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ABSTRACT

The genome of the human hepatitis delta virus
(HDV) harbors a self-cleaving catalytic RNA motif,
the genomic HDV ribozyme, whose crystal
structure shows the dangling nucleotides 5 of the
cleavage site projecting away from the catalytic
core. This 5'-sequence contains a clinically con-
served U—1 that we find to be essential for
fast cleavage, as the order of activity follows
U-1>C-1>A-1>G -1, with a >25-fold activity
loss from U—-1 to G- 1. Terbium(lll) footprinting
detects conformations for the P1.1 stem, the
cleavage site wobble pair and the A-minor motif of
the catalytic trefoil turn that depend on the identity
of the N — 1 base. The most tightly folded catalytic
core, resembling that of the reaction product, is
found in the U -1 wild-type precursor. Molecular
dynamics simulations demonstrate that a U-—1
forms the most robust kink around the scissile
phosphate, exposing it to the catalytic C75 in a
previously unnoticed U-turn motif found also, for
example, in the hammerhead ribozyme and tRNAs.
Strikingly, we find that the common structural
U-turn motif serves distinct functions in the HDV
and hammerhead ribozymes.

INTRODUCTION

Underlying the ability of ribozymes to accelerate site-
specific phosphodiester transfer 10’-fold are many of the
same catalytic strategies that protein enzymes employ
(1-3). For example, general acid—base catalysis (4-11),
an energetic contribution of the 5'-sequence to lowering
the energetic barrier of catalysis (12-14), and global and
local conformational changes around a strained cleavage

site backbone to drive the reaction forward (9,14—17) have
all been proposed to contribute to hepatitis delta virus
(HDV) ribozyme catalysis, essential for double-rolling
circle replication of the human pathogenic HDV (18).

The genomic and antigenomic forms of the HDV
ribozyme catalyze the self-(cis-)cleavage of a specific
phosphodiester bond by a transesterification reaction,
which requires deprotonation of a specific 2’-OH group
and its nucleophilic attack on the adjacent scissile
phosphate. After stabilizing the negative charge of the
5-oxyanion leaving group by protonation, the reaction
generates two products, the 5-sequence with 2,3’-cyclic
phosphate and the 3'-product with 5-OH terminus
(2,19,20). C75 of the trefoil turn motif in joiner J4/2
(Figure 1) is crucial for ribozyme activity as determined by
mutagenesis studies (21-23). Crystallographic studies of
the self-cleaved 3’-product form of the genomic ribozyme
supported the notion of a direct catalytic function of
C75 (4,7). A role of the corresponding nucleotide in the
antigenomic ribozyme form, C76, as a general base
catalyst to activate the 2’-OH group of the —1 nucleotide
(N —1) was suggested by rescue of cleavage in a C76U
mutant by imidazole with an apparent pH dependence
consistent with base catalysis (5). In contrast, the slow
cleavage with inverted pH profile observed for the
genomic ribozyme in the absence of Mg*" and presence
of molar Na* concentrations supported a model in which
C75 acts as the general acid to protonate the 5'-oxyanion
leaving group (6). This residual activity at low pH in
the presence of Na™ was later, however, attributed to the
structurally essential protonation of C41 in a quadruple
interaction buttressing the catalytic core (24).

In contrast to the conformation of the catalytic pocket
in the product crystal structure, the precursor crystal
structure depicts base 75 retracted from the 5-oxygen
leaving group by ~2A (9). Interpreting their new
structure in light of divergent mechanistic models,
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Figure 1. Sequence and structure of the cis-acting genomic HDV ribozyme used in this study. (A) Secondary structure of the genomic HDV ribozyme
with the set of 5-sequences (green) immediately upstream of the cleavage site (open arrow) as employed in our cleavage and footprinting
experiments. Nucleotides in color correspond to important structural elements in the catalytic core. Red dashed lines, functionally relevant tertiary
interactions. (B) Secondary structure of the truncated sequence used in our MD simulations, color coded as in (A). (C) Backbone ribbon
representation of the precursor crystal structure (9), color-coded as in (A and B).

Doudna and co-workers proposed that catalysis occurs
when U — 1 undergoes a rotation, bringing its 2’-OH into
hydrogen-bonding distance with N3 of C75. According
to this model, C75 acts as the general base catalyst to
position and activate the 2’-OH for in-line attack on the
scissile phosphate. Molecular dynamics (MD) simulations
are consistent with this model as they observe
the necessary conformational change (25,26). Additional
mechanistic data obtained from activity assays on
a hyperactivated external RNA substrate carrying a
5’-phosphorothiolate, however, have recently again
contradicted this model (10). The substrate specifically
suppressed the deleterious effects of C75 mutations and
pH changes, thereby linking the protonation of C75 to
leaving-group stabilization by general acid catalysis. As a
chemical modification was introduced at the scissile
phosphate group to accelerate leaving group departure,
however, it cannot be ruled out that the reaction pathway
and/or active site architecture may be affected in this
relatively slowly cleaving trans-acting model system
compared to the naturally cis-acting ribozymes. Clearly,
more studies are needed to understand structure,
dynamics and ultimately catalysis in the HDV ribozyme.

Most small catalytic RNAs, such as the hammerhead,
hairpin and VS ribozymes, carry cleavage sites that are
constrained by flanking upstream and downstream helices.
The cleavage site in the HDV ribozyme is unique in that it
is located at the junction of the dangling, single-stranded,
so-called 5'-sequence and a G1:U37 wobble pair that
closes the 7-bp P1 helix (Figure 1) (27). There is a specific
requirement for the presence of a G1:U37 wobble pair

since changes to either base reduce activity in the genomic
(28) and antigenomic sequences (23,29), a A1:C37 wobble
combination is the most effective substitution for the
G1:U37 pair (23), and both stacking energy and
placement of the 5-leaving group resulting from the
wobble pair are essential for activity (30). In addition,
the cleavage reaction requires, at a minimum, the presence
of a single dangling nucleotide 5" of the scissile phosphate
of GI1 (31). It was shown that this 5-sequence impacts
catalysis by lowering the energetic barrier for cleavage in
trans-acting HDV ribozyme model systems (12-14).
A plausible explanation for the observed ground-state
destabilization came from observations by fluorescence
resonance energy transfer (FRET), NMR and
terbium(IIl)-mediated footprinting, indicating that local
and global conformational changes occur upon cleavage
and 5-sequence dissociation; such changes may facilitate
catalysis by better positioning the catalytic C75 toward the
reactive groups to an extent that depends on the
S'-sequence (14-17,32,33). More specifically, we showed
that varying the length and composition of the 5'-sequence
results in relatively subtle differences in catalytic core
conformation, which translate into significant changes in
global structure in the trans-acting HDV ribozyme (33).
Hence, the identity of the 5-sequence modulates HDV
ribozyme structure at local and global levels, influencing
the active conformation and resulting in distinct catalytic
activities.

