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1  |   INTRODUCTION

Breast cancer (BC) is the most common malignancy 
among women patients worldwide.1,2 With the advances 
achieved in early diagnosis and effective management of 
primary tumors, the overall survival of BC has increased 
in recent decades whereby metastases have become the 

leading cause of death.3 Bone is a common site of metas-
tases, and BC is one of the most common cancers to form 
metastatic bone lesions.4 Most of bone metastases of BC 
patients were osteolytic, which could cause skeletal‐re-
lated events (SREs) including bone destruction, pathologi-
cal fractures, hypercalcemia, and spinal cord or nerve root 
compression.5,6 Once bone metastases were diagnosed, the 
overall survival of BC patients decreased dramatically and 
median life expectancy dropped to 2‐3 years.4,7 Current 
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Abstract
Breast cancer is prone to form bone metastases and subsequent skeletal‐related 
events (SREs) dramatically decrease patients’ quality of life and survival. Prediction 
and early management of bone lesions are valuable; however, proper prognostic 
models are inadequate. In the current study, we reviewed a total of 572 breast cancer 
patients in three microarray data sets including 191 bone metastases and 381 metas-
tases‐free. Gene set enrichment analysis (GSEA) indicated less aggressive and low‐
grade features of patients with bone metastases compared with metastases‐free ones, 
while luminal subtypes are more prone to form bone metastases. Five bone metasta-
ses‐related genes (KRT23, REEP1, SPIB, ALDH3B2, and GLDC) were identified 
and subjected to construct a gene expression signature‐based nomogram (GESBN) 
model. The model performed well in both training and testing sets for evaluation of 
breast cancer bone metastases (BCBM). Clinically, the model may help in prediction 
of early bone metastases, prevention and management of SREs, and even help to 
prolong survivals for patients with BCBM. The five‐gene GESBN model showed 
some implications as molecular diagnostic markers and therapeutic targets. 
Furthermore, our study also provided a way for analysis of tumor organ‐specific 
metastases. To the best of our knowledge, this is the first published model focused on 
tumor organ‐specific metastases.
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treatment options for BC bone metastases (BCBM) are sel-
dom curative and are instead mostly palliative.8 Surgical 
resection and stabilization are effective for solitary le-
sions; however, patients with multiple metastases or bad 
general conditions are not suitable for surgical interven-
tions.9 Therefore, prediction and early detection of BCBM 
are valuable.

Breast cancer is a molecularly heterogeneous disease 
which similar tumors form different clinical outcomes and 
metastases patterns.10 Smid et al11 reported that different 
subtypes of BC show different preferential sites of relapse; 
bone relapse were most abundant in the luminal subtypes 
but were found less than expected in the basal subtype. 
Effective therapeutic intervention relies on a better mech-
anistic understanding of metastasis organotropism. Kang 
et al12 revealed a complex but sophisticated multi‐genic 
program mediating breast cancer metastasis to bone, while 
Zhuang et al13 reported that BCs with high expression of 
DKK1 are prone to form bone metastases while low ex-
pression of DKK1 correlated with lung metastases. All 
these findings indicated that the gene expression patterns 
of primary tumor could predict patients’ prognosis or bone 
metastases to a certain extent.

The high‐throughput microarrays have emerged as 
a promising and efficient tool for studies of the com-
plex pathogenesis of human diseases including cancer. 
Meanwhile, repurposing and collected analyzing of mi-
croarray data for reveal of tumor formation mechanisms 
and survival prediction are well established. Guo et al14 
collected four publically available gene expression datasets 
including 319 colorectal cancer and 103 normal tissues, 
and successfully identified critically functional genes and 
pathways in tumor progression. Pan et al15 constructed a 
five‐gene‐based prognostic model for colorectal cancer 
based on four gene expression datasets while Meng et al16 
constructed a four‐long non‐coding RNA signature in pre-
dicting breast cancer survival based on 887 patients from 
three microarray datasets.

