode’s

solution) consisted of 125 mMNaCl, 2 mM KCl, 3 mMCaCl2, 1 mMMgCl2, 10 mMHEPES, 30 mM glucose, pH 7.3 (NaOH adjusted),

300 mOsm (sucrose adjusted). Intracellular solution consisted of 125 mM K-gluconate, 8 mM NaCl, 0.1 mM CaCl2, 0.6 mM MgCl2,

1 mMEGTA, 10 mMHEPES, 4 mMMg-ATP, 0.4 mMNa-GTP, pH 7.3 (KOH adjusted), with 295–300mOsm (sucrose adjusted). Intra-

cellular solution was supplemented with Lucifer Yellow (LY) dye (5-25 mM) for perfusion. Cells with a leak current > 200 pA or access

resistance >25 MU were discarded.

Time-lapse fluorescent imaging was conducted at 6 Hz to monitor LY filling of the cell cytoplasm, which took �5 min to saturate.

(N = 3 cells per 5-25 mMLY concentration). Known concentrations of BcLOV4-mCherry and LYwere imaged in bulk solution, to derive

the relative fluorescence ratio between these two fluorophores for the microscope. With this information, a linear function was con-

structed to approximate cellular BcLOV4 concentration (in mM) from fluorescence visualization intensity, which was given by F =

505½BcLOV4�+ 125 for the widefield microscope and F = 452½BcLOV4�+ 107 for the spinning-disk confocal microscope, given

the imaging parameters used herein.

Based on these empirical relationships, the distribution of cellular BcLOV4 concentrations after transient transfection were deter-

mined from confocal data (Figure S1B) to be a right-ward skewed distribution with a mean concentration of 4.02 mM. As secondary

validation of this measurement, mCherry fluorescence in HEK cell lysate (SoluLyse-M, Amsbio) was determined from calibrated fluo-

rescence of FPLC-purified recombinant BcLOV4-mCherry, after correcting for cell confluency, transfection efficiency, and cell vol-

ume/lysate volume; the confirmatory calculated mean concentration was 3.72 ± 0.79 mM (N = 4).

FRAP measurements

FRAP was performed using a Leica TCS SP8 laser scanning confocal microscope (Figure S3). For lateral membrane diffusion,

BcLOV4 was initially recruited to the membrane with a 100 ms pulse of 405 nm light. A small rectangular ROI (average size

�1.53 0.5 mm, with the long axis parallel to the membrane) on the membrane was photobleached using a high intensity 561 nm laser

at 100% power. The ROI was then imaged at �60 Hz until its average fluorescence stabilized. When fit to a 1D reaction-diffusion

model that accounted for membrane unbinding/rebinding, the membrane unbinding/rebinding could account for most of the

observed fluorescence recovery, resulting in Dmem values below the detection limit. Therefore, the effective upper bound on Dmem

was determined by fitting the data to a canonical model without the reaction components (Ellenberg et al., 1997):

IðtÞ = Ifinal

�
1 � w2

�
w2 + 4pDmemt

	� 1

1=2

(Equation 17)

where w is the width of the bleaching rectangle, and I is the intensity within the ROI.
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For measurement of cytosolic diffusion, a 2 mm diameter circular ROI near the center of the cell was photobleached using a high

intensity 561 nm laser at 100% power (�250 ms bleach time). Fluorescence recovery was measured in the Leica ‘‘fly mode’’ to cap-

ture the initial fewms of the recovery curve and tracked at�600 Hz until the signal stabilized. The half-time of recovery was extracted

from the data through fitting of an exponential recovery curve, to calculate Dcyto using a previously reported conversion for circular

ROIs (Kang et al., 2012).

Spatial confinement

Spatial confinement experiments were conducted using a Leica TCS SP8 laser scanning confocal microscope. A dark-adapted

cell was imaged at �5 Hz for 4 s, after which a small perimembrane ROI (�1.5 x �0.5 mm) was photoexcited with a �200 ms

pulse of 405 nm laser light. The cell was subsequently imaged at �5 Hz until the fluorescence in the ROI returned to baseline.

The ROI and membrane profile fluorescence kinetics were extracted using a custom-written ImageJ macro. Results were

compared to model predictions which utilized the experimental cell geometry. Gaussian curve fitting was conducted in

MATLAB.

