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Abstract
Telomeres, the protective ends of linear chromosomes, shorten throughout an
individual’s lifetime. Telomere shortening is a hallmark of molecular aging and
is associated with premature appearance of diseases associated with aging.
Here, we discuss the role of telomere shortening as a direct cause for aging
and age-related diseases. In particular, we draw attention to the fact that
telomere length influences longevity. Furthermore, we discuss intrinsic and
environmental factors that can impact on human telomere erosion. Finally, we
highlight recent advances in telomerase-based therapeutic strategies for the
treatment of diseases associated with extremely short telomeres owing to
mutations in telomerase, as well as age-related diseases, and ultimately aging
itself.
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Telomere structure, function and maintenance
Telomeres are heterochromatic structures located at the ends of 
linear chromosomes formed by DNA tandem repeats bound by 
specialized protein complexes, which exert a protective function. 
A proper telomere structure prevents chromosome ends from 
being recognized as DNA strand breaks, thus preventing illegiti-
mate homologous recombination between telomeres as well as 
chromosome end-to-end fusions1. In vertebrates, telomeric DNA is 
composed of up to thousands of TTAGGG hexanucleotide repeats 
that are bound by a six-protein complex known as shelterin, which 
encompasses TRF1, TRF2, POT1, TIN2, TPP1, and RAP12. TRF1 
and TRF2 directly bind double-stranded telomeric repeats, whereas 
POT1 recognizes the single-stranded telomeric G-rich 3’ overhang. 
TIN2 binds to TRF1 and TRF2 through distinct domains and also 
recruits a TPP1-POT1 heterodimer, thus bridging different shelter-
ins to organize the telomere cap2. Finally, RAP1 is recruited to tel-
omeres by TRF2, but can also bind throughout chromosome arms to 
regulate transcription, playing an important role in protection from 
obesity and metabolic syndrome in mice3–5. Interestingly, all shel-
terins except RAP1 are essential for life6–8, owing to the fact that 
RAP1 is the only shelterin dispensable for telomere protection3,9,10.

Telomeres are proposed to be further stabilized by the formation 
of a protective T-loop lariat structure. The single-stranded 3’ over-
hang loops back and invades double-stranded telomeric DNA in a 
TRF2-dependent manner11,12. Thus, the T-loop sequesters the ends 
of chromosomes and provides a mechanism to prevent the full acti-
vation of a DNA damage response typically observed at most types 
of DNA ends13.

Importantly, owing in part to the so-called “end replication 
problem”, telomeres shorten during each cell duplication cycle due 
to the inability of replicative DNA polymerases to fully replicate 
the 3’ ends of linear chromosomes14,15. In particular, the removal 
of RNA primers, which provide the required 3’OH group for addi-
tion of dNTPs by DNA polymerases, renders the newly synthesized 
DNA strand shorter than the parental template. Thus, chromosomes 
progressively shorten from both ends upon repeated cell division, a 
process which in the context of the organism contributes to progres-
sive telomere shortening with aging in all cell types where it has 
been studied16. When telomeres reach a critically short length they 
are detected by the DNA repair systems as DNA damage and elicit 
cell cycle arrest and cell death responses17. Thus, telomere shorten-
ing underlies the “molecular clock” proposed by Hayflick to explain 
the limited lifespan of cells in culture, or “Hayflick limit”17,18.

Telomerase is a DNA reverse transcriptase polymerase (telomerase 
reverse transcriptase [TERT]) which uses an RNA template (telom-
erase RNA component [TERC]) for de novo addition of telomeric 
DNA onto telomeres, thus compensating for the telomere erosion 
caused by cell divisions19. Indeed, overexpression of telomerase is 
sufficient to counteract telomere attrition and to indefinitely extend 
the replicative lifespan of primary cells in culture in the absence 
of genomic instability, transforming them into cancerous cells20–22. 
However, high telomerase expression is normally restricted to early 
stages of embryonic development (i.e. the blastocyst stage in mice 
and humans) and to pluripotent embryonic stem cells23,24. Thus, 
adult mammalian tissues including adult stem cell compartments 

do not express sufficient amounts of telomerase to maintain tel-
omere length throughout organismal lifespan. Consequently, tel-
omere shortening occurs along with physiological aging in humans 
and mice and this process is proposed to underlie aging and 
age-associated diseases as well as organismal longevity25,26.