In the current study, we reviewed a total of 572 BC pa-
tients in three microarray datasets including 191 bone me-
tastases and 381 metastases‐free. One hundred and one 
differentially expressed genes (DEGs) were identified, 21 
of which are highly correlated with bone metastases. With 
the random survival forests algorithm and multivariate Cox 
regression analysis, we constructed a five‐gene (KRT23, 
REEP1, SPIB, ALDH3B2, and GLDC) expression signature‐
based nomogram (GESBN) model. The stratification based 
on the prognostic value of the GESBN model was further val-
idated in the two independent testing sets. Altogether, these 
results indicated the potential value of our model for clini-
cal evaluation and prediction of bone metastases. To the best 
of our knowledge, this is the first organ‐specific prediction 
model for tumor metastases.

2  |   MATERIALS AND METHODS

2.1  |  GEO breast cancer gene expression 
data
Breast cancer microarray datasets were obtained from the 
Gene Expression Omnibus (GEO; http://www.ncbi.nlm.nih.
gov/geo/). The datasets with more than 50 primary breast tu-
mors characterized with bone metastases information were 
selected for further analyses. Dataset with GEO accession 
number GSE12276 (platform GPL570) was used as a train-
ing set to identify DEGs between bone metastases and bone 
metastases‐free patients.17 While GSE2034 and GSE2603 
(platform GPL96) were used as testing sets for independent 
validation.18,19

2.2  |  Gene set enrichment analysis (GSEA)
Gene set enrichment analysis was performed by the javaG-
SEA Desktop Application (http://software.broadinstitute.
org/gsea/downloads.jsp) using MSigDB C2: curated gene 
sets (4762 gene sets available). Gene sets with a false dis-
covery rate (FDR) value <0.05 after performing 1000 per-
mutations were considered to be significantly enriched.20 
Enrichment Map was used for visualization of the GSEA 
results.

2.3  |  Microarray data 
processing and nomogram generation
All downloaded microarray data were processed by R soft-
ware version 3.5.0 using packages from Bioconductor 
(https://cran.r-project.org/src/base/R-3/R-3.5.0.tar.gz). Raw 
data were first normalized using the robust multi‐array av-
erage (RMA) method.21 Annotations for probe arrays were 
downloaded from the GEO database. The genes shared by 
both the training and validation datasets were selected for 
further analyses. DEGs between bone metastases and metas-
tases‐free patients in the training set were identified and con-
firmed for bone metastases‐free survival (BMFS) analysis. 
The random survival forests model was then used to identify 
candidates by their relative importance. By multivariate Cox 
regression analysis, five genes were identified as independ-
ent prognostic factors for BCBM and a gene expression sig-
nature‐based nomogram (GESBN) model was constructed 
for prediction of BCBM.

2.4  |  Statistical analysis
The association between the filtered DEGs and BMFS was as-
sessed by univariate Cox regression analysis in the training set. 
Twenty‐one genes with P value <0.05 were considered as sig-
nificant ones. These genes were further subjected to the random 
survival forests model. With a cut‐off of relative importance 
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>0.5, eight genes were selected and incorporated into the mul-
tivariate Cox regression model, five of which were finally iden-
tified as independent factors for BCBM. Receiver operating 
characteristic (ROC) curves were drawn and area under curves 
(AUC) were calculated for each gene and their combination.

We then constructed a GESBN model for prediction of 
BCBM based on the five genes. The performance of the no-
mogram was measured by concordance index (C‐index). All 
patients in the training and testing sets were assigned with a 
GESBN score and further divided into high‐risk and low‐risk 
groups using the median score as the cut‐off. Patients having 
higher scores are expected to have higher risks of bone metasta-
ses. Differences of BMFS between groups were compared using 
the Kaplan‐Meier method. The prediction accuracy of nomo-
gram was further assessed by calibration plots for the proba-
bility of survival at 3‐ or 5‐year. All statistical analyses were 
implemented in R software with significance level at 0.05.

3  |   RESULTS

3.1  |  Characteristics of breast cancer bone 
metastases
A total of 572 breast cancer patients, consisting of 204 in the 
GSE12276 training set, 286 in the GSE2034 testing set and 
82 in the GSE2603 testing set, were included in the current 
studies (Detailed in Table S1). One hundred and eleven pa-
tients in the training set and 80 in the testing set suffered bone 
metastases. The incidence of bone metastases ranges from 
13.4% to 54.4% across datasets.

