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Abstract: Monocular depth estimation from Red-Green-Blue (RGB) images is a well-studied ill-posed
problem in computer vision which has been investigated intensively over the past decade using Deep
Learning (DL) approaches. The recent approaches for monocular depth estimation mostly rely on
Convolutional Neural Networks (CNN). Estimating depth from two-dimensional images plays an
important role in various applications including scene reconstruction, 3D object-detection, robotics and
autonomous driving. This survey provides a comprehensive overview of this research topic including
the problem representation and a short description of traditional methods for depth estimation.
Relevant datasets and 13 state-of-the-art deep learning-based approaches for monocular depth
estimation are reviewed, evaluated and discussed. We conclude this paper with a perspective towards
future research work requiring further investigation in monocular depth estimation challenges.

Keywords: monocular depth estimation; single image depth estimation; CNN monocular depth

1. Introduction

Monocular depth estimation is a fundamental challenge in computer vision and has potential
applications in robotics, scene understanding, 3D reconstruction and medical imaging [1–4].
This problem remains challenging as there are no reliable cues for perceiving depth from a single
image. For example, temporal information and stereo correspondences are missing from such images.
The classical depth estimation approaches heavily rely on multi-view geometry [5–9] such as stereo
image [10,11]. These methods require alignment and calibration procedures which are important for
multi-camera or multi-sensor depth measurement systems [12,13]. Multi-view methods acquire depth
information by utilising visual cues and different camera parameters.

Most of the binocular or multi-view methods are able to estimate fairly accurate depth information.
However, their computational time and memory requirements are important challenges for many
applications [14]. The idea of using the monocular image to capture depth information could potentially
solve the memory requirement issue, but it is computationally difficult to capture the global properties
of a scene such as texture variation or defocus information.

Recently, the advancement of Convolutional Neural Networks (CNN) and publicly available
datasets have significantly improved the performance of monocular depth estimation methods [15–19].

This paper offers a comprehensive and structured survey of deep learning-based monocular depth
estimation approaches. The goal of the review is to assist the reader to navigate this emerging field,
which has become of significant interest to the computer vision community in recent years. The rest
of the survey is organized as follows: Section 2 presents a summary and basic concept of monocular
depth estimation, problem description, traditional methods for depth estimation and publicly available
datasets. Section 3 reviews the recent deep learning architectures for monocular depth estimation
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categorised in supervised, self-supervised and semi-supervised methods. Section 4 compares the
state-of-the-art approaches followed by discussion and potential future research directions presented
in Section 5.

2. An Overview of Monocular Depth Estimation

The concept of depth estimation refers to the process of preserving 3D information of the scene
using 2D information captured by cameras. Monocular solutions tend to achieve this goal using only
one image. These methods aim to estimate distances between scene objects and the camera from one
viewpoint. This requires the method to perform depth estimation on low-cost embedded systems.
There are a variety of devices commercially available to provide depth information, however, their
processing power, computational time, range limitation and cost make them impractical for consumer
devices. Sensors such as Kinect are commonly used in consumer devices [20,21]. These types of sensor
are categorized as Time-of-Flight (ToF) where the depth information is acquired by calculating the
time required for a ray of light to travel from a light source to an object and back to the sensor [22].
ToF sensors are more suitable for the indoor environment and short range (<2 m) depth sensing. On the
other hand, laser-based scanners (LiDAR) are commonly utilised for 3D measurement in the outdoor
environment. The key advantages of LiDAR sensors are high resolution, accuracy, performance in low
light and speed. However, LiDARs are expensive devices and they require extensive power resources
which make them unsuitable for consumer products.

It has been shown in the state-of-the-art that monocular depth estimation methods could be
a potential solution to address many of these challenges [23–25]. These methods perform with a
relatively small number of operations and in less computation time. They do not require alignment
and calibration which is important for multi-camera, or multi-sensor depth measurement systems.
Accurate monocular depth estimation methods can play an important role in understanding 3D scene
geometry and 3D reconstruction, particularly in cost-sensitive applications and use cases.