Crystallographic studies revealed details of the struc-
tural impact of the 5'-sequence on the precursor form of
the cis-acting genomic HDV ribozyme. The 5'-sequence is



wedged between the P1|P1.1/P4 and P2|P3 stacks, thus
widening the gap between the stacks in comparison to the
3’-product structure (9). In addition, the U — 1 nucleotide
is bent away from Gl in a sharp ~180° turn about
the scissile phosphate, packing the substrate between
P1 and P3 (Figure 1). This bend may destabilize the
reaction precursor in a way to favor a transition-state
configuration of the scissile phosphate and decrease
the entropic barrier for cleavage. From this notion
follows the hypothesis that structure and dynamics of
the scissile backbone and the adjacent 5-sequence,
particularly N —1, may impact catalysis of the
genomic HDV ribozyme as it does for trans-acting HDV
ribozymes. Neither the extent nor the structural origin of
such an impact on genomic HDV ribozyme catalysis
has been determined yet, prompting us to test our
hypothesis.

To this end, here we have used complementary
site-directed mutagenesis, terbium(III) footprinting and
MD simulations to show that U —1, conserved in all
clinical isolates of HDV, is essential for fast cleavage, with
an order of activity of U-1>C—-1>A—-1>G—1.
Conformations of the P1.1 stem, the cleavage site
wobble pair and the A-minor motif of the catalytic trefoil
turn depend on the identity of the N —1 base, with the
most tightly folded conformation of the catalytic core,
resembling the 3’-product crystal structure, found in
the U—1 wild-type. Furthermore, we find that the
propensity of the 5-sequence to form interactions with
adjacent residues impacts the molecular dynamics of the
backbone around the cleavage site. U —1 leads to the
most robust kink around the scissile phosphate, exposing
the cleavage site to the catalytic C75 in a previously
unnoticed U-turn motif found also in the hammerhead
ribozyme catalytic core, in tRNAs, in HIV-1 genomic
RNA and in large structured RNAs. Our results
demonstrate that a common structural motif, the
U-turn, is used in distinct ways to accelerate catalysis in
both the HDV and hammerhead ribozymes, and they
provide an improved structural framework for
understanding HDV ribozyme dynamics and function.

MATERIALS AND METHODS
Preparation of RNA

The cis-acting precursor variants of the genomic
HDV ribozyme (Figure 1A) were generated by run-off
transcription from a double-stranded, PCR amplified
template that encodes an upstream T7 promoter.
Transcription reactions contained 40mM Tris-HCI
(pH 7.5), 15mM MgCl,, 5mM dithiothreitol, 2mM
spermidine, 4mM each rNTP, 5 units/ml inorganic
pyrophosphatase and 0.1 mg/ul T7 RNA polymerase and
were incubated at 10°C (to avoid extensive self-cleavage)
for 16 h. The enzyme was removed by phenol-chloroform
extraction and the RNA was concentrated using Centricon
YM-3 (3kDa cutoff) ultrafiltration. The full-length
precursor transcripts were isolated after denaturing,
8M urea, 8% (w/v) polyacrylamide gel electrophoresis
by UV shadowing, diffusion elution of small gel slices into
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a chelated 1 mM EDTA (pH 8.0) solution overnight at 4°C,
from which they were recovered by ethanol precipitation,
then diluted into chelated 0.1mM EDTA (pH 8.0)
and stored at —20°C. The chelated EDTA solution had
been passed over the sodium form of Chelex100 to remove
residual metal ions.

For cleavage reactions, radiolabeled precursors were
transcribed as described above, except that 0.4mCi
of [4-**P] GTP were added to the reaction mixture.
The transcription reaction was incubated at 10°C for 24 h
and the RNA was fractionated by electrophoresis on
denaturing, 8 M urea, 8% (w/v) polyacrylamide gels.
Uncleaved precursor RNA was located by autoradio-
graphy, excised, eluted into chelated 1mM EDTA
(pH 8.0) overnight at 4°C and recovered by ethanol
precipitation. The radiolabeled precursors were stored in
chelated 0.1 mM EDTA (pH 8.0) at —20°C.

Cleavage assays

To ensure proper folding, radiolabeled precursor forms of
the cis-cleaving HDV ribozyme (Figure 1A) were heated
to 90°C for 2min in a buffer containing 5mM Tris-HCI
(pH 7.5), 0.5mM spermidine and I mM EDTA. Each
precursor was then pre-incubated at 37°C for 10 min, after
which the reactions were adjusted to the final pH with a
buffer containing 25 mM acetic acid, 25 mM MES, 50 mM
Tris-HCI (pH 7.5). These mixtures were incubated for an
additional 5min at room temperature (22°C), after which
cleavage was initiated with the addition of magnesium
dichloride (final concentration) at room temperature using
two different mixing techniques. For fast-cleaving
ribozymes, 4pl aliquots of the Mg>"-free reaction mix
were distributed to the wells of a microplate. Cleavage at
room temperature was initiated by addition of an equal
volume of a solution containing 22 mM MgCl, (to a final
concentration of ~10mM free magnesium), 0.2mM
spermidine and 0.4mM EDTA. Cleavage kinetics were
followed by quenching individual aliquots at specified
times with 8pul of 80% (v/v) formamide, 0.025% (w/v)
xylene cyanol, 0.025% (w/v) bromophenol blue and
50mM EDTA. In the second mixing technique used for
slower cleaving ribozymes, a larger volume of reaction mix
was initiated with the addition of an equal volume
of 22mM MgCl,, 0.2mM spermidine and 0.4mM
EDTA. Here, 8-ul reaction aliquots were taken at
appropriate time intervals and the reaction quenched
with 8 ul of 80% (v/v) formamide, 0.025% (w/v) xylene
cyanol, 0.025% (w/v) bromophenol blue and 50 mM
EDTA. In both cases, the reaction product was separated
from the precursor by denaturing gel electrophoresis on
8M wurea, 8% (w/v) polyacrylamide gels, and was
quantified and normalized to the sum of the precursor
and product bands using a Phosphorlmager Storm 840
instrument with Image Quant software (Molecular
Dynamics). Time traces of product formation were fit
with the single-exponential first-order rate equation
¥ =y + 4:(1 —e™"/7), employing Marquardt—Levenberg
nonlinear least-squares regression (Microcal Origin 7.0),
where A is the amplitude of the fraction cleaved and 1/t
is the reported cleavage rate constant kgje.y. Errors were
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Figure 2. Self-cleavage activity of the cis-acting genomic HDV ribozyme. (A) Cleavage time courses under standard conditions (see Materials and
methods section) measured for ribozyme variants with a pyrimidine in the —1 position (U — 1, wild-type with 5'-sequence GAU; C — 1 with 5-GAC).
Data were fit with single-exponential functions to yield the reported rate constants kceqy. (B) Cleavage time courses under standard conditions for
ribozyme variants with a purine in the —1 position (A — 1 with 5-GAA; G — 1 with ¥-GAG). (C) Mg>" dependence of activity of the HDV ribozyme
variants of (A) and (B). Data were fit with a binding equation to yield the indicated Mg>* half-titration points Mg, » and a cooperativity coefficient
of 1 (see Materials and methods section). (D) Cleavage time courses under standard conditions for ribozyme variants with the indicated 5'-sequences,
found in clinical isolates of HDV. Data were fit with single-exponential functions to yield the reported rate constants kgjeqy-