To further reveal characteristics of BCBM, we performed 
the GSEA between bone metastases and metastases‐free pa-
tients in the training set, and observed an Estrogen receptor 
(ESR) activated and the Luminal subtype signatures were 
closely associated with BCBM (Figure 1A,B), in accordance 
with published literatures that the luminal subtypes are more 
prone to form bone metastases.10,11 Meanwhile, these results 
indicated that bone metastases more frequently occurred in less 
aggressive and low‐grade patients (Figure 1C,D and Figure S1).

3.2  |  Construction of the gene expression 
signature‐based nomogram model
With the threshold of P < 0.05 and [logFC] >1, 101 DEGs 
were identified in the training set including 56 up‐regulated 
and 45 down‐regulated genes (detailed in Table S2). Volcano 
plots and heat maps of the 101 DEGs are shown in Figure 2. 
DEGs were further subjected to the univariate Cox propor-
tional hazard regression model and 21 survival‐related DEGs 
were identified (detailed in Table S3).

To select the most weighted genes, we used the random 
survival forest model and ranked these 21 survival‐related 
DEGs by their relative importance (Figure 3A,B and Table 
S4). Eight genes, including PPP1R3C, KRT23, ALDH3B2, 
REEP1, SPIB, CLGN, GLDC, and IGHM, were selected as 
the most important candidates (relative importance >0.5) 
and further subjected to the multivariate Cox regression 
model.

Subsequently, KRT23, REEP1, SPIB, ALDH3B2, and 
GLDC were identified as independent prognostic factors for 
BCBM by multivariate Cox regression analysis (Detailed 
in Table S5). Although PPP1R3C had a higher importance 
value than others, it was still not included in the multivariate 
Cox regression model. ROC analysis of the five genes further 
demonstrated their effectiveness in predicting BCBM (Figure 
S2). The BCBM prediction model under the five‐gene sig-
natures showed higher performance in both the training 
(GSE12276) set and testing (GSE2034 and GSE2603) sets 
(Figure 3C) as compared with the model under each of the 
five genes. Therefore, a five‐gene expression signature‐based 
nomogram model (GESBN) was constructed for BCBM pre-
diction (Figure 3D).

3.3  |  Evaluation and validation of the 
GESBN model
We first calculated the GESBN score for each patient in 
the training set. Patients were ranked according to their risk 
scores and divided into two groups as low‐risk and high‐risk 

F I G U R E  1   Gene set enrichment analysis (GSEA) delineates the clinical characteristics of BCBM. Patients with BCBM are characterized as 
ESR activated (A) and the Luminal subtype signature (B). Meanwhile, they showed features of less aggressiveness (C) and low tumor grade (D)
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of bone metastases based on the five‐gene signature (As 
shown in Figure 4A,B). Patients in the high‐risk group had 
significantly shorter bone metastases‐free survival than those 
in the low‐risk group (log‐rank test, P < 0.0001, Figure 
4C,D). The C‐index for BMFS prediction was 0.677. The 
calibration plot for the probability of survival at 3‐ or 5‐year 
showed a good agreement between the prediction by nomo-
gram and actual observation (Figure 4E,F).

To further confirm the predictive value and clini-
cal significance, we calculated the GESBN score for pa-
tients in the two testing sets of GSE2034 and GSE2603. 
Significant differences of BMFS between high‐risk and 
low‐risk groups were observed in both of the two testing 
sets（Figure 5A‐D,G‐J）. Meanwhile, the C‐indices of the 
nomogram for predicting BMFS were 0.689 and 0.695 for 
GSE2034 and GSE2603 respectively. In accordance with 

F I G U R E  2   DEGs between bone metastases and metastases‐free patients. A, Volcano plots showed 56 up‐regulated (red plots) and 45 down‐
regulated (blue plots) genes. B, Heat maps of the 101 DEGs

F I G U R E  3   Construction of the Gene Expression Signature‐Based Nomogram (GESBN) Model. A, Error rate of random survival forests 
algorithm. B, Variable importance of the 21 survival‐related DEGs. C, Receiver operating characteristic (ROC) analysis of the five‐gene signature 
in the training (GSE12276) set and testing (GSE2034 and GSE2603) sets. D, The five‐gene‐based GESBN Model
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the training set, calibration curves also showed good agree-
ment between prediction and observation in the probability 
of 3‐ and 5‐year survival for both sets (Figure 5E‐F,K‐L).