2.1. Problem Representation

Let I ∈ Rw×h be an image with size w × h. The goal is to estimate the corresponding depth
information D ∈ Rw×h. This is an ill-posed problem as there is an ambiguity in the scale of the depth.
Supervised learning-based methods try to address this issue by approximately learning the scale from
a set of training images. On the other hand, unsupervised and semi-supervised methods often utilise
an extra input for training such as stereo image sets, visual odometry and 6D camera pose estimation
to tackle the scale ambiguity issue. These methods mathematically define the problem as follows:
given a large dataset of Red-Green-Blue (RGB) and depth images, single image depth estimation can
be considered as a regression problem that uses a standard loss function such as Mean Square Error
(MSE). To achieve this, a training set τ can be represented as follows:

τ =
{
(In, Dn)

}
, In ∈ Rw×h and Dn ∈ Rw×h (1)

2.2. Traditional Methods for Depth Estimation

Most of the traditional methods for depth estimation rely on the assumption of having observations
of the scene, either in space or time (e.g., stereo or multi-view, structure from motion) [10,11,26,27].
Traditional methods can be categorized in two sets, active and passive methods.

Active methods involve computing the depth in the scene by interacting with the objects and the
environment. There are different types of active method, such as light-based depth estimation, which
uses the active light illumination to estimate the distance to different objects. Ultrasound and ToF are
other examples of active methods. These methods use the known speed of the wave to measure the
time an emitted pulse takes to arrive at an image sensor. Passive methods exploit the optical features
of captured images. These methods involve extracting the depth information by computational image
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processing. In the category of passive methods, there are two primary approaches: (a) multi-view
depth estimation, such as depth from stereo, and (b) monocular depth estimation.

The traditional depth estimation methods are mainly focused on multi-view geometry. The detailed
review of those methods is outside the scope of this work. However, it is worth noting that multi-view
traditional methods have various limitations including computational complexity and associated high
energy requirements. Current research works take advantage of deep-learning methods to achieve
more accurate results with lower computational and energy demands [15–19]. Deep learning-based
approaches and the availability of large-scale datasets have significantly transformed the monocular
depth estimation methods.

2.3. Datasets for Depth Estimation

A number of important datasets are particularly preferred for the depth estimation problem as
they provide images and corresponding depth maps from different viewpoints. The following section
highlights the popular datasets used to analyse the scenes. Consumer-level sensors such as the Kinect
and Velodyne laser scanner [20,21,28] are commonly used to capture the ground truth depth images
for datasets. A summary is presented in Table 1.

NYU-v2: the NYU-v2 dataset for depth estimation was introduced in [29]. The dataset consists
of 1449 RGB images densely labelled with depth images. The datasets consist of 407K frames
of 464 scenes taken from three different cities. These datasets are used for indoor scenes depth
estimation, segmentation and classification.
Make3D: the Make3D dataset, introduced in [30], contains 400 and 134 outdoor images for
training and testing, respectively. This dataset contains different types of outdoor, indoor and
synthetic scenes that are used for depth estimation by presenting a more complex set of features.
KITTI: the KITTI dataset, introduced in [31], has two versions and is made of 394 road scenes
providing RGB stereo sets and corresponding ground truth depth maps. The KITTI dataset is
further divided into RD: KITTI Raw Depth [31]; CD: KITTI Continuous Depth [31,32]; SD: KITTI
Semi-Dense Depth [31,32]; ES: Eigen Split [33]; ID: KITTI Improved Depth [34]. KITTI datasets
are commonly used for different tasks including 3D object detection and depth estimation.
The high-quality ground truth images are captured using the Velodyne laser scanner.
Pandora: the Pandora dataset, introduced [35], contains 250K full resolution RGB and
corresponding depth images having their corresponding annotation. Pandora dataset is used for
head centre localization, head pose estimation and shoulder pose estimation.
SceneFlow: this was introduced in [36] as one of the very first large-scale synthetic datasets consist
of 39K stereo images with corresponding disparity, depth, optical flow and segmentation masks.

Table 1. Datasets for monocular depth estimation.

Dataset Labelled
Images Annotation Brief Description

NYU-v2 [29] 1449 Depth + Segmentation Red-green-blue (RGB) and depth images taken from
indoor scenes.

Make3D [30] 534 Depth RGB and depth images taken from outdoor scenes.

KITTI [31] 94K Depth aligned with RAW
data + Optical Flow RGB and depth from 394 road scenes.

Pandora [35] 250K Depth + Annotation RGB and depth images.

SceneFlow [36] 39K Depth + Disparity + Optical
Flow+ Segmentation Map

Stereo image sets rendered from synthetic data with
ground truth depth, disparity and optical flow.

3. Deep Learning and Monocular Depth Estimation

There has been a significant improvement in learning-based monocular depth estimation methods
over the past couple of years [37–42]. The majority of the deep learning-based methods involve a CNN
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trained on RGB-images and the corresponding depth maps. These methods can be categorized into
supervised, semi-supervised and self-supervised. Supervised methods accept a single image and the
corresponding depth information for training. In such a case, the trained network can directly output
the depth information. However, a large amount of high-quality depth data is required, which is hard
to generalize to all use cases.