Simulations
Mesh initialization and quality control

For all simulations, unless otherwise specified, all cytosolic mesh nodes were initialized with the cellular cytosolic concentration

calculated from the input fluorescence micrograph. Concentration was assumed to be uniform in the cytoplasm because

z-stacks analysis did not show variability that was not primarily attributable to organelle voids, cell geometry, or diffraction.

Membrane mesh nodes were initialized as SmaxKD;dark=ðKD;dark + ½BcLOV4�cytoÞ. The volume of mesh elements was <5 mm3.

Mesh size was selected so that, on average, a <1% error relative to super-fine mesh (�10�4 mm3) was maintained

(Figures S2A and S2B). Timesteps varied from 0.01-0.1 s and were selected so that a <1% error relative to a timestep of

0.001 s was achieved (Figure S2C). As secondary validation, in all cases, it was verified that the resultant solution did not

change with a finer mesh or smaller timestep.

Spatial discretization using FEM

The approach is based on bulk-surface reaction-diffusion systems (Madzvamuse and Chung, 2016; Cusseddu et al., 2019; Paquin-

Lefebvre et al., 2020). As shorthand, S = Smax � uM � vM: The weak form of this system defined by Equations (1) and (2) is (letting

4;j be our test functions on U and dU, respectively):Z
U

duC

dt
4+Dcyto

Z
U

VuC$V4 =

Z
U

ðkon;pvC � koff ;puCÞ4+

Z
dU

ðkoff ;lituM � kon;litSuCÞ4

Z
U

dvC
dt

4+Dcyto

Z
U

VvC$V4 =

Z
U

ð � kon;pvC + koff ;puCÞ4+

Z
dU

ðkoff ;darkvM � kon;darkSvCÞ4

Z
dU

duM

dt
j+Dmem

Z
dU

VdUuM$VdUj =

Z
dU

ðkon;pvM � ðkoff ;p + koff ;litÞuM + kon;litSuCÞj

Z
dU

duC

dt
j+Dmem

Z
dU

VdUvM$VdUj =

Z
dU

ðkoff ;puM � ðkon;p + koff ;darkÞvM + kon;darkSvCÞj

(Equation 18)

where VdU is the gradient on dU. To spatially discretize the weak form. we define the discretization’s as Uh3U and dUh3 dU
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Z
Uh

duh;C

dt
4h +Dcyto

Z
Uh

Vuh;C$V4h =

Z
Uh

ðkon;pvh;C � koff ;puh;CÞ4h +

Z
Uh

ðkoff ;lituh;M � kon;litSuh;CÞ4h

Z
Uh

dvh;C
dt

4h +Dcyto

Z
Uh

Vvh;C$V4h =

Z
Uh

ð � kon;pvh;C + koff ;puh;CÞ4h +

Z
dUh

ðkoff ;darkvh;M � kon;darkSvh;CÞ4h

Z
dUh

duh;M

dt
jh +Dmem

Z
dUh

VdUuh;M$VdUjh =

Z
dUh

ðkon;pvh;M � ðkoff ;p + koff ;lÞuh;M + kon;lSuh;CÞjh

Z
dUh

dvh;M
dt

jh +Dmem

Z
dUh

VdUvh;M$VdUjh =

Z
dUh

ðkoff ;puh;M � ðkon;p + koff ;darkÞvh;M + kon;darkSvh;CÞjh

(Equation 19)

In matrix form, we can express this as:

K4

dbuC

dt
+DcytoA4 buC � kon;pK4bvC + koff ;pK4 buC � koff ;litKj4 buM

+ kon;litðSmaxK44 � B4ðbuMÞ � B4ðbvMÞÞbuC = 0

K4

dbvC

dt
+DcytoA4bvC + kon;pK4bvC � koff ;pK4 buC � koff ;darkKj4bvM

+ kon;darkðSmaxK44 � B4ðbuMÞ � B4ðbvMÞÞbvC = 0

Kj

dbuM

dt
+DmemAj buM � kon;pKjbvM + ðkoff ;p + koff ;litÞKj buM

� kon;litðSmaxK4j � BjðbuMÞ � BjðbvMÞÞbuC = 0

Kj

dbvM

dt
+DmemAjbvM � koff ;pKj buM + ðkon;p + koff ;darkÞKjbvM

� kon;darkðSmaxK4j � BjðbuMÞ � BjðbvMÞÞbvC = 0

(Equation 20)