3.4  |  Functional analysis of the two 
prognostic subtypes in breast cancer
Finally, we performed the GSEA analysis between patients 
of high‐risk and low‐risk groups in the training set (Figure 
6 and Figure S3). Patients with high GESBN scores are 
featured with a signature of breast cancer relapse in bone. 
Besides, similar GSEA signatures, such as ESR activation, 
Luminal subtypes and invasive breast cancer signatures are 
well characterized and are in accordance with patients who 
suffered bone metastases (listed in Figure 1 and Figure S1). 
These findings further confirmed the validity and reliability 
of our GESBN model for clinical evaluation and prediction 
of bone metastases.

4  |   DISCUSSION

BC is one of the cancers that most commonly metastasize 
to bone. It is reported that ~50% of patients with advanced 
disease will develop clinically detectable osteolytic bone 
metastases while the incidence increases to over 75% by au-
topsy.22 Luminal subtypes of cancer, which are considered 
of relatively good prognosis, are more prone to form bone 
metastases.10,11 Meanwhile, unlike other sites of metastases, 

such as lung, liver, and brain, bone metastases were consid-
ered as less lethal.23 In the current study, we compared the 
gene set enrichment features of patients with or without bone 
metastases. BCBM owned the Luminal subtype signatures 
and showed less aggressive and low‐grade features. All these 
findings indicated that although suffering bone metastases, 
patients’ tumor is still of low malignancy and the prognosis 
could be better if the bone lesions are well controlled.

Bone lesions seldom lead to death directly. However, the 
survival of patients with BCBM decreased dramatically.24 
The largest barrier to a good outcome in bone metastases is 
the lack of appropriate treatment strategies in management 
with tumor‐induced SREs.25 Bone metastases often present 
as challenges since the therapies, which effectively devel-
oped for primary tumors, are unsatisfying when subjected 
to patients with bone metastases.3 Surgical interventions are 
proved to show some value for survival improvement, while 
patients with multiple lesions are not always suitable for sur-
gery.24 Therefore, identifying risk factors and developing pre-
dictive models of bone metastases for primary tumor patients 
are valuable. By such risk factors and/or models, early detec-
tion and interventions become realistic.

Clinical studies concerning on risk factors of BC bone 
metastases were limited.26 Our previous study identified that 
lymph node metastases and ESR status were independent 
risk factors in predicting BC spine metastases.27 Besides, 
Chen et al28 indicated that axillary lymph node metastases 
and the concentrations of CA125, CA153, ALP, and hemo-
globin were independent risk factors for BCBM. Several 

F I G U R E  4   GESBN Model analysis of Patients in the training set (GSE12276). A, GESBN score distribution. Red line indicated the median 
score. B, Heat map of the five‐gene signature. Patients were arranged by GESBN scores from low incidence to high incidence. C, Bone metastases 
status and survival time. Red line indicated the median score. D, Kaplan‐Meier survival curves between high incidence and low incidence patients. 
E and F, The calibration curves for predicting patient BMFS at 3‐ and 5‐year (Internal verification)
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studies have reported gene signature‐based prognostic pre-
diction models for BC patients by repurposing and analy-
sis of microarray data.29,30 These models were constructed 
based on primary tumor gene expression characteristics and 
concerned about patients’ overall survival or local recur-
rence. However, models in the prediction of bone metasta-
sis are missing. By reviewing a total of 572 BC patients, 
we constructed GESBN model based on five genes for 
prediction of BCBM. To the best of our knowledge, this is 
the first published model for evaluation and prediction of 
tumor organ‐specific metastases based on gene expression 
signatures.