To overcome the need for high-quality depth estimation as seed data, numerous semi-supervised
methods are proposed. Semi-supervised approaches require smaller amount of labelled data and a
large amount of unlabeled data for training [16,43,44]. The limitation of semi-supervised methods is
that the networks are unable to correct their own bias and require additional domain information such
as camera focal length and sensor data.

Self-supervised methods only require a small number of unlabeled images to train the networks
for depth estimation [15,42,45]. These methods obtain the depth information automatically by relating
different input modalities. Self-supervised methods suffer from generalization issues. The models can
only perform on a very limited set of scenarios with similar distribution as the training set.

Table 2 categorizes thirteen methods reviewed comprehensively in the next sub-sections into
supervised, semi-supervised and self-supervised.

Table 2. Categories of deep learning-based monocular depth estimation methods (FC: fully
convolutional; CNN: convolutional neural networks).

Method Architecture Category

EMDEOM [32] FC

Supervised

ACAN [46] Encoder-Decoder
DenseDepth [47] Encoder-Decoder

DORN [18] CNN
VNL [48] Encoder-Decoder
BTS [49]

DeepV2D [50]
Encoder-Decoder

CNN

LISM [51] Encoder-Decoder

Self-supervised
monoResMatch [38] CNN

PackNet-SfM [52] CNN
VOMonodepth [53] Auto-Decoder

monodepth2 [42] CNN

GASDA [54] CNN Semi-supervised

3.1. Supervised Methods

Rosa et al. [32] proposed a supervised framework to estimate continuous depth maps from LiDAR
points. The framework utilises Hilbert Maps methodology [55] to generate dense depth map from
the sparse point could projected from LiDAR scanner. Furthermore, the proposed framework takes
advantage of the Fully Convolutional Residual Network (FCRN) proposed by Laina et al. [56] for
depth estimation. The network is trained on the densified depth images which are augmented by
flipping and applying colour distortion. Despite the comparable performance of this method against
the state-of-the-art methods, it can only produce depth maps with 128× 160 pixel resolution. More
importantly, the network is biased by the output of the Hilbert maps’ densification process which does
not represent the truth depth information of the missing areas.

Yuru et al. [46] proposed a new supervised algorithm called the Attention-Based Context
Aggregation Network (ACAN) to estimate depth maps. The algorithm utilises the deep residual
architecture [57], dilated layer and self-attention module [58–60] to control the spatial scale and
continuous pixel-level dense depth estimation. Moreover, the self-attention module creates a
relationship among every pixel resulting in learning the attention weights and contextual information
which can produce more accurate depth information. Furthermore, the algorithm uses image-pooling
to combine the image-level information for depth estimation. Soft-ordinal inference translation is
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used to transform the predicted probabilities into continuous depth values to produce more realistic
depth maps. The network is trained on resized and cropped images from NYU-v2 [29] and KITTI [31]
datasets. The context adaption feature of this network results in sharp boundaries in the structure of
the predicted depth map.

Ibraheem et al. [47] proposed a supervised method to estimate depth maps with the help of
transfer learning. The method utilises a CNN for estimating high-quality depth maps. The method
uses standard encoder-decoder network architecture based on pre-trained DenseNet-169 [61] and
ImageNet [62] networks for features extraction. Furthermore, the information obtained is passed to
the decoder to calculate the final depth maps with the sampling layer [63]. The network is trained
on the densified depth images, which are augmented by horizontal flipping and applying the colour
distortion including swapping the green and red channels of the input images. It produces depth maps
with 320× 240 pixel resolution and is likely to be biased by the output of the bilinear upsampling layer
which does not represent the accurate depth information for all regions.

Fu et al. [18] proposed a supervised method to estimate depth maps from the Spacing-Increasing
Discretization (SID) approach. The framework utilises the dense feature extractor, cross channel
information learner, multi-scale feature learner, encoder and ordinal regression optimizer for
high-quality depth estimation. Furthermore, the network is defined in a simpler way that avoids
needless subsampling and captures multi-scale information to save computational cost and time.
The subsampling layers are removed in the pooling layers and dilated convolutions are added to
obtain more accurate depth information. The network is trained on four challenging datasets including
Make3D [30], NYU-v2 [29], KITTI [31] and ScanNet [64] to introduce more feature variations.

Yin et al. [48] proposed a supervised framework to estimate depth maps by taking advantage
of the 3D geometric constraints. A simple type of geometric constraints known as ‘virtual norm’ is
implemented which is determined by randomly sampled three points in the 3D reconstruction to
obtain a high-quality depth estimation. Further, the method can estimate 3D structures of the scene
and surface normals directly from depth maps.