where:
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ðK4Þij =
Z
U

4i4j

ðKjÞij =
Z
dU

jijj

ðK44Þij =
Z
dU

4i4j

ðKj4Þij =
Z
dU

ji4j

ðK4jÞij =
Z
dU

4ijj

ðA4Þij =
Z
U

V4i$V4j

ðAjÞij =
Z
dU

VdUji$VdUjj

ðB4ðxÞÞij =
Z
dU

ðx$jÞ4i4j

ðBjðxÞÞij =
Z
dU

ðx$jÞ4ijj

(Equation 21)
Time discretization and integration
For time integration, the fractional thetamethodwas used, which is an implicit methodwith the A-stability of implicit Euler and second

order temporal convergence of Crank-Nicholson (Chrispell et al., 2007; Madzvamuse and Chung, 2014). In this method, the desired

time interval is first split into equal length steps, henceforth termed t. For each time step, 3 sub-steps are performed. The equations to

be solved for each time step are outlined below, where q = 1 � 1 = ffiffiffi
2

p
.

The first sub-step solves the following linear equations:

K4

�bun+ q

C � bun

C

	
qt

+DcytoA4 bun+ q

C � kon;pK4bvn+ q

C + koff ;pK4 bun+ q

C

� koff ;litKj4bun+ q

M + kon;litSmaxK44 bun+ q

C = kon;lit
�
B4

�bun

M

	
+B4

�bvn

M

		bun

C

K4

�bvn+ q

C � bvn

C

	
qt

+DcytoA4bvn+ q

C + kon;pK4bvn+ q

C � koff ;pK4 bun+ q

C

� koff ;darkKj4bvn+ q

M + kon;darkSmaxK44bvn+ q

C = kon;dark
�
B4

�bun+ q

M

	
+

B4

�bvn+ q

M

		bvn+ q

C

Kj

�bun+ q

M � bun

M

	
qt

+DmemAj bun+ q

M � kon;pKjbvn+ q

M + ðkoff ;p + koff ;litÞKj bun+ q

M

� kon;litSmaxK4j bun+ q

C = � kon;lit
�
Bj

�bun+ q

M

	
+Bj

�bvn+ q

M

		bun+ q

C

Kj

�bvn+ q

M � bvn

M

	
qt

+DmemAjbvn+ q

M � koff ;pKj bun+ q

M + ðkon;p + koff ;darkÞKjbvn+ q

M

� kon;darkSmaxK4jbvn+ q

C = � kon;dark
�
Bj

�bun+ q

M

	
+Bj

�bvn+ q

M

		bvn+ q

C

(Equation 22)

The second sub-step solves the following non-linear equations:
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K4

�bun+ 1� q

C � bun+ q

C

	
ð1 � 2qÞt � kon;lit

�
B4

�bun+ 1� q

M

	
+B4

�bvn+1� q

M

		bun+1� q

C =

�DcytoA4 bun+ q

C + kon;pK4bvn+ q

C � koff ;pK4 bun+ q

C + koff ;litKj4bun+ q

M

� kon;litSmaxK44 bun+ q

C

K4

�bvn+ 1� q

C � bvn+ q

C

	
ð1 � 2qÞt � kon;dark

�
B4

�bun+ 1� q

M

	
+B4

�bvn+ 1� q

M

		bvn+ 1� q

C =

�DcytoA4bvn+ q

C � kon;pK4bvn+ q

C + koff ;pK4 bun+ q

C + koff ;darkKj4bvn+ q

M

� kon;darkSmaxK44bvn+ q

C

Kj

�bun+ 1� q

M � bun+ q

M

	
ð1 � 2qÞt + kon;lit

�
Bj

�bun+ 1� q

M

	
+Bj

�bvn+ 1� q

M

		bun+ 1� q

C =

�DmemAj bun+ q

M + kon;pKjbvn+ q

M � ðkoff ;p + koff ;litÞKj bun+ q

M

+ kon;litSmaxK4j bun+ q

C

Kj

�bvn+1� q

M � bvn+ q

M

	
ð1 � 2qÞt + kon;dark

�
Bj

�bun+1� q

M

	 � Bj

�bvn+ 1� q

M

		bvn+ 1� q

C =

�DmemAjbvn+ q

M + koff ;pKj bun+ q

M � ðkon;p + koff ;darkÞKjbvn+ q

M

+ kon;darkSmaxK4jbvn+ q

C

(Equation 23)

The third sub-step solves the following linear system:

K4

�bun+ 1

C � bun+ 1� q

C

	
qt

+DcytoA4 bun+ 1

C � kon;pK4bvn+ 1

C + koff ;pK4 bun+1

C

� koff ;litKj4 bun+ 1

M + kon;l itSmaxK44 bun+ 1

C

= � kon;lit
�
B4

�bun+ 1� q

M

	
+B4

�bvn+ 1� q

M

		bun+ 1� q

C

K4

�bvn+ 1

C � bvn+ 1� q

C

	
qt

+DcytoA4bvn+ 1

C + kon;pK4bvn+ 1

C � koff ;pK4 bun+ 1

C

� koff ;darkKj4bvn+ 1

M + kon;darkSmaxK44bvn+ 1

C = kon;dark
�
B4

�bun+ 1� q

M

	
+B4

�bvn+ 1� q

M

		bvn+ 1� q

C

Kj

�bun+1

M � bun+ 1� q

M

	
qt

+DmemAj bun+ q

M � kon;pKjbvn+ q

M + ðkoff ;p + koff ;litÞKj bun+ q

M

� kon;litSmaxK4j bun+ q

C = � kon;lit
�
Bj

�bun+ 1� q

M

	
+Bj

�bvn+ 1� q

M

		bun+ 1� q

C

Kj

�bvn+ 1

M � bvn+1� q

M

	
qt

+DmemAjbvn+ 1

M � koff ;pKj bun+1

M + ðkon;p + koff ;darkÞKjbvn+ 1

M

� kon;darkSmaxK4jbvn+ 1

C = � kon;dark
�
Bj

�bun+1� q

M

	 � Bj

�bvn+ 1� q

M

		bvn+ 1� q

C

(Equation 24)

Although sub-steps 1 and 3 involve easily solvable linear systems, sub-step 2 involves a non-linear system. We solve this system

using a Newton-Raphson iteration. For this problem, the Jacobian is defined as follows below. Given the following residuals:

K4

�bun+ 1� q

C � bun+ q

C

	
ð1 � 2qÞt � kon;lit

�
B4

�bun+ 1� q

M

	
+B4

�bvn+ 1� q

M

		bun+1� q

C +DcytoA4 bun+ q

C

� kon;pK4bvn+ q

C + koff ;pK4 bun+ q

C � koff ;litKj4 bun+ q

M

+ kon;litSmaxK44 bun+ q

C = 0

K4

�bvn+ 1� q

C � bvn+ q

C

	
ð1 � 2qÞt � kon;dark

�
B4

�bun+ 1� q

M

	
+B4

�bvn+1� q

M

		bvn+ 1� q

C +DcytoA4bvn+ q

C

+ kon;pK4bvn+ q

C � koff ;pK4 bun+ q

C � koff ;darkKj4bvn+ q

M

+ kon;darkSmaxK44bvn+ q

C = 0

Kj

�bun+ 1� q

M � bun+ q

M

	
ð1 � 2qÞt + kon;lit

�
Bj

�bun+ 1� q

M

	
+Bj

�bvn+ 1� q

M

		bun+ 1� q

C +DmemAj bun+ q

M

� kon;pKjbvn+ q

M + ðkoff ;p + koff ;litÞKj bun+ q

M � kon;litSmaxK4j bun+ q

C = 0

Kj

�bvn+ 1� q

M � bvn+ q

M

	
ð1 � 2qÞt + kon;dark

�
Bj

�bun+ 1� q

M

	 � Bj

�bvn+ 1� q

M

		bvn+ 1� q

C +DmemAjbvn+ q

M

� koff ;pKj bun+ q

M + ðkon;p + koff ;dÞKjbvn+ q

M � kon;darkSmaxK4jbvn+ q

C = 0

(Equation 25)
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Constructing the Jacobian as a 4 x 4 block matrix yields the following Jacobian elements:

J1;1 = K4 � kon;litð1 � 2qÞt��B4

�bun+ 1� q

M

	
+B4

�bvn+1� q

M

		
J1;2 = 0

J1;3 = � kon;litð1 � 2qÞtK4 bun+ 1� q

C

J1;4 = � kon;litð1 � 2qÞtK4 bun+ 1� q

C

J2;1 = 0

J2;2 = K4 � kon;darkð1 � 2qÞt��B4

�bun+1� q

M

	
+B4

�bvn+ 1� q

M

		
J2;3 = � kon;darkð1 � 2qÞtK4bvn+ 1� q

C

J2;4 = � kon;darkð1 � 2qÞtK4bvn+ 1� q

C

J3;1 = kon;litð1 � 2qÞt��Bj

�bun+ 1� q

M

	
+B4

�bvn+ 1� q

M

		
J3;2 = 0

J3;3 = Kj + kon;litð1 � 2qÞtKj bun+ 1� q

C

J3;4 = kon;litð1 � 2qÞtKj bun+ 1� q

C

J4;1 = 0

J4;2 = kon;darkð1 � 2qÞt��Bj

�bun+ 1� q

M

	
+Bj

�bvn+1� q

M

		
J4;3 = kon;darkð1 � 2qÞtKjbvn+ 1� q

C a

J4;4 = Kj + kon;darkð1 � 2qÞtKjbvn+1� q

C

(Equation 26)

Using this Jacobian, the equations in sub-step 2 can be solved iteratively.