obtained from the standard deviation of at least three
independent measurements. To derive apparent magne-
sium-binding affinities, cleavage assays were performed as
described above with the MgCl, concentration varying
between 0 and 11 mM. The concentration of free magne-
sium cation (Mg>") was calculated by subtraction of the
EDTA concentration present in the reaction mixture from
the added Mg®" concentration. The dependency of the
rate constant on free Mg>" was fit with the cooperative
binding equation:

24
kcleav - kmax %
[Mg**]" + Mg},
yielding the metal ion half-titration points, Mg,
reported in Figure 2C with cooperativity coefficients of
n=1.

Terbium(III)-mediated footprinting

The highest purity terbium(III) chloride (99.9%) was
purchased from Sigma-Aldrich. TbCl; stock solutions
at 100mM were prepared in SmM sodium cacodylate
(pH 5.5) and stored in small aliquots at —20°C to prevent
formation of insoluble hydroxide species (34). To observe
the slow backbone scission mediated by Tb(OH)(aq)*™,
purified cis-acting precursor forms of the genomic HDV

ribozymes (Figure 1A) were (3'->*P)-phosphorylated
with T4 RNA ligase and [y-**P]pCp at 4°C overnight.
The labeling reaction was terminated by addition
of EDTA (pH 8.0) to a final concentration of 50 mM.
Since partial self-cleavage occurred during the labeling
reaction, both reaction precursor and product were
re-purified by denaturing, 8 M urea, 8% (w/v) polyacry-
lamide gel electrophoresis, followed by diffusion elution
into chelated 1mM EDTA (pH 8.0) and ethanol
precipitation, as described previously (17). The radiola-
beled RNA (100000 c.p.m. per 10 pul reaction volume) was
pre-annealed in 5mM Tris-HCI (pH 7.5), 0.5mM
spermidine, denatured at 90°C for 2min and incubated
at 37°C for 10min. The final pH was adjusted with a
buffer containing 25mM acetic acid, 25mM MES and
50mM Tris-HCI (pH 7.5). To fold the rlbozyme into an
active conformation, a mixture of Mg>™ (11mM final
concentration) with spermidine (0.1 mM) and Tb*"
(5mM) was added and incubated for 30min at room
temperature (22°C). Backbone scission was slow under
these conditions so that only a small fraction of the
RNA is cut by terbium(III), avoiding secondary hits on
an RNA molecule already cut. The scission reaction was
stopped by addition of EDTA (pH 8.0) to a final
concentration of 50 mM, followed by ethanol precipita-
tion overnight at —20°C. The precipitated RNA was
redissolved in urea loading buffer [80% formamide,



0.025% xylene cyanol, 0.025% bromophenol blue,
9M urea, S0mM EDTA (pH 8.0)] and analyzed on
a wedged 8 M urea, 15% (w/v) polyacrylamide sequencing
gel, alongside sequencing ladders from partial digestion
with G-specific RNase T1 and from alkaline hydrolysis
as described (15,17,33,35). Product bands were directly
visualized using autoradiography and quantified
using a Phosphorlmager Storm 840 with ImageQuant
software (Molecular Dynamics).

Initial structures for MD simulations

Trajectories were analyzed from MD simulations of
initial structures based on the precursor crystal structure
of the HDV ribozyme, PDB ID 1SJ3, that contains
a Mg*" cation in the active site and a C75U mutation (9).
To obtain our initial structures, loop L4 was removed and
U75 replaced in the PDB file by C75. The crystal
structures 1SJ3 and 1SF3 were overlapped in order to
add the nucleotide A —2, contained only in 1SF3. The
average structure after 100 ps of simulation Pre-5AU MD
was used to construct the initial structure for the
Pre-5GAU simulation (with 5-sequence 5-GAU-3'),
where nucleotide G —3 was modeled using the program
InsightIl. Mutations were manually introduced into the —1
position of the equilibrated structure of wild-type simula-
tion Pre-5GAU using Insightll to yield simulations
Pre-GAC, Pre-5SGAA and Pre-5GAG. C41(N3) was
protonated to assure the formation of the structurally
critical A43:C41H*:G73:C44 base quadruple in the J1.1/4
junction (25,26).

MD simulations

All MD simulations (20 ns for each system) were carried
out using the AMBERT7.0 program package (36) with the
parm99 Cornell et al. force field (37-39). The RNA was
solvated in a rectangular box of TIP3P waters (40)
extended to a distance of >10A from any solute atom.
The single resolved Mg”" cation at the active site was
excluded from the initial structures to avoid possible
artifacts from the imperfect description of divalents by the
force field and uncertainty in the exact coordination of
the ion after replacing the crystal U75 with C75 (25,26).
The simulated system was neutralized with Na™ cations
initially placed by the LeaP module at points of favorable
electrostatic potential close to the RNA (41). This
corresponds to an ion concentration of ~0.2M. The
Sander module of AMBER?7.0 was used for the equilibra-
tion and production runs using our standard protocols
(25,26,42). The particle mesh Ewald method (43) was
applied with a heuristic pair list update, using a 2.0-A
nonbonded pair list buffer and a 9.0 A cutoff. A charge
grid spacing of close to 1A and a cubic interpolation
scheme were used. The production runs were carried out
at 300K with constant-pressure boundary conditions
using the Berendsen temperature coupling algorithm (44)
with a time constant of 1.0 ps. SHAKE (45) was applied in
the simulations with a tolerance of 10™® to constrain
bonds involving hydrogen.
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Analysis of MD trajectories

MD trajectories were analyzed using the carnal and
ptraj modules of the AMBER7.0 and 8.0 packages,
and the ptraj module of AMBERS.0 was used to obtain
cross-correlation matrices, which were plotted using
Mathematica5.2. Structures were visualized using the
program VMD (46). Time trajectories of heavy-atom
distances and angles were monitored using Microcal
Origin 7.0. The occupancy criterion for a hydrogen bond
was defined as the time in percentage during which
the hydrogen bond distance between the heavy atoms
(donor (D) and acceptor (A)) was <3.0A and the
hydrogen (H) bond angle of D-H-A was >120°.