In addition to the core components TERT and TERC, the telomer-
ase holoenzyme further consists of the accessory dyskerin complex 
composed of the proteins DKC1, NOP10, NHP2, and GAR127,28, 
which also play essential roles in telomere biology. Holoenzyme 
assembly is thought to occur in the Cajal bodies29, and subsequently 
TCAB1 and TPP1 are required for proper trafficking of telomerase 
to telomeres. Moreover, the discovery of a long non-coding telom-
eric repeat-containing RNA, TERRA30,31, which has been proposed 
to regulate various aspects of telomere function, adds yet another 
level of complexity to telomere regulation32,33. Another crucial issue 
in telomere stability and maintenance is the replication of telomeric 
DNA, for which a myriad of proteins are required. Key factors in 
telomeric DNA replication are the CST complex (comprising the 
proteins CTC1, STN1, and TEN1)34,35, which facilitates telomere 
replication and simultaneously limits telomerase activity. WRN is 
a helicase with 3′ to 5′ exonuclease activity, which is also required 
for efficient telomere replication36 as well as processing of the 
3’ telomeric overhang37,38. The helicase BLM contributes to tel-
omere stability by resolving late replication structures39, whereas 
FEN1 and RTEL1 function in Okazaki fragment processing40 and 
T-loop disassembly during replication41, respectively. We recently 
published an in-depth review on the role of these proteins in tel-
omere replication including the consequences for telomere mainte-
nance if their function is impaired42.

In this review, we will discuss the role of telomeres in the origin 
of age-associated diseases and organismal longevity, as well as the 
potential use of telomerase as a therapeutic target to delay aging 
and to prevent and treat age-related diseases.

Telomeres as hallmarks of aging and longevity
Aging is a multifactorial process that results in a progressive func-
tional decline at cellular, tissue, and organismal levels. During 
recent years, a number of molecular pathways have been identified 
as main molecular causes of aging, including telomere attrition, cel-
lular senescence, genomic instability, stem cell exhaustion, mito-
chondrial dysfunction, and epigenetic alterations, among others26. 
Interestingly, telomere attrition is considered a primary cause 
of aging, as it can trigger all the above-mentioned hallmarks of 
aging, although the degree to which it is a principal cause of aging 
is under active investigation26. Critical telomere shortening elicits 
the induction of cellular senescence or the permanent inability of 
cells to further divide, which in turn has been proposed to be at 
the origin of different disease states17,43. In addition, telomere attri-
tion in the stem cell compartments results in the exhaustion of their 
tissue- and self-renewal capacity, thus also leading to age-related 
pathologies44,45. Indeed, when this telomere exhaustion occurs 
prematurely owing to germline mutations in telomere mainte-
nance genes (i.e. telomerase or shelterin genes), this triggers a 
premature loss of the renewal capacity of tissues leading to the 
so-called telomeropathies or telomere syndromes, including aplas-
tic anemia and pulmonary fibrosis, among others46–49. Loss of DNA 
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damage checkpoints can also allow the propagation of cells with 
short/damaged telomeres, thus leading to chromosome end-to-end 
fusions and genomic instability, as well as age-associated dis-
eases like cancer50,51. A link between dysfunctional telomeres and 
mitochondrial compromise has been also proposed through tran-
scriptional repression of the PGC-1α and PGC-1β genes by short 
telomeres, thus linking dysfunctional telomeres to mitochondrial 
aging52. Finally, short telomeres can trigger epigenetic changes at 
telomeric as well as subtelomeric chromatin53. In this regard, epi-
genetic regulation of telomeres has been described in processes that 
involve de-differentiation and loss of cellular identity such as during 
tumorigenesis54, as well as during the induction of pluripotency55. 
In particular, loss of heterochromatic marks at telomeres results in 
telomere elongation and increased telomere recombination53.