Simplified linear model

A linear version of the model was constructed for purposes of comparison to the full 3D, non-linear model (Figure 3C). For the case of

the linear model, S = Smax. Hence, in matrix form the spatial discretization is (using the previously defined matrix notation):

K4

dbuC

dt
+DcytoA4 buC � kon;pK4bvC + koff ;pK4 buC � koff ;litKj4 buM + kon;litSK44 buC = 0

K4

dbvC

dt
+DcytoA4bvC + kon;pK4bvC � koff ;pK4 buC � koff ;darkKj4bvM + kon;darkSK44bvC = 0

Kj

dbuM

dt
+DmemAj buM � kon;pKjbvM + ðkoff ;p + koff ;litÞKj buM � kon;litSK4j buC = 0

Kj

dbvM

dt
+DmemAjbvM � koff ;pKj buM + ðkon;p + koff ;darkÞKjbvM � kon;darkSK4jbvC = 0

(Equation 27)

To discretize this in time using the backward (implicit) Euler method, we write the following linear system:

K4

�bun+ 1

C � bun

C

	
t

+DcytoA4 bun+ 1

C � kon;pK4bvn+ 1

C + koff ;pK4 bun+ 1

C � koff ;litKj4 bun+ 1

M + kon;litSK44 bun+ 1

C = 0

K4

�bvn+ 1

C � bvn

C

	
t

+DcytoA4bvn+ 1

C + kon;pK4bvn+ 1

C � koff ;pK4 bun+ 1

C � koff ;darkKj4bvn+ 1

M + kon;darkSK44bvn+ 1

C = 0

Kj

�bun+ 1

M � bun

M

	
t

+DmemAj bun+ 1

M � kon;pKjbvn+ 1

M + ðkoff ;p + koff ;litÞKj bun+ 1

M � kon;litSK4jbun+ 1

C = 0

Kj

�bvn+ 1

M � bvn

M

	
t

+DmemAjbvn+ 1

M � koff ;pKj bun+ 1

M + ðkon;p + koff ;darkÞKjbvn+ 1

M � kon;darkSK4jbvn+ 1

C = 0

(Equation 28)

which can be solved at every timestep to arrive at our desired solution.
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Cell segmentation

Cell nuclei and plasma membrane contours were detected using the MATLAB active contours algorithm (Chan and Vese, 2001).

Briefly, imageswere initially manually cropped to include only individual cells. Nuclear locations were seeded by drawing a small rect-

angle in the center of the nuclear void and the nuclear contour was evolved using the rectangle as a starting mask. The plasmamem-

brane contour was evolved by using the entire image as a starting mask. For confocal z stack segmentation, the nuclear/cytoplasmic

contours from the previous image in the stack were used as the seeds for the following image. For images where cells were touching

(�80% of widefield images and �50% of confocal images), it was necessary to manually crop-out the cells that were not of interest

and seed the contours with a hand-drawn contour in ImageJ.

Generation of volumetric cell mesh

When taking confocal data 100 nm-step z-stacks of the cell volume were acquired before initiating any experiments to reconstruct a

volumetric representation of the cell by interpolating between the segmented 2D frames of the z stack. After the cell volume was con-

structed, it was converted to a surface triangulation. The surface triangulation was then meshed via MATLAB’s built-in mesh gener-

ation algorithm.

In the case of widefield images, which lacked reliable z-stacks because of poor axial resolution, the volumetric representation was

constructed by a hemi-ellipsoid projection of the nucleus and cytoplasm from a single 2D frame (Figure 1D). Briefly, the heights for the

nucleus and cytoplasm were set as 2 and 3 mm, respectively. The (x,y) position of the nucleus or cytoplasm ellipsoid zenith and nadir

was selected by taking the center-of-mass of a binary mask of the nucleus/cytoplasm. To account for the flat portion of the cell

touching the cover glass, the lower portion of the projection was constructed as a hemi-barrel shape. This hemi-barrel was generated

by sectioning, with a plane perpendicular to the z axis, a hemi-ellipsoid of height equal to twice the desired height of the hemi-barrel.