The method uses the 3D geometric constraints to convert the estimated depth to 3D point cloud
representations. The network is trained on the densified depth images which are augmented by
randomly cropping and flipping. This method can produce depth maps with 384× 512 pixel resolution
which are more robust and have strong global constraints.

Jin et al. [49] proposed a supervised method for monocular depth estimation that uses new
Local Planar Guidance Layers (LPGL) inserted into the decoding phase of the network. The method
utilises a decoding stage with spatial resolutions of 1/8, 1/4 and 1/2 by placing a layer that guides
the input features to the desired depth. Furthermore, a Dense Feature Extractor (DFE), Contextual
Information Extractor (CIE), LPGL and their dense features are used for final depth estimation.
The proposed framework takes advantage of the dense Atrous Apatial Pyramid Pooling layer [65] for
depth estimation. The network is trained on random crop of size 352× 704 for KITTI [31] and 416× 544
for NYU-v2 [29] datasets.

Zachary et al. [50] targeted the issues of monocular depth estimation in videos. The proposed
method known as DeepV2D combines two classical algorithms in an end-to-end architecture.
The network consists of two modules, depth estimation and camera motion. The depth module takes
the camera motion as input and returns an initial depth map. The camera motion module takes the
predicted depth and outputs the refined camera motion. Furthermore, the network alternates between
these two modules to predict the final depth map. The network is trained on four challenging datasets
including Make3D [30], NYU-v2 [29], KITTI [31] and ScanNet [64] to introduce more feature variations
and high quality depth estimation.

3.2. Self-Supervised Methods

Matan et al. [51] proposed a self-supervised method to estimate depth maps from Siamese
networks [66] approaches. The method utilises the Siamese DispNet [36], ResNet [57] and VGG [67]
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based network architectures for depth estimation. Further, the method predicts multi-scale disparity
maps in four scales which are later concatenated with previous decoder layer output and the
corresponding encoder output using the skip connections. The network is trained on the RGB and
ground truth depth images with 1242× 375 pixel resolution. The proposed network has the advantage
of sharing weights to reduce computational operations by cutting the network size to half which could
lead to a potential model for consumer devices.

Aleotti et al. [38] proposed a self-supervised framework to estimate depth maps using end-to-end
monocular residual matching known as monoResMatch. The framework utilises stereo matching
approach for depth estimation. The RGB image is mapped to the feature space and then synthesized to
obtain features aligned with virtual right images. The network further considers high dimensional
features at input image resolution to find multi-scale inverse depth map aligned with the input image.
The model is constructed based on an hourglass structure with skip connections. The final stage
consists of a disparity refinement module which estimates residual corrections to the initial disparity.
The network is trained using Structural Similarity (SSIM) reconstruction loss, disparity smoothness
loss with an edge-aware term and reverse Huber loss [68]. The model is trained on Cityscape [69]
and KITTI [31] datasets with random crops of size 640× 192.

Guizilini et al. [52] proposed a self-supervised method to estimate depth maps by combining
the geometry of the PackNet. The method utilises the symmetrical packing and unpacking blocks
to combine the encoded and decoded information using 3D convolutions. The network follows a
similar architecture as [70], which provides the encoder-decoder layers with skip connections having
geometrical information of the dense depth estimation. Furthermore, the method introduces new
packing and unpacking blocks having visual information for fine-grained high-resolution depth
predictions. This model is trained on the RGB and ground truth depth images with 640× 192 pixel
resolution from unlabelled data which can be generalized into unseen environments. The proposed
architecture uses upsampling and downsampling operations which increase the number of the
parameters and result in inaccurately scaled depth maps.

Andraghetti et al. [53] employed a state-of-the-art visual odometry method to obtain 3D points
and sparse depth maps. Furthermore, the sparse data is fed to a sparse auto-encoder to obtain a denser
depth map. The output of this stage along with the corresponding RGB image are fed to a CNN to
acquire a final densified depth map in a self-supervised manner. The network is trained on the RGB
and ground truth depth images from the KITTI [31] dataset and predicts depth maps with 256× 512
pixel resolution.

Clement et al. [42] proposed a self-supervised approach to estimate depth maps utilising a
combination of three architectures and loss functions. The pipeline takes advantage of a fully connected
U-Net [71] to predict depth and a pose network to estimate the pose between pairs of images.
ResNet-18 [57] is selected as the encoder and the pre-trained ImageNet [62] model is used to initialise
the weights. The proposed framework utilises appearance-based loss and it introduces a modified
per-pixel minimum reprojection loss. The network is trained on KITTI [31] dataset with Eigen split
and it estimate depth maps with 640× 192 pixel resolution.