Of note, in addition to the persistent DNA damage response elicited 
by critically short telomeres, it recently became evident that a large 
proportion of DNA damage in stress-induced senescence resides 
in telomeres. Importantly, this DNA damage is independent of tel-
omere length and accumulates with aging in primates and mice, 
suggesting that stress-induced and telomere length-independent 
senescence may contribute to the aging process too56,57.

In addition to being considered a primary molecular cause of 
aging, telomere shortening with time has been proposed to be a 
biomarker of biological aging, with a potential prognostic value 
for many different age-associated diseases, including cardiovas-
cular failure58–64. Interestingly, telomere length has also been pro-
posed as a marker of longevity. A study longitudinally following 
telomere length throughout the lifespan of individual zebra finches 
demonstrated that telomere length at day 25 after birth is a strong 
predictor of individual lifespan in this species65. In mice, a simi-
lar longitudinal follow up of telomere length throughout lifespan 
showed the rate of increase of short telomeres with time but not 
average telomere length or the rate of telomere shortening was pre-
dictive of individual lifespan66. This study also showed for the first 
time that laboratory wild-type mice shortened telomeres at a pace 
that was 100-fold faster than humans, thus providing a potential 
explanation for shorter lifespans in mice (2–3 years) compared to 
humans, in spite of their long telomere length at birth (~50–150 kb 
in mice versus ~15–20 kb in humans)67,68. A similar scenario was 
found in dogs, where telomere shortening has been described to 
be 10-fold faster than in humans69. These findings suggest that it 
is the ability of different species to maintain telomeres rather than 
average telomere length per se that may be determinant of species 
longevity. This idea is further supported by longitudinal studies in 
free-living birds. In particular, in Seychelles warblers, telomeres 
shorten throughout life and higher rates of telomere shortening 
predict mortality70. Similarly, survival in jackdaws can be pre-
dicted by nestling telomere shortening but not by absolute telomere 
length71.

Additional and independent evidence that the ability to maintain 
telomeres may determine mouse longevity came from the descrip-
tion of an age-specific metabolic signature predictive of chrono-
logical age in wild-type mice72. In particular, when this signature 
was used to predict the age of either telomerase-deficient or TERT-
overexpressing mice, it predicted older or younger ages than their 

chronological age, respectively, in agreement with shorter telom-
eres and shorter lifespan in the telomerase-deficient mice, and 
longer telomeres and extended lifespan in the TERT-overexpressing 
mice72, thus suggesting that telomere length is a determinant of 
aging in wild-type mice.

In humans, a large number of cross sectional epidemiological 
studies confirmed telomere shortening with aging in humans16,73. 
Recently published data from the GERA cohort (Genetic Epidemi-
ology Research on Adult Health and Aging), which comprises more 
than 100,000 individuals, further confirmed this correlation and 
also showed that telomere length correlates positively with survival 
in subjects older than 75, i.e. longer telomeres provide more years 
of life74. This is in agreement with a previous report showing that 
telomere length positively correlates with better median survival in 
individuals who are 60 years of age or older75. However, contra-
dictory reports exist which do not support the correlation between 
average telomere length and the prediction of remaining years of life 
in the old and oldest76,77. In this regard, lessons from other species 
(mice, birds) show the importance of determining not only average 
telomere length but also longitudinal changes in telomere length as 
well as changes in the abundance of short telomeres. Thus, future 
epidemiological studies should take individual telomeres and their 
change over time into account (i.e. the rate of increase of the frac-
tion of short telomeres). In this regard, methods that can quantify 
the presence of short telomeres, like the high-throughput quantita-
tive telomere fluorescence in situ hybridization (FISH) technique58 
or single telomere length analysis (STELA)78 will be important for 
establishing telomere shortening as a biomarker of human aging.