RESULTS

The nucleotideimmediately 5’ of the active site affects catalysis
in the cis-acting genomic HDV ribozyme

Experimental studies have provided evidence for
ground-state  destabilization  associated with  the
5’-sequence in tramns-acting ribozyme—substrate complexes
(12,13,33). FRET, NMR and crystallographic studies
have reported differences in conformation between pre-
cursor and product ribozymes that vary only in their
5'-sequence (4,7,9,14,16,17,32,33,35). To investigate the
impact of the 5-sequence on conformational dynamics
and function of the cis-acting ribozyme, here we have
designed several sets of cis-cleaving genomic HDV
ribozymes with short 5'-sequences and varying N —1
residue (Figure 1) and have studied them by a combina-
tion of experimental and simulation techniques.

Cleavage assays carried out on the simplest set of four
constructs carrying U—1, A—1, C—1 and G—1 in the
context of the 3-nt 5-sequence 5-GAN-3' (Figure 1A)
under standard conditions (25mM acetic acid, 25 mM
MES, 50mM Tris-HCI (pH 7.5), 11 mM MgCl,, 0.1 mM
spermidine, at 22°C) revealed an order of activity
of U-1>C—-1>A—-1>G—1, with the fastest con-
struct, U—1, cleaving at (19.94+1.9)min~' and the
slowest construct, G — 1, cleaving at (0.75+0.03)min"
(Figure 2A and B). We find that a majority of molecules in
our cleavage assays fold into an active conformation as
indicated by the generally high cleavage extent of ~78%
for all four variants (Figure 2A and B). The cleavage rate
constant of the U—1 ribozyme, the wild type, is with
~20min~' comparable to previously reported values for
the wild type genomic ribozyme (24,47). Interestingly, the
cleavage rate constants of the least active A — 1 [(1.54+0.1)
min~'] and G — 1 variants ((0.7540.03)min~") are rather
similar to those of wild-type frams-acting ribozymes, in
which removal of typically the J1/2 joiner and/or the
capping loop on P4 lowers the catalytic activity by about
an order of magnitude, presumably by depopulating the
catalytic conformation ~10-fold (12,14,16,48).

Higher Mg” " affinities of purines in the —1 position coincide
with lower catalytic activities

Doudna and co-workers identified six functional groups
within the outer coordination sphere of a presumably
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catalytically involved metal ion in the active site of
the genomic HDV ribozyme precursor, including one
of the non-bridging phosphate oxygens of U—1 (9).
To ask whether mutation of U—1 simply alters the
affinity towards this catalytic metal ion as a possible
mechanism for the observed mutagenesis effects, we
determined the dependence of the cleavage rate constant
on the Mg>" concentration (Figure 2C). We chose
reaction conditions for which Bevilacqua and co-workers
previously demonstrated that they specifically probe the
catalytic metal-binding site, since the higher affinity
structural sites are saturated under these conditions.
As Na' ions compete for the structural sites, these
conditions require a low ionic strength background with
no added monovalents (49,50). As shown in Figure 2C,
the U-1, C—1, A—1 and G—1 5-sequences yield
binding isotherms that are well fit with a cooperativity
coefficient of n=1 (i.e. no cooperativity between metal
ions), resulting in Mg”" half-titration points, Mg, 2, of
1.8, 3.5, 0.6 and 0.5 mM, respectively. The value for U — 1
is in accord with prior studies of the wild-type conducted
under similar solution conditions (6,50). Our results
lead to two conclusions: (i) Slow mutants (particularly
A —1 and G — 1) cannot be activated to wild-type levels
by high Mg>* concentrations, suggesting that the mechan-
ism of mutagenic interference is not simply a weakened
affinity for the catalytic metal ion. (ii) The purines A — 1
and G — 1, which carry an additional N7 imino group as a
well-known metal ion chelator, exhibit up to 7-fold higher
Mg”" affinities than their pyrimidine counterparts U — 1
and C—1, which lack this metal chelator. These higher
Mg”" affinities of the purine derivatives, however,
coincide with catalytic deficiency.

The clinically conserved U — 1 is obligatory for efficient
catalysis by the cis-acting genomic HDV ribozyme

Phylogenetic comparison of 22 clinically isolated HDV
sequences reveals that the only nucleobase found at the —1
position is uracil. The —2 and —3 positions vary, with the
most prevalent sequences, aside from the 5-GAU-3" wild-
type, being 5-UGU-3, 5-UUU-3" and 5-CGU-3" (27).
We therefore constructed an additional set of three cis-
acting genomic ribozymes with these trinucleotides in the
S’-sequence to further test the functional role of U —1 in
the HDV genome; we added a common G — 4 nucleotide
for efficient radioactive in  vitro  transcription
(see Materials and methods section). We find that the
constructs carrying the 5-UGU-3, 5-UUU-3’ and
5-CGU-3’ 5-sequences are all fast-cleaving ribozymes,
with rate constants of (24.9+ 1.1)min~",
(18.7+1.2)min~" and (12.24+0.4)min~"', respectively
(Figure 2D), supporting the notions that U—1 was
naturally selected as the catalytically most effective
N —1 and that the nucleotides in positions —2 and —3
are far less critical. Taken together, our observations
indicate an important functional role in the cis-acting
genomic HDV ribozyme for the physicochemical proper-
ties contributed by a U—1. A slight reduction in the
extent of cleavage from 76 to 66% observed for the UUU
5-sequence in comparison to the UGU and CGU

S’-sequences (Figure 2D) suggests that the UUU trinu-
cleotide enhances ribozyme misfolding.

No hydrogen-bonding contact between U — 1 and G25
as basis for their conservation

The helical stack of P3 is continued by the U20 and G25
bases (Figure 1), which form different types of wobble
interactions in the precursor and product forms of the
ribozyme (4,7,9,26). Interestingly, a G25A mutation that
would stabilize standard Watson—Crick base pairing with
U20 reduces HDV ribozyme activity ~3000-fold (22),
consistent with the notion that hydrogen bonding between
positions 20 and 25 must be sufficiently weak for catalysis
to occur. We therefore tested the possibility that U —1
may be forming a functionally important, transient
contact with G235, a configuration we observed in one of
our MD simulations wherein U —1 and G25 formed a
wobble pair (data not shown). A similar interaction
between, for example, G—1 and G25 would not be
feasible, which could explain the lower catalytic activity
associated with G —1. We therefore designed a G25U
mutant, which is expected to form wobble interactions
with G — 1, but not U — 1; the presence of an interaction
between U—1 and G25 would be supported by the
observation of a switched preference of the G25U mutant,
with higher activity in the context of the GAG than
the GAU 5-sequence. However, this was not observed
(data not shown), providing no support for a catalytically
relevant transient formation of hydrogen bonds between
U —1 and G25.