3.3. Semi-Supervised Methods

Shanshan et al. [54] proposed GASDA, a semi-supervised method to estimate depth maps using
the geometry-aware symmetric domain adaption. This approach targets the generalisation issue of
the depth estimation methods by training the model on synthetic data to estimate depth from natural
images. The method uses symmetric style image translation and monocular depth prediction. Utilising
the CycleGAN [72], GASDA involves both real to unreal and unreal to real image translations together
with an epipolar geometry of the real stereo images. The network is trained with two image style
translations and symmetric depth estimators to produce depth maps with 192× 640 pixel resolution.
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4. Evaluation Matrices and Criteria

The most commonly used quantitative metrics for evaluating the performance of monocular
depth estimation methods are Absolute Relative Difference (AbsRel), Root Mean Square Error (RMSE),
RMSE (log) and Square Relative Error (SqRel).

These metrics are defined as follows:

AbsRel =
1
N

∑ ∣∣∣di − d∗i
∣∣∣

di
(2)

RMSE =

√
1
N

∑∣∣∣di − d∗i
∣∣∣2 (3)

RMSE(log) =

√
1
N

∑∣∣∣log di − log d∗i
∣∣∣2 (4)

SqRel =
1
N

∑ ∣∣∣di − d∗i
∣∣∣2

di
(5)

Accuracy with threshold (δ < thr) : % o f di such that max
(

di
d∗i

,
d∗i
di

)
< thr,

where thr = 1.25, 1.252, 1.253
(6)

where di and d∗i are the ground truth and predicted depth at pixel i and N is the total number of pixels.
All of the methods described in this section are tested on either KITTI [31] or NYU-v2 [29]

datasets. In order to evaluate and compare all the methods, we used the publicly available pre-trained
models. The main advantage of comparing the pre-trained models on both datasets is that it allows
us to measure the generalised performance of the networks on different test sets. Table 3 illustrates
the properties of the networks studied for monocular depth estimation including their input/output
dimensions, number of parameters, Graphical Processing Unit (GPU) specification and the type of the
architecture employed.

Table 3. Properties of the studied methods for monocular depth estimation (FC: fully convolutional;
ED: encoder-decoder; AD: auto-decoder; CNN: convolutional neural networks; K: trained on KITTI;
N: trained on NYU-v2).

Method Input Type Optimizer Parameters Output GPU
Memory

GPU
Model

BTS [49] 352 × 704 K ED Adam 47M 352 × 704 K 4× 11 GB 1080 Ti
DORN [18] 385 × 513 K CNN Adam 123.4M 513 × 385 K 12 GB TITAN Xp
VNL [48] 384 × 384 N ED SGD 2.7M 384 × 384 N N/A N/A

ACAN [46] 256 × 352 N ED SGD 80M 256 × 352 N 11 GB 1080 Ti
VOMonodepth [53] 256 × 512 K AD Adam 35M 256 × 512 K 12 GB TITAN Xp

LSIM [51] 1242 × 375 K ED Adam 73.3M 1242 × 375 K 12 GB TITAN Xp
GASDA [54] 192 × 640 K CNN Adam 70M 192 × 640 K N/A N/A

DenseDepth [47] 640 × 480 N ED Adam 42.6M 320 × 240 N 4× 12 GB TITAN Xp
monoResMatch [38] 192 × 640 K CNN Adam 42.5M 192 × 640 K 12 GB TITAN Xp

EMDEOM [32] 304 × 228 K FC Adam 63M 128 × 160 K 12 GB TITAN Xp
PackNet-SfM [52] 640 × 192 K CNN Adam 128M 640 × 192 K 8× 16 GB Tesla V100
monodepth2 [42]

DeepV2D [50]
640 × 192 K
640 × 480 N

CNN
CNN

Adam
RMSProp

70M
32M

640 × 192 K
640 × 480 N

12 GB
11 GB

TITAN Xp
1080 Ti

Table 4 presents the performance evaluation of the studied methods on KITTI [31] dataset. All
the numbers presented in this table are reported by the respective authors. As shown in Table 4,
DeepV2D [50] marginally achieved the best accuracy on the KITTI [31] dataset. The last four columns
in this table represent the evaluation using RMSE (log) metric and threshold inlier measures defined in
Equation (6). Not all the methods in Table 4 are trained and evaluated on the same part of the KITTI [31]
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dataset. The Train and Test columns in Table 4 indicate the subsets of the KITTI [31] dataset used by
each method.