Intrinsic and environmental instigators of telomere 
length
As mentioned above, there are differences in the pace of telomere 
shortening across species, which indeed may contribute to explain-
ing their different longevities, at least in part. The average telomere 
shortening in human blood cells occurs at a rate of 31–72 base 
pairs per year79,80 while mouse telomeres shorten around a hundred 
times faster than that66. This indicates that, in addition to the intrin-
sic end replication problem, there are other factors contributing to 
telomere attrition. In particular, oxidative damage may severely 
impact on telomere length. Cells exposed to oxidative stress condi-
tions (e.g. H

2
O

2
, chronic hyperoxia) display accelerated telomere 

shortening and reduced replicative lifespans, whereas antioxidant 
treatment has the opposite effect81. In humans, the choice of life-
style can influence telomere shortening. As an example, smoking, 
an unhealthy diet (e.g. high cholesterol, alcohol intake), or obesity 
might lead to telomere shortening by provoking tissue inflamma-
tion and oxidative stress82–87. Moreover, accelerated telomere short-
ening in leukocytes has been associated with psychological stress. 
In particular, patients with depression disorders have shorter telom-
eres compared to healthy individuals88, and this telomere erosion 
is found in all lymphocyte subpopulations of the adaptive immune 
system89. Stress provoked by physical abuse of children has been 
also associated with telomere shortening90. Furthermore, there is a 
wealth of studies investigating telomere length in major depressive 
disorder (MDD), a severe illness which shows signs of premature 
aging60,91,92. In particular, it has been described that telomere length 
in MDD subjects corresponds to a 10-year increase in biological 
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age93 compared to healthy subjects. In line with this, increased 
abundance of short telomeres in patients with bipolar II disorder 
has also been described to correspond to a 13-year older biological 
age, again in agreement with increased risk for developing different 
diseases in these patients94. Interestingly, shorter telomeres are also 
associated with cognitive impairment in the elderly58.

In contrast to the detrimental factors causing accelerated telomere 
shortening, certain life habits (e.g. a diet rich in omega-3 fatty 
acids)81,95, as well as physical activity, exercise, and fitness, have 
been proposed to reduce telomere erosion and thus slow down the 
pace of aging96–98.

In addition to these various intrinsic and environmental factors, 
telomere length is also dictated by a genetic component. Earlier 
twin and family studies and a recent meta-analysis comprising 
nearly 20,000 subjects demonstrate that telomere length is highly 
heritable79,99–101. Whether the inheritance of telomere length cor-
relates more strongly with paternal or maternal telomere length, 
however, is still debated102. Interestingly, in another twin study 
Christensen and colleagues reported that the perceived age in twins 
older than 70 years of age is a robust biomarker of aging which 
strongly correlates with telomere length. Moreover, within twin 
pairs, the twin with greater telomere length tends to look younger 
and live longer103.

Genetic models to understand the causal role of 
telomeres in disease and longevity
Firm experimental demonstration that critical telomere shorten-
ing is causative of aging was first achieved by generating mice 
deficient for telomerase. Mice deficient for TERC have progres-
sively shorter telomeres over generations, leading to chromosome 
instability, developmental defects, premature aging phenotypes, 
and ultimately mouse infertility and premature death104–106. These 
mice show a decreased median and maximum lifespan already 
at the first generation107, and this decreased longevity and associ-
ated aging pathologies are anticipated with each mouse genera-
tion, thus demonstrating that telomere length in mice is causal of 
aging and longevity. Importantly, restoration of TERC expression 
in mice with inherited critically short telomeres is sufficient to pre-
vent the phenotypes associated with short telomeres in these mice, 
including aplastic anemia, intestinal atrophy, and infertility, among 
others108,109. In agreement with these pioneer studies, genetic abla-
tion of TERT was shown to have similar consequences on organis-
mal aging and lifespan110,111. Furthermore, TERT reconstitution in 
late generation TERT-deficient mice also led to telomere elongation, 
lower DNA damage load, and reversal of degenerative phenotypes 
in these mice112. In line with these findings, lack of telomerase in 
lower vertebrates such as the zebrafish also causes premature aging 
which can be rescued by either telomerase restoration or inhibition 
of p53, which signals telomere damage113. Together, these findings 
demonstrate that short telomeres are causative of aging and that 
premature aging specifically induced by telomerase deficiency and 
short telomeres can be rescued by telomerase re-expression.

