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Hypertension is a multifactorial disorder, which has been associated with the reduction
in baroreflex sensitivity (BRS) and autonomic dysfunction. Several studies have revealed
that increased reactive oxygen species (ROS) generated by nicotinamide adenine
dinucleotide phosphate [NAD(P)H] oxidase, following activation of type 1 receptor (AT1R)
by Angiotensin-(Ang) II, the main peptide of the Renin–Angiotensin–Aldosterone System
(RAAS), is the central mechanism involved in Ang-II-derived hypertension. In the present
review, we will discuss the role of Ang II and oxidative stress in hypertension, the
relationship between the BRS and the genesis of hypertension and how the oxidative
stress triggers baroreflex dysfunction in several models of hypertension. Finally, we will
describe some novel therapeutic drugs for improving the BRS during hypertension.
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ANGIOTENSIN-II IS INVOLVED IN HYPERTENSION
Angiotensin-(Ang) II is the key peptide of the
Renin–Angiotensin–Aldosterone System (RAAS). This sys-
tem consists mainly of an enzymatic cascade catalyzed by renin
and angiotensin converting enzyme (ACE), generating Ang II
(Peach, 1977; Griendling et al., 1993). The effect of Ang II is
mediated by Ang II receptors. Two isoforms of the Ang II receptor
have been identified: type 1 receptor (AT1R) and type 2 receptor
(AT2R).

Ang II and its receptors have multiple systemic and local
actions in different tissues, including blood vessels, kidneys,
adrenal glands, heart and central nervous system (CNS) (Sadjadi
et al., 2002; Campos, 2009; Campos et al., 2011). For instance,
in the vasculature, activation of AT1R induces potent vasocon-
striction (Ito et al., 1995; Oliverio et al., 1997). In the adrenal
glands, their activation stimulates the release of aldosterone that
in turn promotes sodium reabsorption in the mineralocorticoid-
responsive segments of the distal nephron (Masilamani et al.,
1999). In the kidneys, activation of AT1R is associated with
renal vasoconstriction and antinatriuresis (Navar et al., 1987).
Furthermore, AT1R is involved in the progression of cardio-
vascular diseases including hypertension, atherosclerosis, cardiac
hypertrophy, and heart failure (Stegbauer and Coffman, 2011;
Ichiki et al., 2012).

Additionally, expression of the AT2R increases under patho-
logical situations (Li et al., 2005; Padia and Carey, 2013).
Therefore, activation of AT2R triggers nitric oxide (NO)
release (Herrera and Garvin, 2010) and inhibits NF-κB and
JAK/STAT signaling pathways. Thus, AT2R effects would poten-
tially neutralize those of AT1R leading to cardiovascular pro-
tection. Moreover, AT2R activation directly antagonizes AT1R

mediated actions (Horiuchi et al., 1999; Stegbauer and Coffman,
2011).

Regarding Ang II effects on the CNS, a high density of Ang
II type 1 receptors was found in specific regions of the forebrain
and in the rostral ventrolateral medulla (RVLM) (Allen et al.,
1998). Of note, microinjection of Ang II into the RVLM pro-
duces an AT1R-mediated increase in autonomous nervous system,
resulting in increases in blood pressure (Dampney et al., 2007).
Furthermore, the overexpression of AT1R in the RVLM increases
blood pressure (Allen et al., 2006), and the blockade of AT1R in
the RVLM has been associated to reduction blood pressure in sev-
eral forms of experimental hypertension (Ito et al., 2002; Braga,
2010). Recently, using combined in vivo and molecular biology
approaches, we have documented that Ang II-induced hyperten-
sion is mediated by an increase in sympathetic nerve activity,
which seems to involve up-regulation of AT1 receptors in the
RVLM and down-regulation of AT1 receptors in the subfornical
organ (SFO) (Braga, 2011; Nunes and Braga, 2011).