Table 4. Evaluation results on KITTI dataset. Best method per metric is emboldened and highlighted
in green. (RD: KITTI Raw Depth [31]; CD: KITTI Continuous Depth [31,32]; SD: KITTI Semi-Dense
Depth [31,32]; ES: Eigen Split [33]; ID: KITTI Improved Depth [34]).

Method Train Test Abs
Rel

Sq
Rel RMSE RMSElog δ<1.25 δ<1.252 δ<1.253

BTS [49] ES(RD) ES(RD) 0.060 0.182 2.005 0.092 0.959 0.994 0.999
DORN [18] ES(RD) ES(RD) 0.071 0.268 2.271 0.116 0.936 0.985 0.995
VNL [48] ES(RD) ES(RD) 0.072 0.883 3.258 0.117 0.938 0.990 0.998

ACAN [46] ES(RD) ES(RD) 0.083 0.437 3.599 0.127 0.919 0.982 0.995
VOMonodepth [53] ES(RD) ES(RD) 0.091 0.548 3.790 0.181 0.892 0.956 0.979

LSIM [51] FT RD 0.169 0.6531 3.790 0.195 0.867 0.954 0.979
GASDA [54] ES(RD) ES(RD) 0.143 0.756 3.846 0.217 0.836 0.946 0.976

DenseDepth [47] ES(RD) ES(RD) 0.093 0.589 4.170 0.171 0.886 0.965 0.986
monoResMatch [38] ES(RD) ES(RD) 0.096 0.673 4.351 0.184 0.890 0.961 0.981

EMDEOM [32] RD, CD SD 0.118 0.630 4.520 0.209 0.898 0.966 0.985
monodepth2 [42] ES(RD) ES(RD) 0.115 0.903 4.863 0.193 0.877 0.959 0.981
PackNet-SfM [52] ES(RD) ID 0.078 0.420 3.485 0.121 0.931 0.986 0.996

DeepV2D [50] ES(RD) ES(RD) 0.037 0.174 2.005 0.074 0.977 0.993 0.997

In another evaluation on the NYU-v2 [29] dataset, as shown in Table 5, DeepV2D [50] marginally
achieved the best accuracy with very close performance to BTS [49]. The significant advantage of this
method against the state-of-the-art is a learnable approach for a geometrical principal of structure from
motion and relative camera pose estimation.

Table 5. Evaluation results on NYU-v2 dataset. Best method per metric is emboldened and highlighted
in green.

Method Abs Rel Sq Rel RMSE RMSElog δ<1.25 δ<1.252 δ<1.253

BTS [49] 0.112 0.025 0.352 0.047 0.882 0.979 0.995
VNL [48] 0.113 0.034 0.364 0.054 0.815 0.990 0.993
DenseDepth [47] 0.123 0.045 0.465 0.053 0.846 0.970 0.994
ACAN [46] 0.123 0.101 0.496 0.174 0.826 0.974 0.990
DORN [18] 0.138 0.051 0.509 0.653 0.825 0.964 0.992
monoResMatch [38] 1.356 1.156 0.694 1.125 0.825 0.965 0.967
monodepth2 [42] 2.344 1.365 0.734 1.134 0.826 0.958 0.979
EMDEOM [32] 2.035 1.630 0.620 1.209 0.896 0.957 0.984
LSIM [51] 2.344 1.156 0.835 1.175 0.815 0.943 0.975
PackNet-SfM [52] 2.343 1.158 0.887 1.234 0.821 0.945 0.968
GASDA [54] 1.356 1.156 0.963 1.223 0.765 0.897 0.968
VOMonodepth [53] 2.456 1.192 0.985 1.234 0.756 0.884 0.965
DeepV2D [50] 0.061 0.094 0.403 0.026 0.956 0.989 0.996

Note that, some of the methods in Table 5 such as monodepth2 [42] and PackNet-SfM [52] are
only trained and evaluated on KITTI-ES(RD) as reported in their original papers. To achieve a fair and
generalized comparison, we evaluated LSIM [51], PackNet-SfM [52], GASDA [54], VOMonodepth [53]
and monodepth2 [42] on the NYU-v2 dataset [29]. The numbers for the rest of the methods are reported
by the respective authors.

Table 6 compares the performances of the studied methods in terms of inference time. As shown
in Table 6, BTS [49] has the fastest inference time with 0.22 s.
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Table 6. Comparison of the models in terms of inference time (FC: fully convolutional; CNN:
convolutional neural networks). Best method is emboldened and highlighted in green.