In line with mouse studies, a number of human syndromes were 
later described to be caused by germ line mutations in telomerase 
and shelterin genes, the so-called telomere syndromes47. As in the 

telomerase-deficient mouse model, the diseases associated with  
telomerase mutations are anticipated with increasing generations 
and involve a loss of the ability of tissues to regenerate, resulting 
in skin abnormalities, aplastic anemia, or pulmonary fibrosis46,47. 
These analogies between humans and mice highlight that telomere 
length as a genetic determinant of disease and longevity is a molec-
ular mechanism conserved in these species.

However, definitive genetic demonstration that telomere length is 
also causative of physiological aging in normal individuals first 
came from telomerase overexpression studies in mice. In particular, 
mice with increased transgenic telomerase expression throughout 
their lifespans were able to maintain longer telomeres with aging, 
showed decreased molecular (i.e. lower DNA damage) and physi-
ological biomarkers of aging, showed a delayed appearance of 
age-related pathologies (osteoporosis, metabolic decline, etc.), and 
showed a significant increase in organismal longevity. In particular, 
transgenic TERT overexpression in mice engineered to be cancer 
resistant resulted in decreased incidence of aging-related patholo-
gies and a striking 40% extension of median survival compared to 
wild-type mice114. This study demonstrated for the first time in any 
organism the anti-aging activity of telomerase. Importantly, these 
findings led to the idea that potential therapeutic strategies based 
on transiently increased telomerase expression could also delay 
age-associated pathologies and increase longevity. This was first 
achieved by delivering TERT using non-integrative gene therapy 
vectors (adeno-associated vectors [AAVs]) into middle-aged and 
old mice, which resulted in transiently increased TERT expression 
in the majority of mouse tissues. Importantly, a single treatment with 
these vectors resulted in elongated telomeres in a range of organs, 
delayed age-associated pathologies, and significantly extended 
median and maximal lifespan in both age groups115. Moreover, 
these mice did not show increased cancer; instead, as seen in other 
age-related conditions, cancer was also delayed115. Thus telomere-
based gene therapies using non-integrative vectors may represent 
a new therapeutic strategy to transiently activate TERT for the 
prevention or treatment of many different age-related pathologies 
(see below).

Telomeres and Telomerase as therapeutic targets
A substantial number of companies are now aiming to harness the 
knowledge that has been generated, unveiling the molecular mecha-
nisms of aging in order to develop a new class of drugs to prevent 
and treat the major age-related diseases116. In this regard, telomerase 
overexpression studies in mice have been proof of principle that just 
modifying a single hallmark of aging, i.e. telomere shortening, this 
was sufficient to delay not one but many different age-associated 
pathologies in mice, including cognitive decline114,115. Indeed, the 
use of telomerase activation in delaying aging-associated con-
ditions has spurred the interest of commercial enterprises. For 
instance, the low-potency telomerase activator TA-65 (a bio-active 
compound isolated from the herb Astragalus membranaceus) has 
been shown to lead to a mild increase in telomere length in mice117, 
zebra finches118, and humans119, and to improve several aging- 
related parameters in mice and humans117,119, although no increase 
in longevity has been reported in longitudinal mouse studies117. On 
the other hand, other natural compounds like sex hormones have 
been found to activate TERT at the transcriptional level120–122. In this 
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regard, androgen therapy has been applied as a first-line treatment 
in aplastic anemia for decades with mixed success and without a 
clear understanding of the mechanism that underlies remission in 
some patients but not in others123,124. A recent study in mice which 
develop full-blown aplastic anemia provoked by short telomeres 
showed that androgen therapy rescues telomere attrition and sub-
sequent death from aplastic anemia122, indicating that telomerase 
activation may indeed be a treatment option for diseases associated 
with flawed telomere maintenance (i.e. telomeropathies or telomere 
syndromes). However, potential off-target effects of compounds 
that activate TERT at a transcriptional level should be a concern. 
In particular, TA-65 has been shown to activate TERT through 
activation of mitogenic pathways that lead to the activation of the 
oncogene c-myc117,125 and thus may drive cancer. Interestingly, such 
off-target effects may be circumvented through direct delivery 
of TERT, such as by means of systemic gene therapy using non- 
integrative AAV vectors, which showed a significant delay of age-
related pathologies in mice and increased longevity115. A recent 
study using fibroblasts in vitro also proposed delivery of the TERT 
mRNA as a way to activate telomerase126. However, it should be 
mentioned that strategies for telomerase activation, indirect or 
direct, have raised safety concerns due to the close correlation of 
most cancers and constitutive reactivation of endogenous telomer-
ase. This highlights that, in addition to proof-of-concept studies in 
mice, the development of safe strategies for transient and control-
lable telomerase activation in humans should be a future goal.