After the cell volume was constructed, it was converted to a surface triangulation, which was then meshed via MATLAB’s built-in

mesh generation algorithm.

Sensitivity to biophysical parameters

Upper and lower bounds for Dcyto, Dmem, koff,p, kon,lit, koff,lit, kon,dark, koff, dark, and Smax were chosen based on biophysical feasibility

and by comparison to values derived for heterodimerization systems. Parameter values were then selected that spanned the space

between bounds, yielding 31 total parameter sets where only one parameter at a time differed from BcLOV4’s measured biophysical

parameters. Using the same cellular geometry and excitation ROI from Figure 4 and an initial cytosolic protein concentration of 1 mM,

the model was then run on each of the 31 parameter sets and analyzed as described in ‘‘Spatial confinement.’’ The parameter kon,p
was excluded from the analysis as it does not directly affect spatial confinement.

Sensitivity to optical hardware diffraction

To compare the spatial resolution achievable by laser-scanning confocal, two-photon, and TIRF stimulation, a common cell volume

was generated by hemi-ellipsoid projection (nuclear height 4 mm, cytoplasmic height 6 mm) of a 2D cell area, where the nucleus was

a circle with r = 15 mm and the cytoplasm was a circle with r = 25 mm. Note that the very large cell ensured no artifacts were

introduced by protein diffusing all the way around the cell while still accounting for computational memory constraints. Since a

very fine mesh was required to ensure sufficient resolution to finely differentiate the excitation volume, the cell volume was meshed

to a maximum element size of <0.025 mm3 (typically 0.002–0.005 mm3), which yielded >106 elements per cell and utilized �16 Gb

of RAM.

The simulated excitation (l = 450 nm, 10 W/cm2 at the focal plane) region was a 2 mm 3 2 mm square centered on the bottom flat

portion of the cell volume to allow for reasonably similar conditions for the different hardware. To account for excitation beam raster-

ing within the illumination ROI, one illumination spot for each 100 nm3 100 nm square of the illumination ROI was assumed, for 400

total raster points. The rastering was simulated as being instantaneous since the scan speed is fast relative to the time-course of the

experiment.

For each of the microscopy methods, the simulated axial extent and the diffraction-limited nature of the optical beam path were

also modeled. TIRF was modeled as using a 63x/1.4 NA objective with an angle of incidence of qincidence = 79� and with refractive

indices nsample = 1.33, ncoverglass = 1.52; then the z-dependence of light intensity was modeled as (Fish, 2009):

IðzÞ = I0e
z=d (Equation 29)

where d is given by:

d = l=4p

�
n2
coverglasssin

2qincidence � n2
sample


1=2
(Equation 30)

where l is the wavelength of excitation light. Equations 9, 10, and 11 were used tomodel the xy-dependence of the beam, noting that

w0, or the waist radius, can be approximated as (Young et al., 2015):

w0 = 0:325
ffiffiffi
2

p
0@l
.�

NA0:91 +
ffiffiffi
2

p 
1A (Equation 31)

For the case of one-photon stimulation, specifically laser scanning confocal, Equations 9, 10, and 11 were applied to deter-

mine the axial dependence, except with the beam waist determined from the PSF as 109.8 nm. For the case of two-photon
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stimulation, the axial dependence modeling proceeded similarly, except the intensity was given as the square of Equation 9 and

l2P = 2l1P = 900 nm.

For each of themicroscopymethods, wemodeled a 100ms stimulation and simulated 60 s post-stimulation. Unlike for laser-scan-

ning confocal stimulation, the membrane profiles generated via TIRF and two-photon stimulation were not Gaussian; hence, their

respective spatial spreads were calculated as the full width at half maximum (FWHM) and then converted to an effective standard

deviation via FWHM = 2
ffiffiffiffiffiffiffiffiffi
2ln2

p
STD, which holds for a Gaussian distribution, to allow comparison to Figure 4 and the biophysical

parameter sensitivity analysis. The FWHM relative to both the instantaneous maximum and the global maximum were calculated

to highlight the impulse response modulatory nature of TIRF and two-photon microscopy.