An additional component of the RAAS family, angiotensin
converting enzyme 2 (ACE2) cleaves Ang I and Ang II into
Ang-(1–9) and Ang-(1–7), respectively (Chang et al., 2011). Ang-
(1–7) has opposite properties to that of Ang II. By acting through
the Mas receptor, Ang-(1–7) promotes vasodilation, antiprolifer-
ation, and antihypertrophy (Santos et al., 2003; Ferrario et al.,
2005). In the brain, Ang-(1–7) was reported to produce depres-
sor responses when administered in the nucleus of the tractus
solitarius (NTS) and dorsal motor nucleus of the vagus nerve
(Campagnole-Santos et al., 1989). There is compelling evidence
that ACE2 may play a pivotal role in counterbalancing the unde-
sirable actions of the ACE/Ang II/AT1R axis and may be beneficial
for the cardiovascular system (Xu et al., 2011).
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OXIDATIVE STRESS IN HYPERTENSION
The role of oxidative stress in the generation and/or mainte-
nance of arterial hypertension has recently been reported in
various animal models of hypertension, including the renovas-
cular two-kidney–one-clip model (2K1C) (Oliveira–Sales et al.,
2008; Botelho-Ono et al., 2011; Burmeister et al., 2011), the
one-kidney–one-clip hypertension model (1K1C) (Prewitt et al.,
2001), the Ang II-induced hypertension model (Zimmerman
et al., 2002, 2004a; Laplante et al., 2003; Braga, 2011; Nunes and
Braga, 2011), the Dahl salt-sensitive (DOCA-salt) hypertension
model (Wu and De Champlain, 1999; Braga, 2010) the sponta-
neously hypertensive rat model (SHR) (Nishikawa et al., 2003; de
Champlain et al., 2004; Guimarães et al., 2012; Monteiro et al.,
2012) and the stroke-prone SHR model (SHRSP) (Chen et al.,
2001; Kishi et al., 2004) as well as in humans (Duffy et al., 1999;
Higashi et al., 2002; Campos et al., 2011).

For example, increased reactive oxygen species (ROS), includ-
ing superoxide anion formation precedes the development of
hypertension in SHR and in Ang II-infused mice (Kitiyakara and
Wilcox, 1998; Houston, 2005; Braga et al., 2008; Botelho-Ono
et al., 2011).

More than a decade ago, Griendling et al. (1994) first dis-
covered that Ang II activates the vascular smooth muscle nicoti-
namide adenine dinucleotide phosphate [NAD(P)H] oxidase,
an important cellular source of ROS (Griendling et al., 1994).
Subsequently, it was shown that hypertension caused by Ang
II infusion, but not norepinephrine infusion, increased vascu-
lar superoxide production in vivo (Rajagopalan et al., 1996) and
that adenovirus-mediated superoxide dismutase (SOD) overex-
pression was effective in preventing this form of hypertension
(Laursen et al., 1997; Zimmerman et al., 2004b; Davisson and
Zimmerman, 2010; Lob et al., 2010).

The NAD(P)H oxidase is a multi-subunit enzyme and is one of
the enzymatic sources of superoxide production. The NAD(P)H
oxidase has five subunits: p47phox (“phox” stands for phago-
cyte oxidase), p67phox, p40phox, p22 phox, and the catalytic
subunit gp91phox (also termed “Nox2”) (Chabrashvili et al.,
2002; Babior, 2004). In unstimulated cells, p47phox, p67phox,
and p40phox are located in the cytosol, whereas p22phox and
gp91phox are in the membrane (Touyz et al., 2003). Upon
stimulation, p47phox becomes phosphorylated and the cytoso-
lic subunits form a complex that translocates to the membrane
and activates the NAD(P)H oxidase complex (Touyz et al., 2003;
Campos et al., 2011).

To fully understand how NADPH oxidase is involved in the
context of neurogenic hypertension, and to be able to target
it precisely, either experimentally or therapeutically, informa-
tion about the expression patterns of the Nox homologues is
required. To this end, Infanger et al. (2006) compared the expres-
sion levels of Nox1, Nox2, and Nox4 in different regions of
mouse brain using real-time PCR. Their data showed that Nox2
as well as Nox4 are the predominant homologues expressed in
fore-, mid-, and hind-brain of mice, while Nox1 is detectable
but at very low levels. One limitation is that, in a variety of cell
types, Nox transcript levels at baseline do not necessarily pre-
dict stimulus-induced activation of the enzymes, and opposing
functions of various enzymes have been detected under different

physiological conditions. Taken together, it is possible to suggest
that an increase in NADPH oxidase-derived ROS in circum-
ventricular organs CVOs, hypothalamic nuclei, and brainstem
sites play a central role in the neurocardiovascular dysfunction
observed in hypertension (Braga et al., 2011a,b).