In this regard, TERT gene therapy with AAVs is particularly attrac-
tive for TERT activation, since the non-integrative and replication-
incompetent properties of AAVs allow for cell division-associated 
telomere elongation and subsequent loss of TERT expression as 
cells divide, thus restricting TERT expression to a few cell divisions. 
Thus, this strategy assures a transient and relatively genome-safe 
TERT activation. In contrast, the use of TERT mRNA currently 
lacks appropriate systems for in vivo delivery, and thus its use may 
be restricted to ex vivo applications.

It is likely that the first clinical use of a TERT-based therapy, such 
as the TERT gene therapy approach developed by us, will be for 
the treatment of the human telomere syndromes, including aplastic 
anemia and pulmonary fibrosis. However, this requires the develop-
ment of appropriate preclinical models and the subsequent clinical 
trials in humans. In this regard, we have recently generated two 
mouse models which recapitulate the clinical features of aplastic 
anemia127 and pulmonary fibrosis128. The disease in both models is 
provoked by short and dysfunctional telomeres and thus these mod-
els provide a platform for further testing of TERT-based treatment 
strategies for the telomere syndromes.

Given that physiological aging is provoked, at least in part, by tel-
omere shortening, a TERT gene therapy may be used not only for 
the prevention and treatment of telomere syndromes but also for 
the treatment of multiple age-related diseases. In this regard, short 

Figure 1. Telomeres in aging and disease. Telomere shortening is a life-long process that is influenced by a number of intrinsic and 
environmental factors that either accelerate or slow down natural telomere attrition, which causes aging and the emergence of age-related 
diseases. The identification of telomere shortening as a driver of molecular aging has triggered the development of telomerase-based 
strategies to (re)elongate telomeres and thus to delay aging and associated disease. Abbreviations: AAV, adeno-associated vectors; TERT, 
telomerase reverse transcriptase.
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telomeres have been extensively associated with a higher risk for 
cardiovascular disease64,129,130. In support of a potential use of TERT 
activation in the treatment of age-related diseases, we demonstrated 
that TERT gene therapy can efficiently rescue mouse survival and 
heart scarring in a preclinical mouse model for heart failure upon 
induction of acute myocardial infarction131.

Collectively, experiments in cell and animal models provide proof 
of concept for the feasibility of telomerase activation approaches to 
counteract telomere shortening and its consequences (Figure 1). In 
particular, the successful use of telomerase gene therapy in animal 
models of aging and short telomere-related diseases paves the way 

for the development of therapeutic telomerase treatments in human 
aging and associated disease.
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Until it is demonstrated that enhanced telomere maintenance delays or reverses age-related pathologies
in humans, it will not be know for certain to what extent telomere dysfunction contributes to natural human
aging.  Nonetheless, the current evidence, as reviewed by Bar and Blasco, does suggest that targeting
telomeres will prove to be helpful for the amelioration of age-related diseases.
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