Terbium(III) footprinting highlights structural differences
in the catalytic core in dependence of the identity of N — 1

The lanthanide terbium(IIl) is a straightforward and
useful probe for secondary and tertiary structure in RNA
(35,51,52). High (millimolar) concentrations of Tb*>" ions
bind relatively non-specifically to RNA and thus result in
backbone scission in a sequence-independent manner,
preferentially cutting solvent accessible, single-stranded or
non-Watson—Crick base-paired regions. By applying
terbium(III) footprinting to our U—1, A—1, C—1 and
G —1 containing cis-acting genomic HDV ribozyme
variants, we tested whether the conformation of the
catalytic pocket changes depending on the identity of
the base in the —1 position; we then sought to correlate
observed conformational changes with changes in
cleavage activity. As a control, we first performed
standard cleavage assays in the presence of 5mM
terbium(IIl) and found that the lanthanide ion strongly
inhibits activity of the genomic ribozyme, as previously
shown for the hairpin (34) and antigenomic HDV
ribozymes (17). [Please note that self-cleavage of the
properly annealed ribozyme in 11mM Mg>", in the
absence of Tb*>", is already slowed down under these
(low temperature) conditions (Figure 3A)]. Yet inhibition
is incomplete, as all four genomic HDV ribozyme variants
still self-cleave to different (small) extents over the
footprintin§ incubation period (30min) when both
11mM Mg”" and 5SmM Tb*" are added (to ~37, 18, 34,



and 20% in case of the U—-1, A—1, C—1 and G—1
ribozymes, respectively; lanes labeled ‘11 mM MgCl,,
SmM TbCl;’ in Figure 3A). In contrast, inhibition is
complete in the absence of Mg®>" (lanes labeled
‘0mM MgCl,, SmM TbCls’ in Figure 3A). We therefore
probed and compared the structure of each precursor
variant with 5SmM Tb>* in both the presence and absence
of 11mM Mg>". Each precursor displayed a different
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Figure 3. Terbium(IIT)-mediated footprinting of the four 3'-**P-labeled
cis-acting genomic HDV ribozyme variants. (A) Control experiment of
background cleavage in the presence of Tb’*. The HDV ribozyme
N — 1 variants were incubated for 30 min at 22°C under the indicated
ionic conditions (see also Materials and methods section). We then
separated the 88-nt reaction precursor from the 85-nt, faster migrating
3'-product, as identified by comparison with purified 3’-product from
self-cleavage of the U—1, A—1 and G — 1 variants (3’P-N — 1). ‘Fresh’
indicates that the material was not incubated before loading onto the
gel. (B) Terbium(I1I)-mediated footprinting of genomic HDV ribozyme
variants. As in (A), the HDV ribozyme N — 1 variants were incubated
for 30min at 22°C under the indicated ionic conditions and then
analyzed on a sequencing gel alongside alkaline hydrolysis (OH™) and
G-specific RNase Tl ladders for sequence identification (see also
Materials and methods section). ‘Fresh’ indicates that the material was
not incubated before loading onto the gel.
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terbium(III) scission pattern, identical in the presence and
absence of Mg>" (data not shown) and clearly distinct
from that of the reaction product (see below), suggesting
that: (i) The footprinting pattern under the strongly
inhibited plus-Mg”* condition is largely dominated by the
excess of uncleaved precursor and thus represents the
precursor footprint. (ii) Secondary and tertiary structure
of the cis-acting genomic HDV ribozyme do not
significantly differ in 5SmM Tb*" in the presence and
absence of 11 mM Mg>*.

The raw and analyzed data in Figures 3B and 4,
respectively, were therefore derived after incubation in the
presence of both 11mMMg®t and S5mMTb**.
Terbium(IIl) footprinting profiles of the precursor and
product generated for each —1 variant are consistent with
the expected secondary structure of the genomic HDV
ribozyme, revealing strong scission 5’ to nucleotides in the
single-stranded regions of loops L3 and L4 as well as
joiners J1.1/4 and J4/2 (Figure 4). We find that the scission
patterns of loop L3 (U20-U27), including the 5'-segment
of the P1.1 stem (C21 and C22), show strong similarities
between the ribozyme variants U—1, A—1 and C—1
(Figure 4A, left). In contrast, the scission intensities 5 to
U23 and C24 are relatively lower for the G — 1 variant,
resembling somewhat the product footprinting pattern
shown on the right side of Figure 4A. This suggests that
residues U23 and C24 are more accessible to and/or less
protected from backbone scission by hydrated
terbium(III) ions in the U—1, A—1 and C— 1 variants
compared to the G — 1 mutant.

As a control, we carried out terbium(III) footprinting
on the 3’-product forms derived from the four ribozyme
variants, 3P-U—-1, 3P-A—-1 3P-C—1 and 3P-G -1,
which were generated by self-cleavage during transcrip-
tion. Similar terbium scission patterns for the L3 loop
residues are expected among all four 3’-product forms,
considering that they all are missing the 5'-sequence and
thus have identical sequences. Indeed, we observe indis-
tinguishable scission patterns (Figure 4A, right), under-
scoring the significance of the considerably distinct
profiles of the precursors with different 5'-sequences and
thus supporting the notion that loop L3 adopts distinct
conformations or conformational equilibria depending on
the N — I base identity.

Pyrimidines in the —1 position stabilize the P1.1 platform
and the G1:U37 wobble pair of the catalytic pocket

Analysis of terbium(III) footprinting patterns of the P1.1
stem and the joiner J1.1/4 reveals that G38 and G39 of the
P1.1 stem as well as U37, the wobble pair partner of the
cleavage site GI1, are less susceptible to terbium(III)
scission in the U—1 and C—1 compared to the A —1
and G —1 variants (Figure 4B, left). This observation
indicates that the conformation of residues forming the
catalytic pocket depends on the identity of the —I1
nucleotide. In fact, the P1.1 stem forms the platform of
the binding pocket on which the cleavage site G1:U37
wobble pair stacks (Figure 1) (9). The fact that the
pyrimidine derivatives of N — 1 lead to stronger protection
of this region against terbium(III) scission than the purine
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derivatives suggests that this region is more strongly base
paired in the pyrimidine derivatives (17,35,52). This
observation correlates with the higher cleavage activity
of the pyrimidine compared to the purine derivatives
(Figure 2). We note that the scission patterns for joiner
J1.1/4 (encompassing G40-A42), in contrast, are similar
among all four variants (Figure 4B, left) and that again
the P1.1 and J1.1/4 footprinting profiles of the various
3-products are identical, as expected (Figure 4B, right).
Finally, residues U37, G38 and G39 are more strongly
protected from terbium(III) scission in the 3’-product than
in any of the precursors, although the precursor variants

with pyrimidine in position N — 1 lead to nearly as strong
a protection (Figure 4B).