Accumulating evidence now points to oxidative stress as a
key mechanism in Ang II-dependent neurogenic hypertension
(Kitiyakara and Wilcox, 1998; Houston, 2005; Burmeister et al.,
2011). Inhibition of the NAD(P)H oxidase, with a decreased in
oxidative stress, in CVOs of brain such as the SFO attenuated
the cardiovascular and dipsogenic effects to intracerebroven-
tricular (ICV) administration of Ang II (Zimmerman et al.,
2004a; Peterson et al., 2009). Similar effect was observed in par-
aventricular nucleus of the hypothalamus (PVN) (Burmeister
et al., 2011) and RVLM (Braga et al., 2008; Braga, 2010). More
recently, Chrissobolis et al. (2012) have documented that Nox2
appears to be the more prominent mediator of the harmful
effects of Ang II in the cerebral circulation during hyperten-
sion. In addition, injections of adenoviral vectors expressing
small interfering (si)RNA targeting NOX2 (AdsiRNA-NOX2) or
NOX4 (AdsiRNA-NOX4) mRNAs, used to knock down NOX2
and NOX4 proteins, in the PVN showed that either AdsiRNA-
NOX2 or AdsiRNA-NOX4 significantly attenuated the develop-
ment of Aldo/NaCl-induced hypertension (Xue et al., 2012). In
an additional study by the same group, Aldo/salt-induced hyper-
tension was also significantly attenuated in NOX2 (genomic)
knockout mice compared with wild-type controls. When animals
from both functional studies underwent ganglionic blockade,
there was a reduced fall in blood pressure in the NOX2 and
NOX4 knockdown/knockout mice, indicating that both NOX2
and NOX4 in the PVN contribute to hypertension (Xue et al.,
2012).

In addition to ROS, reactive nitrogen species play an important
role in the pathogenesis of hypertension. NO and peroxinitrite,
their main players, have been reviewed elsewhere (Pacher et al.,
2007). Briefly, the formation of reactive nitrogen species is a con-
sequence of NO synthesis. Accumulating evidence suggests that
alterations in NO synthesis and NO-sGC-cGMP signaling or a
reduction in the bioavailability of endothelium-derived NO by
increased oxidative stress are key contributors to the pathogen-
esis of hypertension (Wolin, 2005; Paravicini and Touyz, 2006).
Increased levels of superoxide have been shown to decrease the
bioavailability of NO, thereby contributing to the maintenance of
elevated peripheral resistance (Cai and Harrison, 2000; Ungvari
et al., 2004). NO is efficiently removed by reacting with oxyhe-
moglobin to form nitrate, which prevents even the highest rates
of NO synthesis from directly reacting with oxygen to form sig-
nificant amounts of nitrogen dioxide. However, the simultaneous
activation of superoxide synthesis along with NO will transform
the biological actions of NO by forming peroxynitrite (Pacher
et al., 2007). Several enzyme complexes, including NADPH oxi-
dases and xanthine oxidase, can be activated in many cellular
systems to actively produce significant amounts of superoxide.
When superoxide and NO are produced simultaneously in close
proximity, modestly increasing superoxide and NO each at a 10-
fold will increase peroxynitrite formation by 100-fold. Without
superoxide, the formation of nitrogen dioxide by the reaction of
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NO with oxygen is miniscule by comparison (Pacher et al., 2007).
NO and superoxide do not even have to be produced within the
same cell to form peroxynitrite, because NO can so readily move
through membranes and between cells. Although peroxynitrite
is a strong oxidant, it reacts at a relatively slow rate with most
biological molecules. Compelling evidence has emerged support-
ing the importance of endogenous peroxynitrite formation and
protein nitration in the pathogenesis of arterial hypertension
[reviewed in details by Turko and Murad (2002)].

BAROREFLEX AND ANTIOXIDANTS
The arterial baroreflex, regulated by the CNS acts to oppose
the increase in blood pressure by inhibiting sympathetic activity,
causing vasodilation and reducing heart rate (HR) in the short
term. Previous reports have suggested that baroreflex sensitiv-
ity (BRS) is reduced during hypertension and the mechanisms
underlying its reduction involves ROS (Braga, 2010; Botelho-Ono
et al., 2011; Guimarães et al., 2012; Queiroz et al., 2012).

In recent decades, several research groups have worked exten-
sively to improve the treatment of hypertension and its compli-
cation, including reduction in BRS, focusing on the discovery of
new therapy strategies and drugs (Lefkowits and Willerson, 2001;
Queiroz et al., 2011). Among these, we can highlight the use of

antioxidant therapy, such as ROS scavengers and vitamins, SOD
mimetics or NAD(P)H oxidase inhibitors that has experimentally
shown to attenuate or prevent the development of hypertension
(Chen et al., 2001; Landmesser et al., 2003; Costa et al., 2009;
Queiroz et al., 2012).

It has been reported that microinjection of tempol into the
RVLM decreased mean arterial pressure (MAP) and HR in
SHRSP but not in WKY (Kishi and Hirooka, 2013). Other study
demonstrated that acute intravenous infusion of ascorbic acid
(Vitamin C) restores the reduced BRS in renovascular hyper-
tension and that the inhibition of the NAD(P)H oxidase also
restores BRS in hypertensive animals (Botelho-Ono et al., 2011).
Moreover, it has been recognized that chronic administration of
vitamin C for seven days improves BRS in renovascular hyperten-
sive rats (Nishi et al., 2010).