Method Inference Time Network/FC/CNN

BTS [49] 0.22 s Encoder-decoder
VNL [48] 0.25 s Auto-decoder
DeepV2D [50] 0.36 s CNN
ACAN [46] 0.89 s Encoder-decoder
VOMonodepth [53] 0.34 s CNN
LSIM [51] 0.54 s CNN
GASDA [54] 0.57 s Encoder-decoder
DenseDepth [47] 0.35 s Encoder-decoder
monoResMatch [38] 0.37 s CNN
EMDEOM [32] 0.63 s FC
DORN [18] 0.98 s Encoder-decoder
PackNet-SfM [52] 0.97 s CNN
monodepth2 [42] 0.56 s CNN

An additional set of methods are studied and compared as presented in Appendix A. These
methods are evaluated on either KITTI [31] or NYU-v2 [29] datasets and the comparison includes
the parameter counts, depth accuracy measured using RMSE metric, memory requirement and
training environment. All the methods in Appendix A, Table A1 are compared with the state-of-the-art
monocular depth estimation methods. These methods are categorized as of low accuracy with expensive
computational time and slow convergence rate which led us to exclude them from this survey.

Due to the technical complications with the publicly available codes and lack of instructions,
we were not able to test all 13 methods for qualitative comparisons. Only five methods were
implemented successfully and validated on NYU-v2 [29] dataset. A few samples of the results are
illustrated in Figure 1. This visual comparison also supports the claim from the previous tables that
DeepV2D [50] marginally outperforms BTS [49] and other methods as it can estimate smoother depth
maps with sharper boundaries, less artifacts and relative scale.
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5. Discussion

Monocular depth estimation plays a crucial role in understanding 3D scene geometry in many
applications. A single 2D image may be produced from an infinite number of distinct 3D scenes,
which is a classical monocular depth estimation approach. The classical monocular depth estimation
methods utilise meaningful monocular cues, such as perspective and texture information, objects size,
object locations and occlusions, resulting in an undesirable low-resolution depth prediction. Recently,
deep learning methods significantly improved the performance of the monocular depth estimation
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methods by exploring image-level information and hierarchical features in the network. However,
these methods employ repeated spatial pooling operations. To obtain high-resolution depth maps,
skip connection-based networks are required, however, these methods tend to make the training
process complicated and require more computational time. To target these issues, CNN based transfer
learning methods were employed resulting in high-quality depth estimation. In general, deep-learning
methods achieved outstanding results, however, they require a large amount of data labelled with
precise depth measurements for training. The introduction of different methodologies and architectures
such as local planar guidance layers (LPGL), multi-layer deconvolutional networks and atrous spatial
pyramid have moved the performance of these models to the next level.

5.1. Comparison Analysis Based on Performance

I. Degree of supervision: most of the methods demonstrated in this paper require ground
truth depth images for training. These supervised methods perform well and most of them are
state-of-the-art on common benchmarks. Methods such as DeepV2D [50], BTS [49] and VNL [48]
showed a much faster performance time compared to the other models. On the other hand, VNL [48],
ACAN [46] and EMDEOM [32] provides the depth information with much lower resolution compared
to the state-of-the-art. Unlike VNL [48], DORN [18] has the highest number of parameters in the
supervised category and it requires a high number of operations making it an inefficient choice for
real-life applications.

Obtaining large datasets of RGB images with accurate ground truth depth images is a challenging
task. As such, methods that do not require full supervision (labelled ground truth) are more
attractive. Methods such as LISM [51], monoResMatch [38], PackNet-SfM [52] and monodepth2 [42]
are self-supervised methods. Although most of these methods can generate high resolution depth
maps with comparable accuracy against the state-of-the-art, they are computationally expensive and
require a significant amount of memory.

II. Accuracy and depth range: based on our evaluations, DeepV2D [50] marginally achieved the
best performance compared to BTS [49] and the rest of the methods. On KITTI [31] dataset the model
achieved 2.005 RMSE and threshold accuracy of 0.977 with δ < 1.253. On NYUD-v2 [29] dataset it
achieved 0.403 RMSE and threshold accuracy of 0.996 with δ < 1.253. As shown in Tables 4 and 5,
methods with 3D geometry constraint or features, outperform the others, which shows the importance
of high order 3D geometric constraints for depth estimation.

The evaluation of BTS [49], DORN [18], VNL [48], DenseDepth [47] and VOMonodepth [53]
indicated that supervised learning approaches achieved better results compared to semi and
self-supervised methods.

III. Computation time and memory: based on the comparisons presented in Tables 3–6, VNL [48]
significantly reduced the computational time and memory footprint, which can be used for both quality
and low-cost monocular depth estimation.