Lysosome binding

Datasets were collected via spinning disk confocal stimulation and imaging of cells co-expressing transiently transfected BcLOV4

and the LAMP1-miRFP670nano (Addgene plasmid #127435) lysosomal marker. 5 mM biliverdin was added to the imaging medium

immediately before visualization to increase miRFP670nano fluorescence; non-specific partitioning of the cofactor into the plasma

membrane was subtracted during analysis.

Models that accounted for the presence of lysosomes required the segmentation of lysosomal position from collected z-stacks

(150 nm steps) of LAMP1-miRFP670nano fluorescence using a custom MATLAB script. In brief, the initial z-stacks were first de-

convolved with the microscope PSF to reduce the impact of diffraction on downstream analysis. The xy-center of each lysosome

was identified by sequential analysis of each 2D micrograph in the z-stack and by fitting each bright lysosomal puncta with a 2D

Gaussian distribution (where the center of each distribution was the center of the corresponding lysosome). Each lysosome was

visible in several z-stack frames despite the de-convolution step, and thus, its z-center was taken as themiddle frame from the series

of frames it appeared in. For practicality, the radius of all lysosomes was taken to be 340 nm (Woldemichael and Rosania, 2017). For

theoretical simulations of the impact of lysosome volume density on the binding kinetics of BcLOV4, a mesh from an actual cell was

randomly initialized with a given volume density of lysosomes and meshed as described previously.

Paradoxical fluorescence enhancement

In cases where BcLOV4 was imaged by a widefield microscope, an accurate 3D cell volume was absent and required volumetric

extrapolation. To explore model accuracy for these conditions, videos of DMD-excited cells were collected for 1-10% duty cycles

of stimulation (100ms every 10 s, 250ms every 10 s, 1000ms every 10 s, or 1000ms every 15 s). For each stimulated cell, a volumetric

mesh was constructed by 3D extrapolated projection (as described in ‘‘Generation of volumetric cell mesh’’), and 100 s of BcLOV4

spatiotemporal dynamics were simulated. To correct for photobleaching, biexponentials were fit for t > 150 s, i.e., when cellular con-

centration was at steady-state. To better visualize the recapitulation of paradoxical fluorescence enhancement within the stimulation

ROI, the convolved model prediction was decomposed into its cytosolic and membrane components, since convolution is a linear

operation.

To verify that the observed cytosolic fluorescence enhancement was truly an artifact of the diffractive properties of a widefield mi-

croscope, a similar experiment was conducted with DMD excitation and spinning disk confocal imaging. Specifically, data for DMD-

excited cells was collected for 1-10% duty cycles of stimulation. In all cases, fluorescence enhancement within the excitation region

was absent.

Cell morphology influence on association kinetics

Initially, meshes for spherical cells (r = 5-20 mm) with variable sized spherical nuclei (r = 1-10 mm) were generated. The resultant cell

surface area-to-cytoplasmic volume ratios (SA/V) ranged from 0.15-1.2 mm-1. Simulationswere then run on these geometries for 1 mM

initial cytosolic BcLOV4 for duty cycles ranging from 0.67-10%, an excitation duration of 0.1 s with 405 nm light, and an excitation

intensity of 12.24W/cm2. The parameter ton was then extracted from resultant simulation data as the time constant of exponentials fit

to cytosolic depletion curves and then compared to experimental data.

In silico transposition between experiments

Apparent ton for the cytosolic depletionmethodwas calculated by fitting an exponential to the cytosolic decay curve. Apparent ton for

the colocalization method was calculated as described previously (Glantz et al., 2018); briefly, the correlation coefficient between a

GFP-CAAX membrane marker and BcLOV4 was calculated over time for a 4 mm line profile perpendicular to the membrane. The

appearance of a membrane virtual marker in the cell was simulated by setting the membrane to a uniform fluorescence intensity

and setting the cytoplasm to a uniform intensity equal to 1/10th that of the membrane. The latter 1/10th value was calculated from

a series of confocal images of GFP-CAAX and represents the cytosolic fluorescence that originates from marker protein that fails

to traffic to the membrane. The simulated membrane marker image was convolved with the experimental PSF to account for diffrac-

tive effects before downstream analysis. ton could then be calculated by fitting an exponential binding curve to the relationship be-

tween correlation coefficient and time.

Virtual cell integration

The system from Equation 1 was input into Virtual Cell and a cell geometry composed of a nucleus, nuclear membrane, cytoplasm,

plasmamembrane, and extracellular space was also defined. A 3D cell mesh was constructed as described above (see ‘‘Generation

of volumetric cell mesh’’) and then converted to a stereolithography (,stl) file via custom MATLAB script for import into Virtual Cell.