Formation of the A-minor motif anchoring the catalytic
C75 depends on the identity of N — 1

We find that the A-minor motif, which anchors
the catalytic C75 in the core (Figure 1), shows stronger
terbium(I1I) scission in the A — 1 and C — 1 variants 5 of
A77 and A78 than does the A-minor motif in the U — 1
and G —1 variants (Figure 4C, left). Generally, A77
and A78, and to some extent G76, are less protected in
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Figure 4. Quantitative analysis of terbium(III) footprinting patterns of the four cis-acting genomic HDV ribozyme variants (left line graphs, derived
from vertical lines through the middle of the gel lanes) and their respective 3'-products (3'P, right line graphs) in the presence of 11 mM Mg>" and
5mM Tb**. The relative scission intensity is given in arbitrary units (A.U.), with important nucleotides indicated 5 to which Tb>* cuts. The
backbone scission observed in loop L3 reported is (A); stem PI1.1 and joiner J1.1/4 (B); and joiner J4/2 (C).



all four precursor variants than in the 3’-product form
(Figure 4C, right), in agreement with terbium(III)-
footprinting data obtained previously on a trans-acting
HDV ribozyme (33). Again, the patterns for the four
products derived from self-cleavage of each of the
precursors are essentially identical, as expected, further
supporting the notion that the relative protections in the
U — 1 wild-type and the G — 1 variant are significant and
likely represent more tightly formed tertiary interactions
in the A-minor motif involving A77 and A78. Notably,
we find one of the strongest terbium(III) hits in both the
precursors and the 3’-product 5 of the catalytic C75 in
the trefoil motif, suggesting that this site represents a
strong Tb**-binding site and/or exhibits a specific
geometry particularly amenable to rapid scission by the
Tb(OH)(aq)*" species and does not change significantly in
this regard upon self-cleavage (17,35,52).

Conformational dynamics vary among the N — 1 variants
in MDD simulations

We carried out a total of 80ns of unconstrained MD
based on the available crystal structures of the cis-acting
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0.70 - 1.00

Pre-5GAA
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genomic HDV ribozyme to supplement our experimental
findings and provide a structurally sound account of
the changes in conformational sampling expected in
response to alterations in the 5-sequence. The four
simulated sequences contain the same three nucleotides
5" of the cleavage site with varying N — 1; accordingly, the
simulations are termed Pre-5GAU, Pre-5SGAA, Pre-5GAC
Pre-5GAG (Figure 1B). G—3 was modeled into the
structure as none of the available crystal structures
resolved this residue. The final structure of the equilibra-
tion run of simulation Pre-SGAU was used to initiate
modeling and simulation of Pre-5GAA, Pre-5GAC and
Pre-5GAG. All simulations revealed stable trajectories
with modest root-mean-square deviations of between 4.25
and 6 A from their corresponding starting structures.
Cross-correlation matrices of MD-simulated motions
in individual solute segments provide insight into coupled
(correlated or anti-correlated) motions and thereby
quickly assess, for example, the occupancy of base pairs
in an RNA (42,53). We obtained comparable cross-
correlation patterns over the whole and the second half
of the simulation trajectory for all four simulations
Pre-5GAU, Pre-5GAA, Pre-5GAC and Pre-5GAG,

Pre-5GAC Pre-5GAG
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Figure 5. Analysis of precursor MD simulations with four different 5’-sequences. (A) Cross-correlation maps of the residues defining the active site,
as indicated. Positive cross-correlations are indicated in red and orange, negative cross-correlations in shades of blue as indicated. Intersections of
vertical and horizontal lines in cyan and green boxes highlight cross-correlation of the base-paired nucleotides in the P1.1 stem. (B) Time trajectories
of heavy-atom distances and torsional angles around the scissile phosphate shown over the entire duration of simulations Pre-SGAU (top panel) and
Pre-SGAA (bottom panel). Vertical lines and horizontal bars in cyan indicate the time period used to obtain the representative average structures
shown in panels (C-E). (C) Overlay of the representative average structures of the catalytic pocket from simulations Pre-5GAU (silver) and Pre-
SGAA (backbone and key nucleotides color-coded as in the Figure 1C). Overlay of the initial crystal-structure-based model (silver) and the
representative average structure (color-coded) from simulations Pre-SGAU (D) and Pre-5GAA (E); solid lines depict the hydrogen bonds from
U — 1(N3) and A — 1(N6), respectively, to C3(O2P), which are rendered in CPK mode.
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indicating that the simulated structural dynamics converge
in each case (data not shown). While the patterns between
the four simulations are similar, we find important
differences (Figure 5A). In particular, the motions of the
P1.1 stem residues C21, C22, G38 and G39 undergo
correlated motions, consistent with joint movements as
mediated by base pairing, in simulations Pre-5GAU and
Pre-5GAC. In contrast, the correlation is weakened in
simulation Pre-SGAG and completely lost in simulation
Pre-5GAA (Figure SA, highlighted by green boxes),
indicating that the PIl.1 stem elements move rather
independently from one another. The stronger cross-
correlations in the pyrimidine derivatives of N-—1
correlate with the fact that the G38/39 residues are
better protected from terbium(IIl)-mediated footprinting
in the presence of U—1and C—1than A—1and G—1
(Figure 4B); all of these observations consistently suggest
stronger base pairing in the P1.1 stem for pyrimidine
derivates of N —1. The PIl.l stem is known to be
a functionally important structural platform for
the cleavage site G1:U37 wobble base pair (Figure 1)
(9,47).  Strikingly, the simulated cross-correlation
and experimental footprinting patterns mirror the cataly-
tic activities (Figure 2), in that pyrimidines in the
—1 position lead to a more stable P1.1 stem as well as
faster catalysis than purines.

Upon closer inspection of the most extreme examples,
the wild-type simulation Pre-5GAU and the purine
mutant simulation Pre-5GAA, we find the likely reason
for the loss of cross-correlation of motions in the P1.1
stem of the Pre-5GAA simulation; in the presence of
A — 1, but not the wild-type U — 1, the C21:G39 base pair
establishes a fluctuating propeller twist that weakens its
hydrogen bonding and limits its stacking with the adjacent
C22:G38 base pair of P1.1 (Figure 5B and C). Consistent
with the observation of a structurally destabilized PI1.1,
the ~13-fold decrease in cleavage activity of the A —1
variant relative to the U — 1 wild-type (Figure 2A and B) is
very similar in magnitude to the loss of cleavage activity in
P1.1 mutants with conservative changes that weaken
hydrogen bonding, such as mutations of the C22:G38
base pair to U22:A38 or U22:G38 base pairs (47). In
addition, striking changes in the cleavage site kink
occur during our simulations, where the o torsional
angle of N-—I1(03)-GI(P)-G1(05)-GI(CY) around
the scissile phosphate, which is ~(278 +9)° in all simula-
tions immediately after equilibration, changes after
5-10ns and remains (178.0+10.2)° in wild-type
simulation Pre-5GAU and (86411.6)° in mutant