The advancement of deep-learning methodologies suggests that cameras may become a
competitive source of reliable 3D information. Compared to the conventional method, these models
have the potential to be optimised for deployment on smart and consumer platforms.

These methods are composed in two ways: feature extraction which is done in encoder part using
the powerful pre-trained models such as VGG [67], ResNet [57] or DenseNet [61], while the desired
depth prediction is obtained using the decoder network architecture.

5.2. Future Research Directions

Over the past couple of years, deep-learning approaches have shown a significant improvement
in the performance of monocular depth estimation. The topic is still in its infancy and further
developments are yet to be expected. In this section, we present some of the current directions and
issues for further future research.



Sensors 2020, 20, 2272 11 of 16

1. Complex deep networks are very expansive in terms of memory requirements, which is a major
issue when dealing with high-resolution images and when aiming to predict high-resolution
depth images.

2. Developments in high-performance computing can address the memory and computational
issues, however, devolving lighter deep network architectures remains desirable especially if it is
to be deployed in smart consumer devices.

3. Another challenge is how to achieve higher accuracy, in general, which is affected by the
complex scenarios, such as occlusions, highly cluttered scenes and complex material properties of
the objects.

4. Deep-learning methods rely heavily on the training datasets annotated with ground truth labels
for depth estimation which is very expansive to obtain in the real world.

5. We expect in the future to see the emergence of large databases for 3D reconstruction. Emerging
new self-adoption methods that can adapt themselves to new circumstances in real-time or with
minimum supervision are one of the promising future directions for research in depth estimation.

This paper provided a preliminary review of the recent developments in monocular depth
estimation using deep-learning models. Regardless of its infancy, these methods are achieving
promising results, and some of these methods are competing, in terms of accuracy of the results, with
the traditional methods. We have entered a new era where deep learning and data-driven techniques
play an important role in image-based depth estimation.
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Appendix A

Low-Performance Monocular Depth Estimation Methods

Table A1 summarizes the monocular depth estimation methods in terms of parameter counts,
depth accuracy measured using RMSE metric, memory requirement and training environment. These
methods are categorized as low accuracy with slow convergence rate and are excluded from this survey.
All the numbers presented in this table are reported by the respective authors.

Table A1. Properties of the low-accuracy methods trained on either KITTI or NYU-v2 datasets. (FC: fully
convolutional, ED: encoder-decoder, AD: auto-decoder, K: trained on KITTI dataset, N: trained on
NYU-v2 dataset and CNN: convolutional neural networks).

Method Input Type Optimizer Parameters Output GPU
Memory RMSE GPU Model

Zhou et al. [70] 128 × 416 K CNN Adam N/A 128 × 416 K N/A 4.975 N/A
Casser et al. [73] 128 × 416 K CNN Adam N/A 128 × 416 K 11 GB 4.7503 1080 Ti

Guizilini et al. [74] 640 × 192 K FC Adam 86M 640 × 192 K N/A 4.601 N/A
Godard et al. [15] 640 × 192 K FC Adam 31M 640 × 192 K 12 GB 4.935 TITAN Xp
Eigen et al. [33] 640 × 184 K CNN Adam N/A 640 × 184 6 GB N/A TITAN Black

Guizilin et al. [75] 640 × 192 K ED Adam 79M 640 × 192 8× 16 GB 4.270 Tesla V100
Tang et al. [76] 640 × 192 K CNN RMSprop 80M 640 × 192 12 GB N/A N/A

Ramamonjisoa et al. [40] 640 × 480 N ED Adam 69M 640 × 480 N 11 GB 0.401 1080 Ti
Riegler et al. [39] N/A ED Adam N/A N/A N/A N/A N/A

Ji et al. [37] 320 × 240 N ED Adam N/A 320 × 240 N 12 GB 0.704 TITAN Xp
Almalioglu et al. [77] 128 × 416 K GAN RMSprop 63M 128 × 416 K 12 GB 5.448 TITAN V

Pillai et al. [41] 128 × 416 K CNN Adam 97M 128 × 416 K 8× 16 GB 4.958 Tesla V100
Wofk et al. [24] 224 × 224 N ED SGD N/A 224 × 224 N N/A 0.604 N/A

Watson et al. [78] 128 × 416 K ED SGD N/A 128 × 416 K N/A N/A N/A
Chen et al. [79] 256 × 512 K ED Adam N/A 256 × 512 K 11 GB 3.871 1080 Ti
Lee et al. [80] 640 × 480 N CNN SGD 61M 640 × 480 N N/A 0.538 N/A
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