Similarly, the 3D excitation light distribution was computed as described in ‘‘Sensitivity to optical hardware diffraction.’’ To describe

the volumetric spatiotemporal complexity of laser rastering, the resultant expressions were the scaled summation of multiple offset

excitation PSFs, each offset by the spacing between raster points. A ‘‘light’’ input element was defined in Virtual Cell and assigned a
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value of either 0 when the light was off, or the aforementioned 3D light distribution expression when the light was on. Themodel could

then be run to recover results similar to those of the FEM described herein.

We noted that differences between the Virtual Cell result and the result from our custom system largely stem from the coarser

meshing required in Virtual Cell, which necessitates meshing of the extracellular space and is therefore less memory efficient. As

a consequence of this coarser meshing, the modeled excitation volume is offset from its experimental location in space. To correct

for this offset, the entire cell was shifted along the z axis so that the z-location (relative to the cell) of the simulated excitation volume

was re-aligned to the experimental volume.

QUANTIFICATION AND STATISTICAL ANALYSIS

Details of specific statistical analyses for each section, sample sizes, and statistical tests used are given in the STARMethods and in

the corresponding figure legends, but for completeness salient points are also summarized here. Notably, all analysis was done in

MATLAB using custom written scripts, which are available with deposited data.

Confidence intervals and sample sizes for biophysical parameters
95% confidence intervals for calculated biophysical parameters (refer to Figure 2B) were generated by bootstrapping, using the

MATLAB bootci() function with nboot = 1000. Sample size for: lit-state kinetic constants (n = 23 cells), dark-state kinetic constants

(n = 10 cells), number of membrane binding sites (n = 83 cells), cytosolic diffusivity (n = 13 cells), and membrane diffusivity (n = 12

cells).

Confocal model accuracy comparison
The performance of the 3D non-linear model created herein were compared to those of a 3D linear model (described in ‘‘Simplified

linear model’’), a 2D non-linear model, and a 2D linear model. For the 3D non-linear and linear models, mesh generation proceeded as

described above. For the 2D non-linear and linear models, the 2D segmented cell frame was directly meshed with the built-in

MATLAB mesh generator. The models ran for 100 s for 17 different cells spanning 0.67–10% duty cycles (0.1 s stimulation per 1-

15 s period) and were compared by the summed mean-squared error (MSE) between model prediction and experimental result

over the entire time-course. Specifically, the MSE refers to error in spatial average cytosolic concentration of BcLOV4 between

the model and experimental cell, taken over each time-point in the time-series. If we denote average model-computed cytosolic

BcLOV4 concentration at time t as fm(t) and average measured experimental cytosolic BcLOV4 concentration at time t as fe(t),

then the MSE represents the summation of (fm(ti) – fe(ti))
2 over all timepoints ti in the 100 s experiment (typically every 1 s) divided

by the number of timepoints i.

For experimental data, the average over space was calculated by tracking average concentration over time within a 2 mm3 2 mm

square region. This square region was selected based on requirements that it be sufficiently far from the large intracellular voids (i.e.,

nucleus) and from the membrane edge as to be unaffected by diffractive effects. Based on the PSF of the confocal microscope, the

region was >1 mm away from any of these structures. The average fluorescence/concentration timeseries between different intracel-

lular ROIs selected using these criteria tended to be similar (example shown in Figure S5C).

For 3D simulation data, the spatial summation was calculated by first generating 2D slices through the simulation volume at the

same z-location as the cell focal plane. For 2D simulation data, this step could be skipped, as resultant simulation images were

already 2D slices. The spatial averaging was then done by quantifying average concentration throughout the entire (now 2D) cell

cytosol over time. Notably for simulation data, it was not necessary to track fluorescence within a matched ROI, since in the absence

of simulated diffractive effects, there were negligible (<1%) subcellular differences in cytosolic BcLOV4 concentration in response to

whole-cell stimulation. When analyzing imaging data where subcellular differences in cytosolic depletion may be notable (i.e., for

patterned stimulation), comparisons between experimental andmodel results were done by tracking fluorescence between identical

ROIs.

Note that all MSE comparisons were done between 2D images; 3D models were converted to 2D images before MSE analysis.

Therefore the metric is equally meaningful for both 2D and 3D models. Statistical comparisons were conducted by paired Wilcoxon

signed rank test. Significance was defined as p < 0.05.
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