simulation Pre-SGAA until the end of our 20-ns
simulations (Figure 5B and Table 1). Coincidentally, the
B torsional angle of GI1(P)-G1(05)-G1(C5)-G1(C4)
around the O5-C5 bond changes from ~(194+10)°
to (174.1+£9.4)° and (166.6£7.6)° in simulations
Pre-5GAU and Pre-5GAA, respectively, whereas the
v torsional angle of G1(05)-G1(C5)-G1(C4')-G1(C3")
around the C5-C4' bond changes from ~(181%47)°
to (49.0£8.8)° and (53.949.1)° in simulations
Pre-5GAU and Pre-5GAA, respectively (Figure 5B and
Table 1). While the Pre-5GAU wild-type simulation
sustains pairwise stacking interactions between its
5’-sequence nucleotides during the entire 20-ns simulation
time, the o torsional angle change in the A —1 mutant
simulation is accompanied by unstacking of the three
nucleotides in the GAA 5'-sequence. More specifically, the
U — 1 nucleotide in simulation Pre-5GAU prominently
forms a relatively weak U — 1(N3)-C3(O2P) base—
backbone hydrogen bond with C3 of stem P1, with an
occupancy of ~35%, as well as very transient interactions
with A—2, G1, C3 and G28, most of which are
backbone—backbone interactions. By comparison, A — 1,
C—1 and G—1 each establish several base-backbone
hydrogen bonds with occupancies significantly above
35%, as well as several significant backbone-backbone
contacts (Table 2 and data not shown). As expected, the
most flexible residue in the 5'-sequence is the one furthest
away from the catalytic core, G — 3 (Table 2). Generally,
hydrogen-bonding interactions between the 5'-sequence
residues and the P1 helix result in decreased hydrogen
bond occupancies in the Watson—Crick base pairs of stem
P1 (data not shown).

U — 1 leads to a stable U-turn kink around the scissile
phosphate

About 9.7 ns into the wild-type simulation Pre-5GAU, the
U20-G25 base-pair breaks and does not reestablish
throughout the remainder of the simulation. U20 remains
in a crystal-structure-like conformation, while G25 under-
goes large motions that change its conformation several
times, coinciding with substantial unfolding of the L3 loop
(data not shown) as previously observed (25,26).
Importantly, U20-G25 unpairing followed by L3 unfold-
ing does not have any obvious effects on the positioning of
the cleavage site kink relative to the catalytically involved
nucleotide C75, which remains stacked below A77,
anchored by fluctuating hydrogen bonds of C75(N4)
with U20(02') of loop L3 (Figure 5B). This robustness of
the catalytic core architecture attests to the stable kink

Table 1. Backbone torsional angles o [of N;_;(O3")-N;(P)-N;(O5)-N;(C5")], B [of N;(P)-N;(O5)-N;(C5)-N;(C4")] and vy [of N;(O5")-N;(C5')-N;(C4')—

Ni(C3)] in degrees (£ standard deviation)

Origin o B Y

U4/GS5, U-turn Hammerhead ribozyme crystal, PDB ID 2GOZ 150.26 172.07 66.97
U33/7°OMeG34, anticodon U-turn yeast tRNAP™ crystal, PDB ID 1TN2 130.61 145.96 85.27

U —1/Gl, U-turn HDV ribozyme crystal (PDB ID 1SJ3) 276.38 251.67 156.19

U —1/Gl, U-turn HDV ribozyme over 19-20ns of MD simulation Pre-SGAU 178.0+10.2 174.1+£9.4 49.0£8.8
A —1/G1, U-turn HDV ribozyme over 19-20ns of MD simulation Pre-5SGAA 86.0£11.6 166.6 7.6 53.9+09.1
Average of C27-A31, P*44°U39-G43, anticodon A-helix yeast tRNA® crystal (PDB ID 1TN2) 284.5+8.2 173.6+10.9 173.6 £10.9




facilitated by the GAU 5'-sequence of the wild-type HDV
ribozyme compared to, for example, the GAA mutant
(Figure 5D and E). In fact, the wild-type sequence
of U—1/Gl with a sharp bend 3’ of U—1, which in
the crystal structure is mediated by an unusually large
B torsional angle around the downstream O5—C5’ bond of
Gl and during our MD simulation is replaced by
unusually small o and y torsional angles around the
scissile P-O5" and the C5—-C4’ bonds of G1, respectively
(Table 1), is nearly identical in backbone trajectory to that
of the U4/G5 U-turn motif in the hammerhead ribozyme
(Figure 6). The U-turn is one of the most commonly found
RNA structural motifs, leading to strongly bent RNA
structures such as those in the hammerhead ribozyme
catalytic core (54-56), the TWC and anticodon hairpin
loops of tRNAs (57,58), the A-rich loop in HIV-1 genomic
RNA (59) and GNRA tetraloops of large structured
RNAs (60,61). In fact, our Pre-5GAU wild-type MD
simulation adjusts the o,  and vy torsional angles of the
HDYV ribozyme crystal structure, which were modeled into
a medium-resolution electron density map of this dynamic
segment (9) and, except for B, are surprisingly close to
standard A-helix values, to values much closer to those
found in the canonical U-turns of the hammerhead
ribozyme and yeast tRNAF crystal structures (Table 1).

DISCUSSION

Here we have shown that U —1, clinically conserved in
the genome of the human HDYV, is essential for fast
self-cleavage of the HDV ribozyme and thus critical
for double-rolling circle replication of the virus.
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Distinct conformations of the catalytic core, in particular
the P1.1 stem, the cleavage site wobble pair and the
A-minor motif of the trefoil turn, as revealed via
terbium(III) footprinting, provide the structural basis for
a >25-fold activity loss across U—1>C—-1>A—1>
G — 1. Moreover, the most solvent protected and thus

Figure 6. Overlay of the U-turn from the initial crystal-structure-
based model from simulation Pre-GAU (backbone and residues
color-coded as in Figure 1) with the crystal structure of the hammer-
head ribozyme (PDB ID 2GOZ; backbone and residues colored
in silver); dashed lines depict the hydrogen bonds between U — 1(N3)
and C3(02P) (HDV ribozyme; orange) and U4(N3) and U7(O2P)
(hammerhead ribozyme; gray); key atoms are rendered in CPK mode
and colored as follows: HDV ribozyme U — [(N3) in blue, U — 1(H3) in
white and C3(O2P) in red; hammerhead ribozyme U4(N3), U4(H3) and
U7(O2P) in black.