Studies performing ICV injections of adenovirus encod-
ing SOD (AdCuZnSOD) in SFO or RVLM demonstrated that
the pressor effects caused by Ang II infusion were attenuated.
Girouard et al. (2004) found that NAC or melatonin treatment
in drinking water increased baroreflex control in response to
pressor and depressor stimulations in SHR. In addition, the
treatment enhanced increase basal plasma norepinephrine lev-
els in hypertensive. Guimarães et al. (2012) showed that both

FIGURE 1 | Angiotensin II and its mechanisms to reduce baroreflex

sensitivity. Angiotensin II binds to its receptors activating NADPH
oxidase, which in turn increases reactive oxygen species (ROS)
generation in several tissues. Within the brain, ROS leads to a

reduction in the baroreflex sensitivity, which contributes to hypertension.
Natural products such as quercetin, quercetin analogs, and alpha-lipoic
acid, due to their antioxidant capability, improve baroreflex function, and
ameliorate hypertension.
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acute intravenous administration of tiron, a SOD mimetic, and
apocynin, a NAD(P)H oxidase inhibitor, induce reductions in
oxidative stress triggering improvement in BRS in SHR.

Studies aiming to characterize the signal transduction mech-
anism of PI3-kinase involvement in Ang II-induced stimulation
of central neuronal activity in cultured neurons and Ang II-
induced inhibition of baroreflex in SHR vs. WKY rats showed
that application of Ang II to neurons produced a 42% greater
increase in neuronal firing in cells from the SHR compared to
WKY. Interestingly, the Ang II-mediated increase in firing rate
was abolished entirely by the PKC inhibitor GF109230 in the
WKY while it was necessary to block both PKC and PI3K activ-
ity to produce the same effect in the SHR (Sun et al., 2009). This
was associated with an increased ability of Ang II to stimulate
NADPH-oxidase-ROS mediated signaling involving phosphory-
lation of the p47phox subunit of the NADPH oxidase and was
dependent on the activation of PI3 Kinase in the SHR. In addi-
tion, inhibition of PI3 Kinase resulted in the reduction of levels
of p47phox phosphorylation, NADPH oxidase activity, ROS lev-
els and ultimately neuronal activity in cells from the SHR but not
the WKY rat. In addition, in working heart-brainstem prepara-
tions, inhibition of PKC activity in the NTS in situ abolished the
Ang II-mediated depression of cardiac and sympathetic barore-
ceptor reflex gain in the WKY. In contrast, PKC inhibition in the
NTS of SHR only partially reduced the effect of Ang II on the
baroreceptor reflex gain (Sun et al., 2009).

Furthermore, aiming to determine whether or not chronic
reduction of ROS in the RVLM improves impaired BRS in hyper-
tensive rats, Ogawa et al. (2012) transfected adenovirus vectors
encoding either manganese superoxide dismutase (AdMnSOD)
or β-galactosidase (AdLacZ) into the RVLM of SHRSP and
measured BRS using the spontaneous sequence method. They
reported that BRS was significantly lower in SHRSPs than in WKY

rats. In addition, in AdMnSOD-transfected SHRSP, blood pres-
sure, HR, and sympathetic nervous system activation were signif-
icantly decreased from day 5 after the gene transfer. In contrast,
BRS in the AdMnSOD-transfected SHRSP was significantly
increased from day 4 after the gene transfer with the reduction of
ROS in the RVLM. Furthermore, in the AdMnSOD-transfected
SHRSP, intravenous infusion of atropine dramatically decreased
BRS. In contrast, in the AdLacZ-transfected SHRSP, atropine did
not decrease BRS. Their results suggest that chronic reduction
of ROS in the RVLM improves the impaired BRS in SHRSP
through inhibition of the sympathetic component (Ogawa et al.,
2012).

PERSPECTIVES ON NATURAL PRODUCTS
Studies from our laboratory revealed that natural products were
capable of improving BRS through ROS scavenging mecha-
nisms. The flavonoid quercetin improves both sympathetic and
parasympathetic components of baroreflex and reduces MAP in
SHR due to reduction of systemic oxidative stress. The mecha-
nism is unknown, but it was suggested that this antioxidant can
interfere with three or more different free radical–producing sys-
tems (Monteiro et al., 2012). Other study from our group showed
that antioxidant therapy by chronic treatment with α-lipoic acid,
an endogenous antioxidant, reduces hypertension and improves
BRS in rats with renovascular hypertension (Queiroz et al., 2012).
Preliminary studies with a quercetin analog, rutin, demonstrated
that this compound improved cardiovascular parameters altered
during hypertension such as BRS and vascular reactivity, probably
by a reduction in oxidative stress (Figure 1).

In conclusion, natural products with antioxidant properties
have emerged as new potential therapeutic tools for improving
BRS during hypertension. Although promising, there is still a long
way until their use in the clinics becomes reality.
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