KRT23 is a type I acute‐phase responsive gene and 
was identified to encode a member of the keratin family, 
which serves as the structural proteins in epithelial cells.31 
Previous studies showed that KRT23 knockdown de-
creases proliferation and affects the DNA damage response 
of colon cancer cells, and KRT23 represents a specific, 
stress‐inducible ductular reaction marker.32,33 REEP1 
protein, which is preferentially expressed in neuronal and 
neuronal‐like exocytotic tissues like brain, spinal cord, 
and testes and localized to endoplasmic reticulum (ER) 
and plasma membranes, is a member of a family of ER 
shaping proteins.34,35 It has been found that REEP1 could 

F I G U R E  5   GESBN Model analysis of Patients in the testing set. A‐F, Validation of GESBN model in dataset GSE2034. G‐L, Validation of 
GESBN model in dataset GSE2603
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facilitate mitochondrial‐ER interactions, which may result 
in intracellular Ca2+ overload and axonal damage,36 and 
REEP1 variants were recognized as causes of Neurological 
Disease like hereditary spastic paraplegia (HSP) and dis-
tal hereditary motor neuropathy (dHMN).37 The third gene 
SPIB, encoding an ETS‐domain transcription factor, was 
believed to be associated with cancers especially in lym-
phomas.38,39 Also, Yi‐Jung et al40 found the SPIB may be 
involved in tumorigenesis in live cancer, and Wei et al41 
reported that SPIB is expressed in invasive cancer cells 
in human primary lung cancer tissues. ALDH3B2 was 
widely known as a member of aldehyde dehydrogenases 
(ALDHs).42 It plays a major role in the detoxification of 
aldehydes generated by alcohol metabolism and lipid per-
oxidation and has been implicated as causes of some can-
cers and male infertility.43,44 The last gene GLDC, which 
encodes glycine decarboxylase. It serves as an oncogene 
that promotes tumorigenesis and cellular transforma-
tion.45 Several studies have reported that GLDC was over-
expressed in many cancer cell lines, including ovarian, 
cervical, lung, lymphoma, prostate, and phyllodes cancer 
cell lines.46,47 Moreover, Sabina et al48 found that GLDC 
expression is exploited by malignant tumors for adapting 
their metabolism under hypoxic conditions, thereby being 
associated with aggressiveness.

The five genes were weighted by the multivariate Cox re-
gression model and further subjected to the nomogram scoring 
model. Nomograms have been developed and shown to be more 
accurate than the conventional staging systems for predicting 
prognosis in some cancers.49,50 In the current study, the GESBN 
model performed well in predicting BCBM, and its prediction 
was supported by the C‐index (0.677 for training set and 0.689 
and 0.695 for testing sets, respectively) and the calibration curve.

There are still some limitations in the current study. 
First, the training set and testing sets are of different plat-
forms and only the shared genes (22283 out of 54675) were 
included in the analysis. Therefore, the prognostic genes 
identified here may not represent all the candidates that are 
potentially correlated with BCBM. Secondly, the mecha-
nisms of these five genes in regulation of BCBM remain 

elusive and still require further studies. Finally, although 
recapitulated in two published testing sets, prospective 
clinical trials are still needed for validation. Despite these 
drawbacks, however, the significant and consistent correla-
tion of our GESBN model with BCBM in several indepen-
dent data sets indicates that it is a potential and powerful 
tool for clinical evaluation.

5  |   CONCLUSIONS

In summary, we retrospectively identified five bone me-
tastases‐related genes (KRT23, REEP1, SPIB, ALDH3B2, 
and GLDC) and constructed a gene expression signature‐
based nomogram (GESBN) model for breast cancer pa-
tients by bioinformatics analysis. The model performed 
well in both training and testing sets for evaluation of 
BCBM. Clinically, the model may help in the early pre-
diction of bone metastases, prevention and management of 
SREs, and even prolong survivals for patients with BCBM. 
The five‐gene GESBN model showed some implications 
as molecular diagnostic markers and therapeutic targets. 
Furthermore, our study also provided a way for analysis of 
tumor organ‐specific metastases.
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