Table 2. Occupancy (in%) of hydrogen bonds between the residues of the 5'-sequence and the remainder of the ribozyme during the course of 20-ns

MD simulations

5’-Sequence Hydrogen bond Pre-SGAU Pre-5SGAA Pre-SGAC Pre-SGAG
N-1 U — I(N3)-C3(02P) 35.27 - - -

N —1(02)-G1(01P) 6.37 96.43 90.45 15.96

A — 1(N6)-C3(02P) - 43.25 - -

N —1(0O2P)-U27(N3) - 43.28 - -

C — 1(N4)-C3(02P) - - 76.28 -

G — 1(N1)-C3(02P) - - - 91.8

G — 1(N2)-C3(02P) - - - 69.08

G — 1(O2P)-A77(N6) - - - 31.85
A-2 A —2(04')-G —3(02) 4.92 26.52 - 30.6

A —2(N6)-C3(02P) - 15.35 - -

A —2(N6)-C33(02P) - - 67.92 —

A —2(N6)-G76(02P) - - 2.35 -

A —2(N1)-C4(N4) - - - 16.32

A —2(N1)-C3(N4) - - - 5.78
G-3 G —3(N7)-C32(N4) 13.67 - - -

G —3(06)-C33(N4) 6.75 - - -

G — 3(N2)-C4(02P) - 47.83 - -

G —3(N1)-C4(02P) - 17.42 - -

G —3(N2)-G6(02P) - - 40.6 -

G —3(05)-C7(N4) - - 25.93 -

G —3(02')-G31(06) 3.05 7.57 22.51 16.38

G —3(N2)-G6(N7) - - 15.13 —

G —3(02')-A —2(04") 4.92 26.52 - 30.6

G —3(N2)-G5(06) - - - 23.55

G —3(N2)-C32(N3) 3.84 4.95 9.84 13.05
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tightly folded catalytic core, including the most stable P1.1
stem, cleavage site G1:U37 wobble pair and A-minor
tertiary structure motif are found in the most active U — 1
wild-type. Consistent with this picture, we find in
complementary MD simulations that a 5'-sequence with
U—1 leads to the most stable P1.1 stem as well as
the most robust kink around the scissile phosphate
connecting U — 1 and G1. This kink exposes the cleavage
site to the catalytic C75 in the form of a common U-turn
motif, found for example in the hammerhead ribozyme
catalytic core, but previously unnoticed in the HDV
ribozyme. The architectural function of the U-turn is very
distinct in the HDV and hammerhead ribozymes, in that
in the genomic HDV ribozyme it forms the bend that
presents the scissile phosphate to the catalytic C75,
while in the hammerhead ribozyme, in contrast, it
molds the catalytic core residues around the cleavage
site. Our results provide an improved structural
framework for future studies of HDV ribozyme dynamics
and function.

Why did nature choose the U-turn motif for
such diverse functional roles? The U-turn presents the
minimal sequence motif, consisting of only 2-3nt, that
adopts a 180° turn in an RNA backbone trajectory.
This property makes it an evolutionarily favored motif
for organizing highly structured RNAs such as tRNAs
into compact folds. In the HDV ribozyme, this feature of
the U-turn additionally helps mark and perhaps prepare a
particular phosphodiester bond for site-specific cleavage;
in the hammerhead ribozyme it allows for a maximum
number of residues to be arranged around the scissile
phosphate. The particular use that nature makes of the
U-turn motif thus depends, perhaps not surprisingly, on
the structural context, making the U-turn motif not only
one of the smallest distinct RNA structural motifs, but
also one of the most versatile.

In the canonical crystal structures of U-turns,
including the one described here in the HDV ribozyme,
the bend of the turn is stabilized by a hydrogen bond of
the U, with the non-bridging O2P phosphate oxygen
of the n+3 nucleotide (Figure 6). In our MD
simulation carried out in native aqueous solvent at
room temperature, the relative dynamics of the U—1
nucleotide lead to an only ~35% occupancy of the
U — 1(N3)-C3(0O2P) base—backbone hydrogen bond. This
observation suggests a surprisingly transient nature of the
canonical hydrogen bond in the U-turn motif. Still, it is by
far the most highly occupied hydrogen bond of U—1
in the simulated motif (Table 2), making it plausible
that under the cryogenic conditions of the crystallographic
experiment it is frozen out as a stabilizing, low-energy
interaction. Thus, our MD simulation data are
consistent with the crystallographic data, but add an
important dynamic dimension. This dynamic nature
will have consequences for our understanding of the
widespread U-turn structural motif, for example,
to explain how certain naturally occurring modifications
restrict the conformational space of the U-turn-containing
tRNA anticodon loop and thus affect the accuracy
of decoding and the maintenance of the mRNA
reading frame (58). Introducing such modifications

into the U-turn motif of the HDV ribozyme may
present a novel approach to modulating active site
conformational dynamics and thus self-cleavage activity
of the HDV genome.

Despite the conformational flexibility of the 5'-sequence
nucleotides, the backbone trajectory around the cleavage
site remains strikingly conserved in our U — 1 wild-type
MD simulations (Figure SE) compared to, for example,
the GAA mutant (Figure 5D), consistent with the well
solvent-protected catalytic core structure of the wild-type
HDV ribozyme observed by terbium(IIl) footprinting
(Figures 3 and 4). This architectural robustness of the
cleavage site may contribute to enhanced catalytic activity
of the wild-type ribozyme by decreasing specifically the
entropic penalty associated with reaching the reaction
transition state. Such an architectural feature and catalytic
strategy are also found in protein enzymes, which often
employ substrate strain as a means to lower the transition
state barrier (1-3,33,62).

Why is U found in the U-turn? Uracil possesses
specific features such as a relatively low diversity of
functional groups, a small size and relatively weak
stacking interactions that make it stand out among the
four natural nucleobases. Consistent with this picture,
U — 1 in the HDV ribozyme establishes less of the diverse
hydrogen bond interactions with the P1 helix than the
other MD-simulated N — 1 variants; these interactions
generally result in weakened (lower occupancy) hydrogen
bonds of the essential stem P1 Watson—Crick base pairs.
In the context of HDV ribozyme self-cleavage, U — 1 thus
appears to suppress local misfolding and enhance
residency time in functionally relevant conformations,
thereby further boosting cleavage activity. In addition,
uracil possesses the flexibility needed for rotational
motion around the U-turn to establish a catalytically
important interaction of its 2-OH with C75 as
proposed for the base catalysis mechanism (9). A future
evaluation of the conformational reaction trajectory of
this motion wusing umbrella sampling will likely
provide further insight into function of the genomic
HDYV ribozyme.

In conclusion, we find considerable agreement between
our MD simulation and experimental results, as we have
previously concluded for results on the HDV and hairpin
ribozymes (25,26,42). Such agreement is reassuring in light
of potential force-field biases in the description of nucleic
acids that may significantly affect, for example, the
backbone behavior, in particular over longer MD simula-
tions (63-67). The synergistic power of combining
computational with experimental studies seems worth
further exploitation. Our finding of a U-turn around the
cleavage site provides the basis to frame such future
inquiries into genomic HDV ribozyme structure, dynamics
and catalytic function.
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